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Definition

◮ Game graph for 2 players (S, S0, E)

◮ Reward/weight function r : E → [−W, . . . , 0, . . . ,W ]

◮ Player-0 value of a play ρ = s0s1 . . . starting in state s0 is

MP0(ρ) = lim inf
n→∞

1

n

n
∑

i=1

r(si−1, si)

◮ Player-1 value of a play ρ = s0s1 . . . starting in state s0 is

MP1(ρ) = lim sup
n→∞

1

n

n
∑

i=1

r(si−1, si)

◮ Aim of Player 0: maximize MP0(ρ)

◮ Aim of Player 1: minimize MP1(ρ)

◮ Introduced by Ehrenfeucht and Mycielski



Value of a state and optimal strategies

◮ Given a game G, we denote by Πi the set of all possible

strategies of Player i.

◮ The Player-0 value of a state s under strategies π0 ∈ Π0 and

π1 ∈ Π1, denoted by V0(s, π0, π1), is the mean-payoff value of the

play starting in s that is compatible with π0 and π1.

V0(s, π0, π1) := MP0(Gs,π0,π1
)

◮ The Player-0 value of a state s under the strategy π0 ∈ Π0,

denoted by V0(s, π0), is V0(s, π0) := infπ1∈Π1
V0(s, π0, π1).

(Player 0 want so ensure the value independent of Player 1.)

◮ A strategy π0 ∈ Π0 is optimal for Player 0 in a state s if V0(s, π0)

is maximal, i.e., ∀π′

0 ∈ Π0 : V0(s, π
′

0) ≤ V0(s, π0).

◮ Player-1 value and optimal strategies are defined analogously.



Determinacy and positional optimal strategies

For all state s, there exists a value vs such that there exists a

positional Player-0 and a positional Player-1 strategy π0 and π1 that

ensure

vs ≤ V0(s, π0) V1(s, π1) ≤ vs

vs is called the value of state s.

Note that π0 and π1 are optimal strategies.



Determinacy and positional optimal strategies

We use a result from Gimbert and Zielonka, “Games where you can

play optimally without any memory” [CONCUR 2005]

Theorem

Suppose that a value function V is such that for each finite game graph

G = (S, S0, E) controlled by one player, i.e. such that either S0 = ∅ or

S1 = ∅, the player controlling all states of G has an optimal (uniform)

positional strategy in the game. Then for all finite two-player game

graph G both players have optimal positional strategies in the game G



One-player games have positional strategies

Consider a game graph G with S = S0 and an arbitrary state s ∈ S

Claim: the best Player 0 can do is go from s to a simple cycle C with

maximal average reward rmax and stay in the cycle. The payoff

Player-0 gets with this strategy it the average reward of the cycle C.

To proof: for all plays ρ = s0s1 . . . starting in s, V(ρ) ≤ vmax.

Consider an arbitrary play ρ = s0s1 . . . , first we decompose the play

into its cycles as follows: we put the state on a stack and as soon as

we revisit a state that is already on the stack, we have found a cycle

and we remove the states from the stack. Let C0, C1, . . . be the

sequence of simple cycle generated like this and let v0v1 . . . be the

average reward we obtain in these cycle.



One-player games have positional strategies

Then, we know that ∀i ≥ 0 : vi ≤ vmax, since vmax is the maximal

average reward we can obtain with a simple cycle.

This prove that V(ρ) ≤ vmax for any arbitrary play ρ.

The proof for S = S1 is similar but know we search for the simple

cycle with minimal average.

(Note that these cycle can be find with Karp’s shortest path

algorithm in polynomial time.)



k-Step Game [Zwick and Paterson]

The two players play the game for exactly k steps constructing a path

of length k, and the weight of this path is the outcome of the game.

The length of the game is known is advance to both players.

Let vk(s) be the value of this game started at a s ∈ S.

Theorem

The values vk(s) for all s ∈ S can be computed in O(k · |E|) time.

Proof.

The results follows easily from the following recursive relation

vk(s) =







max(s,s′)∈E{r(s, s
′) + vk−1(s

′)} if s ∈ S0

min(s,s′)∈E{r(s, s
′) + vk−1(s

′)} if s ∈ S1

along with the initial condition v0(s) = 0 for all s ∈ S.



Convergence of k-step game

Intuitively, limk→∞ vk(s)/k = v(s), where v(s) is the value of the

infinite game that starts at s.

Theorem

For every s ∈ S, we have

k · v(s)− 2nW ≤ vk(s) ≤ k · v(s) + 2nW

Proof.

We use the fact that both players have positional optimal strategies.

Let π0 be a positional optimal strategy for player 0 start at s. We

show that if Player 0 plays according to π0 then the output of the

k-step game is at least (k − n) · v(s)− nW .



Consider play compatible with π0. Push edges played by the players

onto a stack. Whenever a cycle C is formed, the mean weight of C is

at least v(s) (since π0 is an optimal strategy for player 0). The edges

part of C lie at the top of the stack. They are removed and the

process continues. At each stage the stack contains at most n edges

with weight at least −W . Player 0 can therefore ensure that the total

weight of the edges encountered in a k-step game starting from s is at

least (k − n) · v(s)− nW . This is at least k · v(s)− 2nW as v(s) < W .

Similarly, if player 1 plays according to a positional optimal strategy

π1, she can make sure that the mean weight of each cycle closed is at

most v(s). At most n edges are left on the stack and the weight of

each of them is at most W . She can therefore ensure that the total

weight of the edges encountered in a k-step game starting at s is at

most (k − n) · v(s) + nW ≤ k · v(s) + 2nW .



Algorithm

Theorem

Let G = (S, S0, E) be a game graph with a reward function

w : E → {−W, . . . , 0, . . . ,W}. The value v(s) for every state s ∈ S

can be computed in O(|S|3 · |E| ·W ) time.

Proof.

Compute the values vk(s), for every s ∈ S, for k = 2n3W . This can

be done, according to the previous theorem, in O(|S|3 · |E| ·W ) time.

For each state s ∈ S, compute the estimate v′(s) = vk(s)/k:

vk(s)− 2nW ≤ k · v(s) ≤ vk(s) + 2nW

v′(s)− 2nW
k

≤ v(s) ≤ v′(s) + 2nW
k

v′(s)− 1
n(n−2) ≤ v′(s)− 2nW

k
≤ v(s) ≤ v′(s) + 2nW

k
≤ v′(s) + 1

n(n−2)



Proof (cont.)

The value v(s) is a rational number, with a denominator whose size is

at most n. The minimum distance between two possible values of v(s)

is at least 2
n(n−2) . The exact value of v(s) is therefore the unique

rational number with a denominator of size at most n that lies in the

interval [v′(s)− 1
n(n−2) , v

′(s) + 1
n(n−2) ].


