
Terminology

Barbara Jobstmann

CNRS/Verimag (Grenoble, France)

Bucharest, May 2010

Outline of the course

1. Terminology

2. Games

2.1 Reachability games

2.2 Buchi games

2.3 Obligation games

2.4 Muller games

3. About games and tree automata

Hierarchy

Reachability Safety

Obligation: Staiger-Wagner, Weak-Parity

Recurrence: Büchi Persistence: co-Büchi

Reactivity: Muller, Parity

1.

2.

3.

4.

Terminology

Terminology

Two-player games between Player 0 and 1

An infinite game 〈G,φ〉 consists of

◮ a game graph G and

◮ a winning condition φ.

G defines the “playground”, in which the two players compete.

φ defines which plays are won by Player 0.

If a play does not satisfy φ, then Player 1 wins on this play.

Game Graphs

A game graph is a tuple G = 〈S, S0, T 〉 where:

◮ S is a finite set of states,

◮ S0 ⊆ S is the set of Player-0 states (S1 = S \ S0 are the Player-1

states),

◮ T ⊆ S ×S is a transition relation. We assume that each state has

at least one successor.

s0

s4

s1 s2

s3
Player 0

Player 1

Plays

A play is an infinite sequence of states ρ = s0s1s2 · · · ∈ Sω such that

for all i ≥ 0 〈si, si+1〉 ∈ T .

It starts in s0 and it is built up as follows:

If si ∈ S0, then Player 0 chooses an edge starting in si, otherwise

Player 1 picks such an edge.

Intuitively, a token is moved from state to state via edges: From

S0-states Player 0 moves the token, from S1-states Player 1 moves the

token.

s0

s4

s1 s2

s3

Winning Condition

The winning condition describes the plays won by Player 0.

A winning condition or winning objective φ is a subset of plays, i.e.,

φ ⊆ Sω.

We use logical conditions (e.g., LTL formulas) or automata theoretic

acceptance conditions to describe φ.

Example:

◮ 23s for some state s ∈ S

◮ All plays that stay within a safe region F ⊆ S are in φ.

◮ Given a priority function p : S → {0, 1, . . . , d}, all plays in which

the smallest priority visited is even.

Games are named after their winning condition, e.g., Safety game,

Reachability game, LTL game, Parity game,...

Types of Games

Given a play ρ, we define

◮ Occ(ρ) = {s ∈ S | ∃i ≥ 0 : si = s}

◮ Inf(ρ) = {s ∈ S | ∀i ≥ 0∃j > i : sj = s}

Given a set F ⊆ S,

Reachability Game φ = {ρ ∈ Sω | Occ(ρ) ∩ F 6= ∅}

Safety Game φ = {ρ ∈ Sω | Occ(ρ) ⊆ F}

Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ∩ F 6= ∅}

Co-Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ⊆ F}

Types of Games

Given a priority function p : S → {0, 1, . . . , d} or an LTL formula ϕ

Weak-Parity Game φ = {ρ ∈ Sω | min
s∈Occ(ρ) p(s) is even}

Parity Game φ = {ρ ∈ Sω | min
s∈Inf(ρ) p(s) is even}

LTL Game φ = {ρ ∈ Sω | ρ |= ϕ}

40 1 2 3

We will refer to the type of a game and give F , p, or ϕ instead of

defining φ.

We will also talk about Muller and Rabin games.

Strategies

A strategy for Player 0 from state s is a (partial) function

f : S∗S0 → S

specifying for any sequence of states s0, s1, . . . sk with s0 = s and

sk ∈ S0 a successor state sj such that (sk, sj) ∈ T .

A play ρ = s0s1 . . . is compatible with strategy f if for all si ∈ S0 we

have that si+1 = f(s0s1 . . . si).

(Definitions for Player 1 are analogous.)

Given strategies f and g from s for Player 0 and 1, respectively. We

denote by Gf,g the (unique) play that is compatible with f and g.

Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, if Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if

for all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, if Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if

for all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

The winning regions of Player 0 and 1 are the sets

W0 = {s ∈ S | Player 0 wins from s}

W1 = {s ∈ S | Player 1 wins from s}

Note each state s belongs at most to W0 or W1. Otherwise pick

winning strategies f and g from s for Player 0 and 1, respectively,

then Gf,g ∈ φ and Gf,g 6∈ φ: Contradiction.

Questions About Games

Solve a game (G,φ) with G = (S, S0, T):

1. Decide for each state s ∈ S if s ∈ W0.

2. If yes, construct a suitable winning strategy from s.

Further interesting question:

◮ Optimize construction of winning strategy (e.g., time complexity)

◮ Optimize parameters of winning strategy (e.g., size of memory)

Example

s0

s4

s1 s2

s3

Safety game (G,F) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0, s3, and s4):
◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4, and from s3 choose s4

Example

s0

s4

s1 s2

s3

Safety game (G,F) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0, s3, and s4):
◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4, and from s3 choose s4

W0 = {s0, s3, s4}, W1 = {s1, s2}

Another Example

s0

s4s3

s1 s2

LTL game (G,ϕ) with ϕ = 3s0 ∧3s4 (visit s0 and s4)

Winning strategy for Player 0 from s0:

◮ From s0 to s3, from s3 to s4, and from s4 to s1.

Note: this strategy is not winning from s3 or s4.

Winning strategy for Player 0 from s3:

◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.

Determinacy

Recall: the winning regions are disjoint, i.e., W0 ∩W1 = ∅

Question: Is every state winning for some player?

A game (G,φ) with G = (S, S0, E) is called determined if

W0 ∪W1 = S holds.

Remarks:

1. We will show that all automata theoretic games we consider here

are determined.

2. There are games which are not determined (e.g., concurrent

games: even/odd sum, paper-rock-scissors)

Strategy Types

In general, a strategy is a function f : S+ → S.

(Note that sometimes we might define f only partially.)

1. Computable or recursive strategies: f is computable

2. Finite-state strategies: f is computable with a finite-state

automaton meaning that f has bounded information about the

past (history).

3. Memoryless or positional strategies: f only depends on the

current state of the game (no knowledge about history of play)

Positional Strategies

Given a game (G,φ) with G = (S, S0, E), a strategy f : S+ → S is

called positional or memoryless if for all words w,w′ ∈ S+ with

w = s0 . . . sn and w′ = s′0 . . . s
′

m such that sn = s′m, f(w) = f(w′)

holds.

A positional strategy for Player 0 is representable as

1. a function f : S0 → S

2. a set of edges containing for every Player-0 state s exactly one

edge starting in s (and for every Player-1 state s′ all edges

starting in s′)

Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state machine A = (M,m0, δ, λ) (Mealy machine) with input

and output alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).

Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state machine A = (M,m0, δ, λ) (Mealy machine) with input

and output alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).

The strategy for Player 0 computed by A is the function

fA(s0 . . . sk) := λ(δ(m0, s0 . . . sk−1), sk) with sk ∈ S0

and the usual extension of δ to words: δ(m0, ǫ) = m0 and

δ(m0, s0...sk) = δ(δ(m0, s0...sk−1), sk). Any strategy f , such that

there exists an A with fA = f , is called finite-state strategy.

Recall Example

s0

s4s3

s1 s2

Objective: visit s0 and s4, i.e, {s0, s4} ⊆ Occ(ρ)

Winning strategy for Player 0 from s0, s3 and s4:
◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

m0

s0

s4s3

s1 s2

Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

m0

s0

s4s3

s1 s2 s0

s4s3

m1

s1 s2

Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

m0

s0

s4s3

s1 s2 s0

s4s3

m1

s1 s2

Note: the strategy in the extended grame graph is memoryless.

