
Infinite Games: Motivation

Barbara Jobstmann

CNRS/Verimag (Grenoble, France)

Bucharest, May 2010

Build Correct HW/SW Systems

◮ Use logic to specify correctness properties, e.g.:

◮ every job sent to the printer is eventually printed

◮ two jobs do not overlap (only one job is printed at a time)

◮ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.

Build Correct HW/SW Systems

◮ Use logic to specify correctness properties, e.g.:

◮ every job sent to the printer is eventually printed

◮ two jobs do not overlap (only one job is printed at a time)

◮ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.

◮ Given a logical specification, we can do either:

◮ VERIFICATION: prove that a given system satisfies the

specification

◮ SYNTHESIS: build a system that satisfies the specification

Example: Elevator

◮ Aim: build controller that moves elevator of 10 floor building

◮ Environment: Passengers pressing buttons to (1) call elevator

and (2) request floor

◮ System state:

1. Set of requested floor numbers: {0, 1}10

2. Current position of lift: {1, . . . , 10}

3. Indicator whose turn is next (assuming lift and passengers act in

alternation) {0, 1}

Infinite Games

Two players:

1. Controller is Player 0

2. Passengers are Player 1

A play of a game is an infinite sequence of states of elevator transition

system, where the two players choose moves alternatively.

How does the transition system look like?

◮ State space: {0, 1}10 × {1, . . . , 10} × {0, 1}

◮ Transitions:

◮ Player 0: (r1 . . . r10, j, 0) → [r′
1
. . . r′

10
, j′, 1] s.t. rj = 0, ∀i6=jri = r′i

Actions: open/closes doors and move lift

◮ Player 1: [r1 . . . r10, j, 1] → (r′
1
. . . r′

10
, j′, 0) s.t. j = j′, ∀i : ri ≤ r′i

Actions: request floors

Desired Properties

◮ Every requested floor is eventually reached

◮ Floors along the way are severed if requested

◮ If no floor is request, elevator goes to ground floor

◮ ...

These are conditions on infinite sequences!

Player 0 (controller) wins the play if all conditions are satisfied

independent of the choices Player 1 makes. This corresponds to

finding a winning strategy for Player 0 in an infinite game.

Our Aim

Solution of the Synthesis Problem

1. Decide whether there exists such a winning strategy -

Realizability Problem

2. If “yes”, then construct the system - Synthesis Problem

Main result:

The synthesis problem is algorithmically solvable for finite-state

systems with respect to specifications given as ω-automata or

linear-time temporal logic.

Other Applications of Games

◮ Program repair or program sketching

◮ Nicer and more intuitive proofs for logics over trees

◮ Verification for logics over trees

Model Checking versus Repair

An Example

Lock Example

...

1 while(...) {

2 if (...) {

3 lock();

4 gotlock++;

}

...

...

5 if (gotlock!=0)

6 unlock();

7 gotlock--;

}

8 ...

Properties

1. P1: do not aquire a lock twice

2. P2: do not call unlock without holding the lock

Transition System of P

Variables: line, gotlockl=1,gl=0.... l=1,gl=-1

l=2,gl=0l=2,gl=-1

l=3,gl=0l=3,gl=-1

l=4,gl=0l=4,gl=-1

l=5,gl=0 l=5,gl=1l=5,gl=-1

l=6,gl=0 l=6,gl=1l=6,gl=-1

l=7,gl=0 l=7,gl=1l=7,gl=-1

l=8,gl=0l=8,gl=-1

Recall LTL

Boolean Operators: ¬, ∧, ∨, →,...

Temporal Operators:

◮ next: ©ϕ ... in the next step ϕ holds

◮ until: ϕ1 Uϕ2 ... at some point in the future ϕ2 holds and

until then ϕ1 holds

Useful abbreviations:

◮ eventually: 3ϕ = true Uϕ

◮ always: 2ϕ = ¬3¬ϕ

◮ weakuntil: ϕ1 Wϕ2 = (ϕ1 Uϕ2) ∨ 2ϕ1

Note that

¬(ϕ1 Uϕ2) = (¬ϕ2 U¬ϕ1 ∧ ¬ϕ2) ∨2¬ϕ2 = ¬ϕ2 W(¬ϕ1 ∧ ¬ϕ2).

Our properties in LTL

1. P1: do not aquire a lock twice

Whenever we have called lock, we are not allowed to call it again

before calling unlock.

Our properties in LTL

1. P1: do not aquire a lock twice

Whenever we have called lock, we are not allowed to call it again

before calling unlock. 2((l = 3) → ©(¬(l = 3)W(l = 6)))

Our properties in LTL

1. P1: do not aquire a lock twice

Whenever we have called lock, we are not allowed to call it again

before calling unlock. 2((l = 3) → ©(¬(l = 3)W(l = 6)))

2. P2: do not call unlock without holding the lock

Our properties in LTL

1. P1: do not aquire a lock twice

Whenever we have called lock, we are not allowed to call it again

before calling unlock. 2((l = 3) → ©(¬(l = 3)W(l = 6)))

2. P2: do not call unlock without holding the lock

(¬(l = 6)W(l = 3)) ∧ (l = 6 → ©(¬(l = 6)W(l = 3)))

From LTL to Automata: Expansion rules

◮ 2ϕ = ϕ ∧©2ϕ

◮ 3ϕ = ϕ ∨©3ϕ

◮ ϕ1 Uϕ2 = ϕ2 ∨ (ϕ1 ∧©ϕ1 Uϕ2)

◮ ϕ1 Wϕ2 = ϕ2 ∨ (ϕ1 ∧©ϕ1 Wϕ2)

Example: 2((l = 3) → ©(¬(l = 3)W(l = 6)))

Shortcuts: l3 for (l = 3) and l6 for (l = 6)

ϕ = 2(¬l3 ∨ (l3 ∧©(¬l3W l6)))

Expand: (¬l3 ∨ (l3 ∧©(¬l3 W l6))) ∧©ϕ

DNF: s0 ∨ s1 with s0 = ¬l3 ∧©ϕ and s1 = l3 ∧©(¬l3W l6 ∧ ϕ)

Example

s0 : ¬l3 ∧©ϕ

s1 : l3∧©(¬l3 W l6 ∧ ϕ)

s2 : l6 ∧©ϕ

s3 :¬l3∧©(¬l3 W l6 ∧ ϕ)

Expand: ¬l3W l6 ∧ ϕ

(l6 ∨ (¬l3 ∧©(¬l3W l6))) ∧ ((¬l3 ∧©ϕ) ∨ (l3 ∧©(¬l3W l6 ∧ ϕ)))

(1) l6 ∧ ¬l3 ∧©ϕ : s2

(2) l6 ∧ l3 · · · = false

(3) (¬l3 ∧©(¬l3 W l6)) ∧ (¬l3 ∧©ϕ) : s3

(4) (¬l3 ∧ · · · ∧ l3 · · · = false

Model Checking

L(Program) ⊆ L(P1)

L(Program) ∩ L(¬P1) = ∅

Automaton for ¬ P1

¬P1 = ¬2(l3 → ©(¬l3 W l6))

¬P1 = 3(l3 ∧©(¬l6 U l3))

Simplified version:

s0

s1

s2

l3

l3

⊤

¬l6

⊤

Product of Program and Property

l=1,gl=0,s0l=1,gl=-1,s0

l=2,gl=-1,s0

l=3,gl=-1,s0

l=4,gl=-1,s1

l=2,gl=0,s0

l=3,gl=0,s0

l=4,gl=0,s1

l=5,gl=0,s0 l=5,gl=1,s1l=5,gl=0,s1

l=6,gl=1,s1

l=7,gl=0s0l=7,gl=0,s1

l=1,gl=-1,s1

l=2,gl=-1,s1

l=3,gl=-1,s1

l=4,gl=-1,s2

....

Counterexample

1. Line 1: enter while loop

2. Line 2: skip over if

3. ...

4. Line 1: enter while loop

5. Line 2: enter if (call lock)

6. ...

7. Line 1: enter while loop

8. Line 2: enter if (call lock again)

...

1 while(...) {

2 if (...) {

3 lock();

4 gotlock++;

}

...

...

5 if (gotlock!=0)

6 unlock();

7 gotlock--;

}

8 ...

Repair

Repair: Step 1 - Free variables

1 while(...) {

2 if (...) {

3 lock();

4 gotlock=?;

}

...

...

5 if (gotlock!=0)

6 unlock();

7 gotlock=?;

}

8 ...

Game on P

Variables: line, gotlockl=1,gl=0.... l=1,gl=-1

l=2,gl=0l=2,gl=-1

l=3,gl=0l=3,gl=-1

l=4,gl=0l=4,gl=-1

l=5,gl=0 l=5,gl=1l=5,gl=-1

l=6,gl=0 l=6,gl=1l=6,gl=-1

l=7,gl=0 l=7,gl=1l=7,gl=-1

l=8,gl=0l=8,gl=-1

Repair: Winning Condition

Note in MC: non-determinism due to input and due to automaton are

treated the same way!

In Game: non-determinism may cause troubles.

s0

s1

s2

l3

l3

⊤

¬l6

⊤

Deterministic Automata/Observer

Recall,

ϕ = 2(¬l3 ∨ (l3 ∧©(¬l3W l6)))

s0

s1

s2

l3

¬l3

l3

¬l3 ∧ ¬l6

l6

Note: this is a safety automaton.

Add Automaton to Game on P

Variables: line, gotlockl=1,gl=0.... l=1,gl=-1

l=2,gl=0l=2,gl=-1

l=3,gl=0l=3,gl=-1

l=4,gl=0l=4,gl=-1

l=5,gl=0 l=5,gl=1l=5,gl=-1

l=6,gl=0 l=6,gl=1l=6,gl=-1

l=7,gl=0 l=7,gl=1l=7,gl=-1

l=8,gl=0l=8,gl=-1

s0

s1

s2

l3

¬l3
l3

¬l3 ∧ ¬l6

l6

A Winning Strategy

Variables: line, gotlockl=1,gl=0

l=2,gl=0

l=3,gl=0

l=4,gl=0

l=5,gl=0 l=5,gl=1

l=6,gl=0 l=6,gl=1

l=7,gl=0 l=7,gl=1

l=8,gl=0

A Correct Program

1 while(...) {

2 if (...) {

3 lock();

4 gotlock=1;

}

...

...

5 if (gotlock!=0)

6 unlock();

7 gotlock=0;

}

8 ...

