Infinite Games: Motivation

Barbara Jobstmann
CNRS/Verimag (Grenoble, France)

Bucharest, May 2010

Build Correct HW /SW Systems

» Use logic to specify correctness properties, e.g.:
> every job sent to the printer is eventually printed
> two jobs do not overlap (only one job is printed at a time)
> a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.

Build Correct HW /SW Systems

» Use logic to specify correctness properties, e.g.:
> every job sent to the printer is eventually printed
> two jobs do not overlap (only one job is printed at a time)
> a job that is canceled will be interupted
These are conditions on infinite sequences (system runs), and can
be specified by automata and logical formulas.
» Given a logical specification, we can do either:
» VERIFICATION: prove that a given system satisfies the

specification
» SYNTHESIS: build a system that satisfies the specification

Example: Elevator

» Aim: build controller that moves elevator of 10 floor building

» Environment: Passengers pressing buttons to (1) call elevator
and (2) request floor
» System state:

1. Set of requested floor numbers: {0,1}°

2. Current position of lift: {1,...,10}

3. Indicator whose turn is next (assuming lift and passengers act in
alternation) {0,1}

Infinite Games

Two players:
1. Controller is Player 0
2. Passengers are Player 1

A play of a game is an infinite sequence of states of elevator transition

system, where the two players choose moves alternatively.

How does the transition system look like?
» State space: {0,1}19 x {1,...,10} x {0,1}
» Transitions:
» Player 0: (ri...710,4,0) = [} ... 70,7 1] s.t. 7 = 0, Vizjr; = 1
Actions: open/closes doors and move lift
» Player 1: [r1...710,4,1] = (r} ... 70,7,0) st 5 =4, Vi:r; <7}

Actions: request floors

Desired Properties

» Every requested floor is eventually reached

v

Floors along the way are severed if requested

v

If no floor is request, elevator goes to ground floor

> ...

These are conditions on infinite sequences!

Player 0 (controller) wins the play if all conditions are satisfied
independent of the choices Player 1 makes. This corresponds to

finding a winning strategy for Player 0 in an infinite game.

Our Aim

Solution of the Synthesis Problem
1. Decide whether there exists such a winning strategy -

Realizability Problem

2. If “yes”, then construct the system - Synthesis Problem

Main result:
The synthesis problem is algorithmically solvable for finite-state
systems with respect to specifications given as w-automata or

linear-time temporal logic.

Other Applications of Games

» Program repair or program sketching
» Nicer and more intuitive proofs for logics over trees

» Verification for logics over trees

Model Checking versus Repair
An Example

Lock Example

1 while(...) {
2 if (..0) Ao
3 lock();

4 gotlock++;

5 if (gotlock!=0)
unlock();
7 gotlock--;

Properties

1. P1: do not aquire a lock twice

2. P2: do not call unlock without holding the lock

Transition System of P

Variables: line, gotlock

Recall LTL

Boolean Operators: —, A, V, —,...

Temporal Operators:
» next: Oy ... in the next step ¢ holds

» until: o1 Uyps ... at some point in the future ¢, holds and

until then ¢; holds
Useful abbreviations:
» eventually: Gy =trueU oy
» always: Op = O
» weakuntil: ¢1 W s = (1 Ups) V Op;
Note that
(1 Ugz) = (o2 U —p1 A —p2) V B = =2 W(m1 A —gp2).

Our properties in LTL

1. P1: do not aquire a lock twice
Whenever we have called lock, we are not allowed to call it again

before calling unlock.

Our properties in LTL

1. P1: do not aquire a lock twice
Whenever we have called lock, we are not allowed to call it again
before calling unlock. O((I =3) — O(—(=3)W(l =6)))

Our properties in LTL

1. P1: do not aquire a lock twice
Whenever we have called lock, we are not allowed to call it again
before calling unlock. O((I = 3) — O(—~(= 3)W(l = 6)))

2. P2: do not call unlock without holding the lock

Our properties in LTL

1. P1: do not aquire a lock twice
Whenever we have called lock, we are not allowed to call it again
before calling unlock. O((I = 3) — O(—~(= 3)W(l = 6)))

2. P2: do not call unlock without holding the lock
((l=6)W(I=3)A(l=6—=O=(=6)W(=23))

From LTL to Automata: Expansion rules

v

Op =p A OOy
Cp=pVOOp

p1Upa =2V (o1 A Op1 U ps)

v

v

» o1 W =02V (o1 A Op1 W o)

Example: O((l =3) = O(=(l=3)W(=6)))
Shortcuts: I3 for (I = 3) and ls for (I = 6)

= |:|(—|13 V (l3 A O(_‘li’)WlG)))

Expand: (=l3V (I3 A O(=lsWls))) A Op
DNF: sp V s1 with sg = —lg A Oy and s1 = I3 A O(=l3Wlig A p)

Example

O
{ so 1 Iz A Qp }—(s2:l6 AQyp >

ﬁ@ 13 AO(=ls W g A @—»éﬁmo(ﬂzg Wig A @

Expand: —lsWlig A ¢

(le V (I3 ANO(HI3Wis))) A ((ml3 A Op) V(I3 A O(—ls Wi A 9)))
(1) lgA=l3AOp = s2

(2) lg ANlg--- = false

(3) (Rls AO(lsWig)) A (Rls A Owp) : 83

(4) (mlgN---ANlg--- = false

Model Checking

L(Program) C L(P1)

L(Program) N L(—P1) = ()

Automaton for = P1

-P1=-0(l3 - O(=l3Wlg))
—P1 = (I3 A O(=lg Uls))

Simplified version:

Product of Program and Property

(1=lgl=-1s1) (1=lgl=1,5)
\

(1=2,g1=-1)s1) (1:2,g1i:-1\,§0)

(1=3,gl=-1,51 \ (1=3,gl=-1,5)

—igl=13)
N

(1:7,gi:0,31) (1=7,g1=0s()

Counterexample

(e T o

Line 1:
Line 2:

Line 1:
Line 2:

Line 1:
Line 2:

enter while loop

skip over if

enter while loop

enter if (call lock)

enter while loop

enter if (call lock again)

WD -

while(...) {

if (...0) o

lock();
gotlock++;

if (gotlock!=0)
unlock();
gotlock--;

Repair

Repair: Step 1 - Free variables

1 while(...) {
2 if (... {
3 lock();
4 gotlock=7;
+

5 if (gotlock!=0)
6 unlock();
7 gotlock=7;

}

Game on P

’ 1=1,gl=1 ‘ ’ 1=1,g1=0 ‘ Variables: line, gotlock

1\ AN

1=2,g1=\1 |

Repair: Winning Condition

Note in MC: non-determinism due to input and due to automaton are

treated the same way!

In Game: non-determinism may cause troubles.

Deterministic Automata/Observer

Recall,
@ =0(=l3V (I3NO(-lsWlg)))

Note: this is a safety automaton.

Add Automaton to Game on P

. ’ 1=1,gl=-1 ‘ ’ 1=1,g1=0 ‘ Variables: line, gotlock

CN AN
20

A Winning Strategy

Variables: line, gotlock

A Correct Program

1 while(...) {
2 if (... {
3 lock();
4 gotlock=1;
}

5 if (gotlock!=0)
6 unlock();
7 gotlock=0;

}

