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Terminology



Terminology

Two-player games between Player 0 and 1

An infinite game 〈G,φ〉 consists of

◮ a game graph G and

◮ a winning condition φ.

G defines the “playground”, in which the two players compete.

φ defines which plays are won by Player 0.

If a play does not satisfy φ, then Player 1 wins on this play.



Game Graphs

A game graph is a tuple G = 〈S, S0, T 〉 where:

◮ S is a finite set of states,

◮ S0 ⊆ S is the set of Player-0 states (S1 = S \ S0 are the Player-1

states),

◮ T ⊆ S ×S is a transition relation. We assume that each state has

at least one successor.
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Plays

A play is an infinite sequence of states ρ = s0s1s2 · · · ∈ Sω such that

for all i ≥ 0 〈si, si+1〉 ∈ T .

It starts in s0 and it is built up as follows:

If si ∈ S0, then Player 0 chooses an edge starting in si, otherwise

Player 1 picks such an edge.

Intuitively, a token is moved from state to state via edges: From

S0-states Player 0 moves the token, from S1-states Player 1 moves the

token.
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Winning Condition

The winning condition describes the plays won by Player 0.

A winning condition or winning objective φ is a subset of plays, i.e.,

φ ⊆ Sω.

We use logical conditions (e.g., LTL formulas) or automata theoretic

acceptance conditions to describe φ.

Example:

◮ 23s for some state s ∈ S

◮ All plays that stay within a safe region F ⊆ S are in φ.

◮ Given a priority function p : S → {0, 1, . . . , d}, all plays in which

the smallest priority visited is even.

Games are named after their winning condition, e.g., Safety game,

Reachability game, LTL game, Parity game,...



Types of Games

Given a play ρ, we define

◮ Occ(ρ) = {s ∈ S | ∃i ≥ 0 : si = s}

◮ Inf(ρ) = {s ∈ S | ∀i ≥ 0∃j > i : sj = s}

Given a set F ⊆ S,

Reachability Game φ = {ρ ∈ Sω | Occ(ρ) ∩ F 6= ∅}

Safety Game φ = {ρ ∈ Sω | Occ(ρ) ⊆ F}

Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ∩ F 6= ∅}

Co-Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ⊆ F}



Types of Games

Given a priority function p : S → {0, 1, . . . , d} or an LTL formula ϕ

Weak-Parity Game φ = {ρ ∈ Sω | min
s∈Occ(ρ) p(s) is even}

Parity Game φ = {ρ ∈ Sω | min
s∈Inf(ρ) p(s) is even}

LTL Game φ = {ρ ∈ Sω | ρ |= ϕ}

40 1 2 3

We will refer to the type of a game and give F , p, or ϕ instead of

defining φ.

We will also talk about Muller and Rabin games.



Strategies

A strategy for Player 0 from state s is a (partial) function

f : S∗S0 → S

specifying for any sequence of states s0, s1, . . . sk with s0 = s and

sk ∈ S0 a successor state sj such that (sk, sj) ∈ T .

A play ρ = s0s1 . . . is compatible with strategy f if for all si ∈ S0 we

have that si+1 = f(s0s1 . . . si).

(Definitions for Player 1 are analogous.)

Given strategies f and g from s for Player 0 and 1, respectively. We

denote by Gf,g the (unique) play that is compatible with f and g.



Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, if Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if

for all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.



Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, if Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if

for all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

The winning regions of Player 0 and 1 are the sets

W0 = {s ∈ S | Player 0 wins from s}

W1 = {s ∈ S | Player 1 wins from s}

Note each state s belongs at most to W0 or W1. Otherwise pick

winning strategies f and g from s for Player 0 and 1, respectively,

then Gf,g ∈ φ and Gf,g 6∈ φ: Contradiction.



Questions About Games

Solve a game (G,φ) with G = (S, S0, T ):

1. Decide for each state s ∈ S if s ∈ W0.

2. If yes, construct a suitable winning strategy from s.

Further interesting question:

◮ Optimize construction of winning strategy (e.g., time complexity)

◮ Optimize parameters of winning strategy (e.g., size of memory)



Example

s0

s4

s1 s2

s3

Safety game (G,F ) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0, s3, and s4):
◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4, and from s3 choose s4



Example

s0
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Safety game (G,F ) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0, s3, and s4):
◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4, and from s3 choose s4

W0 = {s0, s3, s4}, W1 = {s1, s2}



Another Example
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LTL game (G,ϕ) with ϕ = 3s0 ∧3s4 (visit s0 and s4)

Winning strategy for Player 0 from s0:

◮ From s0 to s3, from s3 to s4, and from s4 to s1.

Note: this strategy is not winning from s3 or s4.

Winning strategy for Player 0 from s3:

◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.



Determinacy

Recall: the winning regions are disjoint, i.e., W0 ∩W1 = ∅

Question: Is every state winning for some player?

A game (G,φ) with G = (S, S0, E) is called determined if

W0 ∪W1 = S holds.

Remarks:

1. We will show that all automata theoretic games we consider here

are determined.

2. There are games which are not determined (e.g., concurrent

games: even/odd sum, paper-rock-scissors)



Strategy Types

In general, a strategy is a function f : S+ → S.

(Note that sometimes we might define f only partially.)

1. Computable or recursive strategies: f is computable

2. Finite-state strategies: f is computable with a finite-state

automaton meaning that f has bounded information about the

past (history).

3. Memoryless or positional strategies: f only depends on the

current state of the game (no knowledge about history of play)



Positional Strategies

Given a game (G,φ) with G = (S, S0, E), a strategy f : S+ → S is

called positional or memoryless if for all words w,w′ ∈ S+ with

w = s0 . . . sn and w′ = s′0 . . . s
′

m such that sn = s′m, f(w) = f(w′)

holds.

A positional strategy for Player 0 is representable as

1. a function f : S0 → S

2. a set of edges containing for every Player-0 state s exactly one

edge starting in s (and for every Player-1 state s′ all edges

starting in s′)



Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state machine A = (M,m0, δ, λ) (Mealy machine) with input

and output alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).



Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state machine A = (M,m0, δ, λ) (Mealy machine) with input

and output alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).

The strategy for Player 0 computed by A is the function

fA(s0 . . . sk) := λ(δ(m0, s0 . . . sk−1), sk) with sk ∈ S0

and the usual extension of δ to words: δ(m0, ǫ) = m0 and

δ(m0, s0...sk) = δ(δ(m0, s0...sk−1), sk). Any strategy f , such that

there exists an A with fA = f , is called finite-state strategy.



Recall Example
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Objective: visit s0 and s4, i.e, {s0, s4} ⊆ Occ(ρ)

Winning strategy for Player 0 from s0, s3 and s4:
◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.
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Extended Game
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Extended Game
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Note: the strategy in the extended grame graph is memoryless.


