Regular, Star Free and Aperiodic Languages

Regular Languages

Let Σ be an alphabet, and $X, Y \subseteq \Sigma^{*}$

$$
\begin{aligned}
X Y & =\{x y \mid x \in X \text { and } y \in Y\} \\
X^{*} & =\left\{x_{1} \ldots x_{n} \mid n \geq 0, x_{1}, \ldots, x_{n} \in X\right\}
\end{aligned}
$$

The class of regular languages $\mathcal{R}(\Sigma)$ is the smallest class of languages $L \subseteq \Sigma^{*}$ such that:

- $\emptyset \in \mathcal{R}(\Sigma)$
- $\{\alpha\} \in \mathcal{R}(\Sigma)$, for all $\alpha \in \Sigma$
- if $X, Y \in \mathcal{R}(\Sigma)$ then $X \cup Y, X Y, X^{*} \in \mathcal{R}(\Sigma)$

Regular, rational and recognizable languages

Theorem 1 (Kleene) A set of finite words is recognizable if and only if it is regular.

Proof in every textbook.

Rational $=$ regular, in older books e.g.

Samuel Eilenberg. Automata, Languages and Machines. Academic Press, 1974

ω-Regular Languages

If $X \subseteq \Sigma^{*}$ and $Y \subseteq \Sigma^{\omega}$

$$
\begin{aligned}
X Y & =\{x y \mid x \in X, y \in Y\} \in \Sigma^{\omega} \\
X^{\omega} & =\left\{x_{0} x_{1} \ldots \mid x_{0}, x_{1}, \ldots \in X \backslash\{\epsilon\}\right\} \\
X^{\infty} & =X^{*} \cup X^{\omega}
\end{aligned}
$$

The class of ω-regular languages $\mathcal{R}^{\infty}(\Sigma)$ is the smallest class of languages $L \subseteq \Sigma^{\infty}$ such that:

- $\emptyset \in \mathcal{R}^{\infty}(\Sigma)$ and $\{a\} \in \mathcal{R}^{\infty}(\Sigma)$, for all $a \in \Sigma$
- if $X, Y \in \mathcal{R}^{\infty}(\Sigma)$ then $X \cup Y \in \mathcal{R}^{\infty}(\Sigma)$
- for each $X \subseteq \Sigma^{*}$ and $Y \subseteq \Sigma^{\infty}$, if $X, Y \in \mathcal{R}^{\infty}(\Sigma)$ then $X Y \in \mathcal{R}^{\infty}(\Sigma)$
- for each $X \subseteq \Sigma^{*}$, if $X \in \mathcal{R}^{\infty}(\Sigma)$ then $X^{*}, X^{\omega} \in \mathcal{R}^{\infty}(\Sigma)$

ω-Regular Languages

Theorem 2 A language $L \subseteq \Sigma^{\omega}$ is ω-regular if and only if

$$
L=\bigcup_{i=1}^{n} X_{i} Y_{i}^{\omega}
$$

for some $X_{i}, Y_{i} \in \mathcal{R}(\Sigma)$.

$$
\begin{aligned}
& \mathcal{C}=\left\{\bigcup_{i=1}^{n} X_{i} Y_{i}^{\omega} \mid n \geq 0, \quad X_{i}, Y_{i} \in \mathcal{R}(\Sigma)\right\} \\
& \mathcal{E}=\left\{X \in \Sigma^{\infty} \mid X \cap \Sigma^{*} \in \mathcal{R}(\Sigma), X \cap \Sigma^{\omega} \in \mathcal{C}\right\}
\end{aligned}
$$

We prove that $\mathcal{R}^{\infty}(\Sigma) \subseteq \mathcal{E}$

Star Free Languages

The class of star-free languages is the smallest class $\operatorname{SF}(\Sigma)$ of languages $L \in \Sigma^{*}$ such that:

- $\emptyset,\{\epsilon\} \in S F(\Sigma)$ and $\{a\} \in S F(\Sigma)$ for all $a \in \Sigma$
- if $X, Y \in S F(\Sigma)$ then $X \cup Y, X Y, \bar{X} \in S F(\Sigma)$

Example 1

- $\Sigma^{*}=\bar{\emptyset}$ is star-free
- if $B \subset \Sigma$, then $\Sigma^{*} B \Sigma^{*}=\bigcup_{b \in B} \Sigma^{*} b \Sigma^{*}$ is star-free
- if $B \subset \Sigma$, then $B^{*}=\overline{\Sigma^{*} \bar{B} \Sigma^{*}}$ is star-free
- if $\Sigma=\{a, b\}$, then $(a b)^{*}=\overline{b \Sigma^{*} \cup \Sigma^{*} a \cup \Sigma^{*} a a \Sigma^{*} \cup \Sigma^{*} b b \Sigma^{*}}$ is star-free

Star Free ω-Languages

The class of star-free ω-languages is the smallest class $S F^{\infty}(\Sigma)$ of languages $L \in \Sigma^{*}$ such that:

- $\emptyset,\{a\} \in S F^{\infty}(\Sigma), a \in \Sigma$
- if $X, Y \in S F^{\infty}(\Sigma)$ then $X \cup Y, \bar{X} \in S F^{\infty}(\Sigma)$
- if $X \subseteq \Sigma^{*}, X \in S F(\Sigma), Y \in S F^{\infty}(\Sigma)$ then $X Y \in S F^{\infty}(\Sigma)$

Example 2

- if $B \subset \Sigma$, then $\Sigma^{*} B \Sigma^{\omega}$ is star-free
- if $\Sigma=\{a, b\}$, then $(a b)^{\omega}=\overline{b \Sigma^{\omega} \cup \Sigma^{*} a a \Sigma^{\omega} \cup \Sigma^{*} b b \Sigma^{\omega}}$ is star-free

Aperiodic Languages

Definition 1 A language $L \subseteq \Sigma^{*}$ is said to be aperiodic iff:

$$
\exists n_{0} \forall n \geq n_{0} \forall u, v, t \in \Sigma^{*} . u v^{n} t \in L \Longleftrightarrow u v^{n+1} t \in L
$$

n_{0} is called the index of L.

Example $30^{*} 1^{*}$ is aperiodic. Let $n_{0}=2$. We have three cases:

1. $u, v \in 0^{*}$ and $t \in 0^{*} 1^{*}$:

$$
\forall n \geq n_{0} \cdot u v^{n} t \in L
$$

2. $u \in 0^{*}, v \in 0^{*} 1^{*}$ and $t \in 1^{*}$:

$$
\forall n \geq n_{0} \cdot u v^{n} t \notin L
$$

3. $u \in 0^{*} 1^{*}, v \in 1^{*}$ and $t \in 1^{*}$:

$$
\forall n \geq n_{0} \cdot u v^{n} t \in L
$$

Periodic Languages

Conversely, a language $L \subseteq \Sigma^{*}$ is said to be periodic iff:
$\forall n_{0} \exists n \geq n_{0} \exists u, v, t \in \Sigma^{*} .\left(u v^{n} t \notin L \wedge u v^{n+1} t \in L\right) \vee\left(u v^{n} t \in L \wedge u v^{n+1} t \notin L\right)$

Example $4(00)^{*} 1$ is periodic.

Given n_{0} take the next even number $n \geq n_{0}, u=\epsilon, v=0$ and $t=1$. Then $u v^{n} t \in(00)^{*} 1$ and $u v^{n+1} t \notin(00)^{*} 1$.

Exercise 1 Is the language (ab)* periodic or aperiodic?

Aperiodic Monoids

Definition $2 A$ monoid M is said to be aperiodic iff

$$
\exists n_{0} \forall n \geq n_{0} \forall x \in M . x^{n}=x^{n+1}
$$

n_{0} is called the index of M.

Proposition 1 A language $L \subseteq \Sigma^{*}$ is aperiodic iff its syntactic monoid is aperiodic.
$" \Rightarrow$ " Let $X \in \Sigma^{*} \simeq_{L}$ be an equivalence class of the syntactic monoid of L.

If $u \in X$, then $u^{n} \in X^{n}$ for all $n \geq 0$. Since L is aperiodic, there exists n_{0} such that $u^{n} \simeq_{L} u^{n+1}$ for all $n \geq n_{0}$, hence $X^{n}=X^{n+1}$.

The other direction is similar.

The Big Picture

Star Free Languages are FOL-definable

We prove that for each $L \subseteq \Sigma^{*}, L \in S F(\Sigma)$ there exists an FOL sentence φ_{L} such that:

$$
L=\left\{u \in \Sigma^{*} \mid u \models \varphi_{L}\right\}
$$

By induction on the structure of L :

$$
\begin{array}{cc}
\emptyset=\left\{u \in \Sigma^{*} \mid u \models \perp\right\} & \{a\}=\left\{u \in \Sigma^{*} \mid u \models p_{a}(0) \wedge \operatorname{len}(1)\right\} \\
X \cup Y= & \left\{u \in \Sigma^{*} \mid u \models \varphi_{X} \vee \varphi_{Y}\right\}
\end{array} \bar{X}=\left\{u \in \Sigma^{*} \mid u \models \neg \varphi_{X}\right\},
$$

where:

- $\varphi(i, j)$ is a formula s.t. $\forall 0 \leq i<j \leq|u| . u \models \varphi(i, j) \Longleftrightarrow u(i, j) \models \varphi$
- len $(x) \equiv \forall y \cdot s(y) \leq x$

FOL-definable Languages are Aperiodic

Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an FOL formula. We denote

$$
L_{i_{1}, \ldots, i_{n}}^{\varphi}=\left\{u \in \Sigma^{*} \mid u \models \varphi\left(i_{1}, \ldots, i_{n}\right)\right\}
$$

We prove that, for all $u, v, t \in \Sigma^{*}, i_{1}, \ldots, i_{n} \in \mathbb{N}$,

$$
u v^{n} t \in L_{i_{1}, \ldots, i_{n}}^{\varphi} \Longleftrightarrow u v^{n+1} t \in L_{i_{1}^{\prime}, \ldots, i_{n}^{\prime}}^{\varphi}
$$

where, for all $1 \leq k \leq n$:

- $i_{k}^{\prime}=i_{k}$, if $i_{k} \leq|u|+n \cdot|v|$
- $i_{k}^{\prime}=i_{k}+|v|$, if $i_{k}>|u|+n \cdot|v|$

By induction on the structure of φ :

- the cases $x_{1}=x_{2}$ and $x_{1} \leq x_{2}$ are immediate
- $u v^{n} t \models p_{a}(i)$: if $i \leq|u|+n \cdot|v|$ then $\left(u v^{n+1} t\right)_{i}=\left(u v^{n} t\right)_{i}=a$; if $i>|u|+n \cdot|v|$ then $\left(u v^{n+1} t\right)_{i+|v|}=\left(u v^{n} t\right)_{i}=a$

FOL-definable Languages are Aperiodic

For all $u, v, t \in \Sigma^{*}, i_{1}, \ldots, i_{n} \in \mathbb{N}$,

$$
u v^{n} t \in L_{i_{1}, \ldots, i_{n}}^{\varphi} \Longleftrightarrow u v^{n+1} t \in L_{i_{1}^{\prime}, \ldots, i_{n}^{\prime}}^{\varphi}
$$

where, for all $1 \leq k \leq n$:

- $i_{k}^{\prime}=i_{k}$, if $i_{k} \leq|u|+n \cdot|v|$
- $i_{k}^{\prime}=i_{k}+|v|$, if $i_{k}>|u|+n \cdot|v|$

By induction on the structure of φ :

- $\varphi_{1} \wedge \varphi_{2}$: is immediate
- $\neg \varphi: u v^{n} t \notin L_{i_{1}, \ldots, i_{n}}^{\varphi} \Longleftrightarrow u v^{n+1} t \notin L_{i_{1}^{\prime}, \ldots, i_{n}^{\prime}}^{\varphi}$
- $\exists x_{1} \cdot \varphi\left(x_{1}, \ldots, x_{n}\right): u v^{n} t \in L_{i_{2}, \ldots, i_{n}}^{\exists x_{n}} \Longleftrightarrow u v^{n} t \in L_{i_{1}, i_{2}, \ldots, i_{n}}^{\varphi}$ for some $i_{1} \in \mathbb{N}$. By the induction hypothesis, $u v^{n+1} t \in L_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{n}^{\prime}}^{\varphi}$, hence $u v^{n+1} t \in L_{i_{2}^{\prime}, \ldots, i_{n}^{\prime}}^{\exists x_{1} \cdot \varphi}$. The other direction is symmetric.

Schützenberger's Theorem

Theorem 3 For any recognizable $L \subseteq \Sigma^{*}$, L is star-free iff L is aperiodic.
" \Rightarrow " Prove the existence of an integer $N(L)$ such that

$$
\forall n \geq N(L) \forall u \forall v \forall t \cdot u v^{n} t \in L \Longleftrightarrow u v^{n+1} t \in L
$$

Suppose $v \neq \epsilon$. By induction on the structure of L :

- $\emptyset: N(\emptyset)=0$, since $\forall n \geq 0 \cdot u v^{n} t \notin L$
- $\{a\}, a \in \Sigma: N(\{a\})=2$, since $\forall n \geq 2 \cdot u v^{n} t \notin L$
- $\bar{X}: N(\bar{X})=N(X)$, trivial
- $X \cup Y: N(X \cup Y)=\max \{N(X), N(Y)\}$, trivial
- $X Y: N(X Y)=N(X)+N(Y)+1$, since for all
$n=n_{1}+n_{2}+1 \geq N(X)+N(Y)+1$, we have either $n_{1} \geq N(X)$ or
$n_{2} \geq N(Y)$. Then $u v^{n} t=\left(u v^{n_{1}} r\right)\left(s v^{n_{2}} t\right)$, where $r s=v$ and $u v^{n_{1}} r \in X, s v^{n_{2}} t \in Y$. If $n_{1} \geq N(X), u v^{n_{1}+1} r \in X \Rightarrow u v^{n+1} t \in X Y$

Schützenberger's Theorem

$" \Leftarrow "$ Let $\varphi: \Sigma^{*} \rightarrow M$ be a monoid morphism, for an aperiodic monoid M.

If L is recognizable, then there exists a finite subset $P \subseteq M$ such that

$$
L=\varphi^{-1}(P)=\bigcup_{m \in P} \varphi^{-1}(m)
$$

We show that $\varphi^{-1}(m)$ is star-free, for each $m \in M$.

The Simplification Rule

Lemma 1 Let M be an aperiodic monoid and let $p, q, r \in M$. If $p q r=q$, then $p q=q=q r$.

Let N be the index of M.

If $p q r=q$ then $p^{n} q r^{n}=q$, for all $n>0$.

If $n \geq N$ then $p^{n+1} q r^{n}=p^{n} q r^{n}=q$.

Hence $p\left(p^{n} q r^{n}\right)=p q=q$. The proof of $q=q r$ is similar.

Examples of using SR

Let M be an aperiodic monoid and $m \in M$.
Example 5 If $M=m M$ then $1=m \cdot x$, for some $x \in M$.

$$
\begin{aligned}
1 & =m \cdot x \\
& =m \cdot 1 \cdot x \\
& \stackrel{(S R)}{=} \\
& m \cdot 1=m
\end{aligned}
$$

Example 6 If $M=M m M$ then $1=x \cdot m \cdot y$, for some $x, y \in M$.

$$
\begin{aligned}
1 & =x \cdot m \cdot y \\
& =(x \cdot m) \cdot 1 \cdot y \\
& =(x \cdot m) \cdot 1=x \cdot m \\
& =x \cdot(1 \cdot m) \\
& =1 \cdot m=m
\end{aligned}
$$

Ideals

Let M be a monoid.

A set $R \subseteq M$ is a right ideal of M iff:

$$
R M=R \Longleftrightarrow \forall r \in R \forall x \in M . r x \in R
$$

A set $L \subseteq M$ is a left ideal of M iff:

$$
M L=L \Longleftrightarrow \forall l \in L \forall x \in M . x l \in L
$$

A set $I \subseteq M$ is a ideal of M iff:

$$
M I M=I \Longleftrightarrow \forall x, y \in M \forall i \in I . x i y \in I
$$

Green Relations

Let M be a monoid and $a, b \in M$. Then we define

$$
\begin{aligned}
a \leq_{\mathcal{R}} b & \Longleftrightarrow a M \subseteq b M \\
a \leq_{\mathcal{L}} b & \Longleftrightarrow
\end{aligned} \quad M a \subseteq M b
$$

$$
a \mathcal{R} b \quad \Longleftrightarrow a M=b M
$$

$$
a \mathcal{L} b \quad \Longleftrightarrow \quad M a=M b
$$

$$
a \mathcal{I} b \quad \Longleftrightarrow \quad M a M=M b M
$$

Example

$1 M=M$
$0 M=\{0\}$
$A B M=A M=\{A, A B, 0\}$
$B A M=B M=\{B, B A, 0\} \quad M A B=M B=\{B, A B, 0\}$
$M A M=M B M=M A B M=M B A M=\{A, B A, A B, 0\}$
$M 1=M$
$M 0=\{0\}$
$M 1 M=M$
$M 0 M=\{0\}$

A Consequence

Lemma 2 Let M be an aperiodic monoid and let $a, b \in M$ such that $a \mathcal{I} b$. Then we have:

- $a \leq_{\mathcal{R}} b \Rightarrow a \mathcal{R} b$
- $a \leq_{\mathcal{L}} b \Rightarrow a \mathcal{L} b$
$M a M=M b M \Rightarrow b=u a v$, for some $u, v \in M$
$a M \subseteq b M \Rightarrow a=b p$, for some $p \in M$
$b=u a v=u b p v \stackrel{(S R)}{=} b p v$
$b M=b p v M \subseteq b p M=a M$, hence $a M=b M . \square$

Decomposition in Ideals

Lemma 3 Let M be an aperiodic monoid and let $p, q, r \in M$. Then $\{q\}=(q M \cap M q) \backslash J_{q}$, with $J_{q}=\{s \in M \mid q \notin M s M\}$.
$q \in(q M \cap M q) \backslash J_{q}$ is trivial.
$s \in(q M \cap M q) \backslash J_{q} \Rightarrow \exists p, r \in M . p q=q r=s$
$s \notin J_{q} \Rightarrow q \in M s M \Rightarrow \exists u, v \in M . u s v=q$
$q=u s v=u(p q) v=(u p) q(v) \stackrel{(S R)}{=}(u p) q=u(p q)=u s$
$q=u s=u(q r) \stackrel{(S R)}{=} q r=s \square$

$$
\begin{array}{ccc}
A M & = & \{A, A B, 0\} \\
M A & = & \{A, B A, 0\} \\
J_{A} & = & \{0\} \\
\{A\} & = & (A M \cap M A) \backslash J_{A}
\end{array}
$$

Schützenberger's Theorem (Base Case)

We prove $\varphi^{-1}(m)$ is star-free by induction on $r(m)=\|M \backslash M m M\|$

The base case $r(m)=0$. Then $M=M m M$, hence $m=1(\mathrm{SR})$.

We show $\varphi^{-1}(1)=(\{a \in \Sigma \mid \varphi(a)=1\})^{*}$:

$$
\begin{aligned}
\varphi(u a) & =1 \\
\varphi(u) 1 \varphi(a) & =1 \\
1 \varphi(a) & =1(S R) \\
\varphi(a) & =1
\end{aligned}
$$

$B^{*}=\overline{\Sigma^{*} \bar{B} \Sigma^{*}}$, for any $B \subseteq \Sigma$ is star-free.

Schützenberger's Theorem (Induction Step)

We show that

$$
\varphi^{-1}(m)=\left(U \Sigma^{*} \cap \Sigma^{*} V\right) \backslash\left(\Sigma^{*} C \Sigma^{*} \cup \Sigma^{*} W \Sigma^{*}\right)
$$

where

$$
\begin{gathered}
U=\bigcup_{(n, a) \in E} \varphi^{-1}(n) a \Sigma^{*} \quad V=\bigcup_{(a, n) \in F} \Sigma^{*} a \varphi^{-1}(n) \\
C=\{a \in \Sigma \mid m \notin M \varphi(a) M\} \quad W=\bigcup_{(a, n, b) \in G} \Sigma^{*} a \varphi^{-1}(n) b \Sigma^{*}
\end{gathered}
$$

with
$E=\{(n, a) \in M \times \Sigma \mid n \varphi(a) \mathcal{R} m, n \notin m M\}$
$F=\{(a, n) \in \Sigma \times M \mid \varphi(a) n \mathcal{L} m, n \notin M m)\}$
$G=\{(a, n, b) \in \Sigma \times M \times \Sigma \mid m \in(M \varphi(a) n M \cap M n \varphi(b) M) \backslash M \varphi(a) n \varphi(b) M\}$
Then it is enough to show that U, V, C and W are star-free languages.
$\underline{\varphi^{-1}(m) \subseteq L(1)}$
W.l.o.g. suppose $m \neq 1$. Let $u \in \varphi^{-1}(m)$ and show $u \in U \Sigma^{*}$, where

$$
\begin{aligned}
U & =\bigcup_{(n, a) \in E} \varphi^{-1}(n) a \Sigma^{*} \\
E & =\{(n, a) \in M \times \Sigma \mid n \varphi(a) \mathcal{R} m, n \notin m M\}
\end{aligned}
$$

Let p be the shortest prefix of u such that $\varphi(p) \mathcal{R} m$.

If $p=\epsilon$ then $1 \mathcal{R} m \Rightarrow m=1$. Hence $p \neq \epsilon$, and let $p=r a, a \in \Sigma$.

Let $n=\varphi(r)$. We have $n \varphi(a) \mathcal{R} m$ and not $n \mathcal{R} m$ (choice of p), hence $(n, a) \in E \Rightarrow u \in U \Sigma^{*}$. Symmetric argument for $u \in \Sigma^{*} V$.
$\underline{\varphi^{-1}(m) \subseteq L(2)}$
Let $u \in \varphi^{-1}(m)$ and show $u \notin \Sigma^{*} C \Sigma^{*}$, where

$$
C=\{a \in \Sigma \mid m \notin M \varphi(a) M\}
$$

Suppose $u \in \Sigma^{*} C \Sigma^{*}$, then $\varphi(u)=m \in M \varphi(a) M$, for some $a \in C$, contradiction.

We show $u \notin \Sigma^{*} W \Sigma^{*}$, where $W=\bigcup_{(a, n, b) \in G} \Sigma^{*} a \varphi^{-1}(n) b \Sigma^{*}$ and
$G=\{(a, n, b) \in \Sigma \times M \times \Sigma \mid m \in(M \varphi(a) n M \cap M n \varphi(b) M) \backslash M \varphi(a) n \varphi(b) M\}$
If $u \in \Sigma^{*} a \varphi^{-1}(n) b \Sigma^{*}$ for some $(a, n, b) \in G$ then $\varphi(u)=m \in M \varphi(a) n \varphi(b) M$, contradiction.

$$
L \subseteq \varphi^{-1}(m)
$$

Let $u \in L=\left(U \Sigma^{*} \cap \Sigma^{*} V\right) \backslash\left(\Sigma^{*} C \Sigma^{*} \cup \Sigma^{*} W \Sigma^{*}\right)$ and $s=\varphi(u)$.
$u \in U \Sigma^{*}=\bigcup_{(n, a) \in E} \varphi^{-1}(n) a \Sigma^{*} \Rightarrow s \in n \varphi(a) M$ for some $(n, a) \in E \Rightarrow n \varphi(a) \mathcal{R} m$, hence $s \in m M$. Symmetrically, $s \in M m$.
$\{s\}=\{m\} \stackrel{(I D)}{=}(m M \cap M m) \backslash J_{m} \Leftarrow s \notin J_{m} \Longleftrightarrow m \in M s M$
Let f be the smallest factor of u s.t. $m \notin M \varphi(f) M$.

- $f=\epsilon \Rightarrow m \notin M$, contradiction.
- $f=a \in \Sigma \Rightarrow a \in C \Rightarrow u \in \Sigma^{*} C \Sigma^{*}$, contradiction.
- $f=a g b, a, b \in \Sigma$ and let $n=\varphi(g)$ and $\varphi(f)=\varphi(a) n \varphi(b)$. Then $m \in$ $M \varphi(a) n M \cap M n \varphi(b) M \Rightarrow(a, n, b) \in G \Rightarrow f \in W \Rightarrow u \in \Sigma^{*} W \Sigma^{*}$, contradiction.

We conclude that $m \in M \varphi(u) M=M s M$.

Schützenberger's Theorem (Induction Step)

$\varphi^{-1}(m)$ is star-free for each $r(m)<n \Rightarrow \varphi^{-1}(m)$ is star-free for $r(m)=n$

Since $\varphi^{-1}(m)=\left(U \Sigma^{*} \cap \Sigma^{*} V\right) \backslash\left(\Sigma^{*} C \Sigma^{*} \cup \Sigma^{*} W \Sigma^{*}\right)$, it is enough to show that U, V and W are star-free $\left(\Sigma^{*} C \Sigma^{*}\right.$ is trivially star-free)
$U=\bigcup_{(n, a) \in E} \varphi^{-1}(n) a \Sigma^{*}, E=\{(n, a) \in M \times \Sigma \mid n \varphi(a) \mathcal{R} m, n \notin m M\}$
$(n, a) \in E \Rightarrow n \varphi(a) \mathcal{R} m \Rightarrow M n \varphi(a) M=M m M \subseteq M n M \Rightarrow r(n) \leq r(m)$

Suppose $r(n)=r(m) \Longleftrightarrow n \mathcal{I} m \stackrel{m \leq \mathcal{R}^{n}}{\Longrightarrow} n \mathcal{R} m$, contradiction. Hence $r(n)<r(m) \Rightarrow \varphi^{-1}(n)$ is star-free $\Rightarrow U$ is star-free. Symmetric for V.

Schützenberger's Theorem (Induction Step)

$$
\begin{aligned}
& W=\bigcup_{(a, n, b) \in G} \Sigma^{*} a \varphi^{-1}(n) b \Sigma^{*} \\
& G=\{(a, n, b) \in \Sigma \times M \times \Sigma \mid m \in(M \varphi(a) n M \cap M n \varphi(b) M) \backslash M \varphi(a) n \varphi(b) M\} \\
& (a, n, b) \in G \Rightarrow m \in(M \varphi(a) n M \cap M n \varphi(b) M) \backslash M \varphi(a) n \varphi(b) M) \\
& m \in M \varphi(a) n M \subseteq M n M \Rightarrow r(n) \leq r(m)
\end{aligned}
$$

Suppose $r(n)=r(m) \Rightarrow M n M=M m M \Rightarrow n \in M m M$. Since $m \in M n \varphi(b) M$, we have $n \in M n \varphi(b) M \Rightarrow n=u n \varphi(b) v \stackrel{S R}{\Rightarrow} n=n \varphi(b) v$
$m \in M \varphi(a) n M \Rightarrow m=x \varphi(a) n y=x \varphi(a) n \varphi(b) v y$, contradiction with $m \notin M \varphi(a) n \varphi(b) M$

Hence $r(n)<r(m) \Rightarrow W$ is star-free.

Example

$$
\begin{array}{ccc}
1 M=M & M 1=M & M 1 M=M \\
0 M=\{0\} & M 0=\{0\} & M 0 M=\{0\} \\
A B M=A M=\{A, A B, 0\} & M B A=M A=\{A, B A, 0\} & \\
B A M=B M=\{B, B A, 0\} & M A B=M B=\{B, A B, 0\} & \\
M A M=M B M=M A B M=M B A M=\{A, B A, A B, 0\}
\end{array}
$$

Let us compute $\varphi^{-1}(A B)$:

$$
\begin{gathered}
1 A \mathcal{R} A B, 1 \notin A B M \Rightarrow E=\{(1, a)\} \Rightarrow U \Sigma^{*}=a \Sigma^{*} \\
B 1 \mathcal{L} A B, 1 \notin M A B \Rightarrow F=\{(b, 1)\} \Rightarrow \Sigma^{*} V=\Sigma^{*} b \\
A B \notin M(A 1 A) M=M(B 1 B) M \Rightarrow G=\{(a, 1, a),(b, 1, b)\} \\
\Rightarrow \Sigma^{*} W \Sigma^{*}=\Sigma^{*} a a \Sigma^{*} \cup \Sigma^{*} b b \Sigma^{*} \\
\varphi^{-1}(A B)=(a b)^{*}=\left(a \Sigma^{*} \cap \Sigma^{*} b\right) \backslash\left(\Sigma^{*} a a \Sigma^{*} \cup \Sigma^{*} b b \Sigma^{*}\right)
\end{gathered}
$$

