Automata on Finite Words

Definition

A non-deterministic finite automaton (NFA) over Σ is a tuple $A = \langle S, I, T, F \rangle$ where:

- S is a finite set of *states*,
- $I \subseteq S$ is a set of *initial states*,
- $T \subseteq S \times \Sigma \times S$ is a *transition relation*,
- $F \subseteq S$ is a set of *final states*.

We denote $T(s, \alpha) = \{s' \in S \mid (s, \alpha, s') \in T\}$. When T is clear from the context we denote $(s, \alpha, s') \in T$ by $s \xrightarrow{\alpha} s'$.

Determinism and Completeness

Definition 1 An automaton $A = \langle S, I, T, F \rangle$ is deterministic (DFA) iff ||I|| = 1 and, for each $s \in S$ and for each $\alpha \in \Sigma$, $||T(s, \alpha)|| \le 1$.

If A is deterministic we write $T(s, \alpha) = s'$ instead of $T(s, \alpha) = \{s'\}$.

Definition 2 An automaton $A = \langle S, I, T, F \rangle$ is complete iff for each $s \in S$ and for each $\alpha \in \Sigma$, $||T(s, \alpha)|| \ge 1$.

Runs and Acceptance Conditions

Given a finite word $w \in \Sigma^*$, $w = \alpha_1 \alpha_2 \dots \alpha_n$, a *run* of A over w is a finite sequence of states $s_1, s_2, \dots, s_n, s_{n+1}$ such that $s_1 \in I$ and $s_i \xrightarrow{\alpha_i} s_{i+1}$ for all $1 \leq i \leq n$.

A run over w between s_i and s_j is denoted as $s_i \xrightarrow{w} s_j$.

The run is said to be *accepting* iff $s_{n+1} \in F$. If A has an accepting run over w, then we say that A *accepts* w.

The language of A, denoted $\mathcal{L}(A)$ is the set of all words accepted by A.

A set of words $S \subseteq \Sigma^*$ is *recognizable* if there exists an automaton A such that $S = \mathcal{L}(A)$.

Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each input word.

Proposition 2 If A is complete, then it has at least one run for each input word.

Determinization

Theorem 1 For every NFA A there exists a DFA A_d such that $\mathcal{L}(A) = \mathcal{L}(A_d).$

Let
$$A_d = \langle 2^S, \{I\}, T_d, \{G \subseteq S \mid G \cap F \neq \emptyset\} \rangle$$
, where
 $(S_1, \alpha, S_2) \in T_d \iff S_2 = \{s' \mid \exists s \in S_1 \ . \ (s, \alpha, s') \in T\}$

This definition is known as subset construction

On the Exponential Blowup of Complementation

Theorem 2 For every $n \in \mathbb{N}$, $n \geq 1$, there exists an automaton A, with size(A) = n + 1 such that no deterministic automaton with less than 2^n states recognizes the complement of $\mathcal{L}(A)$.

Let
$$\Sigma = \{a, b\}$$
 and $L = \{uav \mid u, v \in \Sigma^*, |v| = n - 1\}.$

There exists a NFA with exactly n + 1 states which recognizes L.

Suppose that $B = \langle S, \{s_0\}, T, F \rangle$, is a (complete) DFA with $||S|| < 2^n$ that accepts $\Sigma^* \setminus L$.

On the Exponential Blowup of Complementation

 $\|\{w \in \Sigma^* \mid |w| = n\}\| = 2^n$ and $\|S\| < 2^n$ (by the pigeonhole principle)

 $\Rightarrow \exists uav_1, ubv_2 \ . \ |uav_1| = |ubv_2| = n \text{ and } s \in S \ . \ s_0 \xrightarrow{uav_1} s \text{ and } s_0 \xrightarrow{ubv_2} s$

Let s_1 be the (unique) state of B such that $s \xrightarrow{u} s_1$.

Since $|uav_1| = n$, then $uav_1u \in L \Rightarrow uav_1u \notin \mathcal{L}(B)$, i.e. s is not accepting.

On the other hand, $ubv_2u \notin L \Rightarrow ubv_2u \in \mathcal{L}(B)$, i.e. s is accepting, contradiction.

Lemma 1 For every NFA A there exists a complete NFA A_c such that $\mathcal{L}(A) = \mathcal{L}(A_c)$.

Let $A_c = \langle S \cup \{\sigma\}, I, T_c, F \rangle$, where $\sigma \notin S$ is a new sink state. The transition relation T_c is defined as:

 $\forall s \in S \forall \alpha \in \Sigma . (s, \alpha, \sigma) \in T_c \iff \forall s' \in S . (s, \alpha, s') \notin T$ and $\forall \alpha \in \Sigma . (\sigma, \alpha, \sigma) \in T_c$.

Closure Properties

Theorem 3 Let $A_1 = \langle S_1, I_1, T_1, F_1 \rangle$ and $A_2 = \langle S_2, I_2, T_2, F_2 \rangle$ be two NFA. There exists automata \overline{A}_1 , A_{\cup} and A_{\cap} that recognize the languages $\Sigma^* \setminus \mathcal{L}(A_1), \mathcal{L}(A_1) \cup \mathcal{L}(A_2), \text{ and } \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ respectively.

Let $A' = \langle S', I', T', F' \rangle$ be the complete deterministic automaton such that $\mathcal{L}(A_1) = \mathcal{L}(A')$, and $\bar{A}_1 = \langle S', I', T', S' \setminus F' \rangle$.

Let $A_{\cup} = \langle S_1 \cup S_2, I_1 \cup I_2, T_1 \cup T_2, F_1 \cup F_2 \rangle.$

Let $A_{\cap} = \langle S_1 \times S_2, I_1 \times I_2, T_{\cap}, F_1 \times F_2 \rangle$ where:

 $(\langle s_1, t_1 \rangle, \alpha, \langle s_2, t_2 \rangle) \in T_{\cap} \iff (s_1, \alpha, s_2) \in T_1 \text{ and } (t_1, \alpha, t_2) \in T_2$

Projections

Let the input alphabet $\Sigma = \Sigma_1 \times \Sigma_2$. Any word $w \in \Sigma^*$ can be uniquely identified to a pair $\langle w_1, w_2 \rangle \in \Sigma_1^* \times \Sigma_2^*$ such that $|w_1| = |w_2| = |w|$.

The *projection* operations are $pr_1(L) = \{ u \in \Sigma_1^* \mid \langle u, v \rangle \in L, \text{ for some } v \in \Sigma_2^* \}$ and $pr_2(L) = \{ v \in \Sigma_2^* \mid \langle u, v \rangle \in L, \text{ for some } u \in \Sigma_1^* \}.$

Theorem 4 If the language $L \subseteq (\Sigma_1 \times \Sigma_2)^*$ is recognizable, then so are the projections $pr_i(L)$, for i = 1, 2.

Remark

The operations of union, intersection and complement correspond to the boolean \lor , \land and \neg .

The projection corresponds to the first-order existential quantifier $\exists x$.

The Myhill-Nerode Theorem

Let $A = \langle S, I, T, F \rangle$ be an automaton over the alphabet Σ^* .

Define the relation $\sim_A \subseteq \Sigma^* \times \Sigma^*$ as:

$$u \sim_A v \iff [\forall s, s' \in S \ . \ s \xrightarrow{u} s' \iff s \xrightarrow{v} s']$$

 \sim_A is an equivalence relation of finite index

Let $L \subseteq \Sigma^*$ be a language. Define the relation $\sim_L \subseteq \Sigma^* \times \Sigma^*$ as:

$$u \sim_L v \iff [\forall w \in \Sigma^* \, . \, uw \in L \iff vw \in L]$$

 \sim_L is an equivalence relation

The Myhill-Nerode Theorem

Theorem 5 A language $L \subseteq \Sigma^*$ is recognizable iff \sim_L is of finite index.

" \Rightarrow " Suppose $L = \mathcal{L}(A)$ for some automaton A.

 \sim_A is of finite index.

for all $u, v \in \Sigma^*$ we have $u \sim_A v \Rightarrow u \sim_L v$

index of $\sim_L \leq$ index of $\sim_A < \infty$

The Myhill-Nerode Theorem

" \leftarrow " \sim_L is an equivalence relation of finite index, and let [u] denote the equivalence class of $u \in \Sigma^*$.

- $A = \langle S, I, T, F \rangle,$ where:
 - $S = \{ [u] \mid u \in \Sigma^* \},$
 - $I = [\epsilon],$
 - $[u] \xrightarrow{\alpha} [v] \iff u\alpha \sim_L v,$
 - $F = \{ [u] \mid u \in L \}.$

Isomorphism and Canonical Automata

Two automata $A_i = \langle S_i, I_i, T_i, F_i \rangle$, i = 1, 2 are said to be *isomorphic* iff there exists a bijection $h: S_1 \to S_2$ such that, for all $s, s' \in S_1$ and for all $\alpha \in \Sigma$ we have :

- $s \in I_1 \iff h(s) \in I_2$,
- $(s, \alpha, s') \in T_1 \iff (h(s), \alpha, h(s')) \in T_2,$
- $s \in F_1 \iff h(s) \in F_2.$

For DFA all minimal automata are isomorphic.

For NFA there may be more non-isomorphic minimal automata.

Pumping Lemma

Lemma 2 (Pumping) Let $A = \langle S, I, T, F \rangle$ be a finite automaton with size(A) = n, and $w \in \mathcal{L}(A)$ be a word of length $|w| \ge n$. Then there exists three words $u, v, t \in \Sigma^*$ such that:

1. $|v| \ge 1$,

- 2. w = uvt and,
- 3. for all $k \ge 0$, $uv^k t \in \mathcal{L}(A)$.

Example

 $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not recognizable:

Suppose that there exists an automaton A with size(A) = N, such that $L = \mathcal{L}(A)$.

Consider the word $a^N b^N \in L = \mathcal{L}(A)$.

There exists words u, v, w such that $|v| \ge 1$, $uvw = a^N b^N$ and $uv^k w \in L$ for all $k \ge 1$.

- $v = a^m$, for some $m \in \mathbb{N}$.
- $v = a^m b^p$ for some $m, p \in \mathbb{N}$.
- $v = b^m$, for some $m \in \mathbb{N}$.

Decidability

Given automata A and B:

- Emptiness $\mathcal{L}(A) = \emptyset$?
- Equality $\mathcal{L}(A) = \mathcal{L}(B)$?
- Infinity $\|\mathcal{L}(A)\| < \infty$?
- Universality $\mathcal{L}(A) = \Sigma^*$?

Emptiness

Theorem 6 Let A be an automaton with size(A) = n. If $\mathcal{L}(A) \neq \emptyset$, then there exists a word of length less than n that is accepted by A.

Let u be the shortest word in $\mathcal{L}(A)$.

If |u| < n we are done.

If $|u| \ge n$, there exists $u_1, v, u_2 \in \Sigma^*$ such that |v| > 1 and $u_1vu_2 = u$.

Then $u_1u_2 \in \mathcal{L}(A)$ and $|u_1u_2| < |u_1vu_2|$, contradiction.

Everything is decidable

Theorem 7 The emptiness, equality, infinity and universality problems are decidable for automata on finite words.

Automata on Finite Words and WS1S

$\underline{WS1S}$

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

Any finite word $w \in \Sigma^*$ induces the *finite* sets $p_a = \{p \mid w(p) = a\}$.

- $x \le y$: x is less than y,
- s(x) = y : y is the successor of x,
- $p_a(x)$: a occurs at position x in w

Remember that \leq and s(.) can be defined one from another.

Problem Statement

Let $\mathcal{L}(\varphi) = \{ w \mid \mathfrak{m}_w \models \varphi \}$

A language $L \subseteq \Sigma^*$ is said to be WS1S-*definable* iff there exists a WS1S formula φ such that $L = \mathcal{L}(\varphi)$.

- 1. Given A build φ_A such that $\mathcal{L}(A) = \mathcal{L}(\varphi)$
- 2. Given φ build A_{φ} such that $\mathcal{L}(A) = \mathcal{L}(\varphi)$

The recognizable and WS1S-definable languages coincide

Let $m \in \mathbb{N}$ be the smallest number such that $\|\Sigma\| \leq 2^m$.

W.l.o.g. assume that $\Sigma = \{0, 1\}^m$, and let $X_1 \dots X_p, x_{p+1}, \dots, x_m$

A word $w \in \Sigma^*$ induces an *interpretation* of $X_1 \dots X_p, x_{p+1}, \dots x_m$:

- $i \in I_w(X_j)$ iff the *j*-th element of w_i is 1, and
- $I_w(x_j) = i$ iff w_i has 1 on the *j*-th position and, for all $k \neq i w_k$ has 0 on the *j*-th position.

Example

Example 1 Let $\Sigma = \{a, b, c, d\}$, encoded as a = (00), b = (01), c = (10)and d = (11). Then the word abbaacdd induces the valuation $X_1 = \{5, 6, 7\}, X_2 = \{1, 2, 6, 7\}.$

From Automata to Formulae

Let
$$A = \langle S, I, T, F \rangle$$
 with $S = \{s_1, \ldots, s_p\}$, and $\Sigma = \{0, 1\}^m$.

Build $\Phi_A(X_1, \ldots, X_m)$ such that $\forall w \in \Sigma^*$. $w \in \mathcal{L}(A) \iff w \models \Phi_A$

Let $a \in \{0,1\}^m$. Let $\Phi_a(x, X_1, \ldots, X_m)$ be the conjunction of:

- $X_i(x)$ if the $a_i = 1$, and
- $\neg X_i(x)$ otherwise.

For all $w \in \Sigma^*$ we have $w \models \forall x \ . \ \bigvee_{a \in \Sigma} \Phi_a(x, \vec{X})$

Notice that $\Phi_a \wedge \Phi_b$ is unsatisfiable, for $a \neq b$.

$\underline{\textbf{Coding of }S}$

Let $\{Y_0, \ldots, Y_p\}$ be set variables.

 Y_i is the set of all positions labeled by A with state s_i during some run

$$\Phi_S(Y_1, \dots, Y_p) : \forall z . \bigvee_{1 \le i \le p} Y_i(z) \land \bigwedge_{1 \le i < j \le p} \neg \exists z . Y_i(z) \land Y_j(z)$$

Coding of I

Every run starts from an initial state:

$$\Phi_I(Y_1, \dots, Y_p) : \exists x \forall y \, . \, x \leq y \land \bigvee_{s_i \in I} Y_i(x)$$

Coding of T

Consider the transition $s_i \xrightarrow{a} s_j$:

$$\Phi_T(X_1,\ldots,X_m,Y_1,\ldots,Y_p) : \forall x \, x \neq s(x) \land Y_i(x) \land \Phi_a(x,\vec{X}) \to \bigvee_{(s_i,a,s_j) \in T} Y_j(s(x))$$

The last state on the run is a final state:

$$\Phi_F(Y_1, \dots, Y_p) : \exists x \forall y \, . \, y \le x \land \bigvee_{s_i \in F} Y_i(x)$$

$$\Phi_A = \exists Y_1 \dots \exists Y_p \ . \ \Phi_S \land \Phi_I \land \Phi_T \land \Phi_F$$

From Formulae to Automata

Let $\Phi(X_1, \ldots, X_p, x_{p+1}, \ldots, x_m)$ be a WS1S formula.

We build an automaton A_{Φ} such that $\mathcal{L}(A) = \mathcal{L}(\Phi)$.

Let $\Phi(X_1, X_2, x_3, x_4)$ be:

1. $X_1(x_3)$

2. $x_3 \le x_4$

3. $X_1 = X_2$

From Formulae to Automata

 A_{Φ} is built by induction on the structure of Φ :

- for $\Phi = \phi_1 \land \phi_2$ we have $\mathcal{L}(A_{\Phi}) = \mathcal{L}(A_{\phi_1}) \cap \mathcal{L}(A_{\phi_2})$
- for $\Phi = \phi_1 \lor \phi_2$ we have $\mathcal{L}(A_{\Phi}) = \mathcal{L}(A_{\phi_1}) \cup \mathcal{L}(A_{\phi_2})$

• for
$$\Phi = \neg \phi$$
 we have $\mathcal{L}(A_{\Phi}) = \overline{\mathcal{L}(A_{\phi})}$

• for
$$\Phi = \exists X_i \ . \ \phi$$
, we have $\mathcal{L}(A_{\Phi}) = pr_i(\mathcal{L}(A_{\phi}))$.

Theorem 8 A language $L \subseteq \Sigma^*$ is definable in WS1S iff it is recognizable.

Corollary 1 The SAT problem for WS1S is decidable.

Lemma 3 Any WS1S formula $\phi(X_1, \ldots, X_m)$ is equivalent to an WS1S formula of the form $\exists Y_1 \ldots \exists Y_p \ \varphi$, where φ does not contain other set variables than $X_1, \ldots, X_m, Y_1, \ldots, Y_p$.

Finite Semigroups

Monoids and Semigroups

A *semigroup* is a set (\mathcal{S}, \cdot) , where:

$$\forall x, y, z \in \mathcal{S} \ . \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

A monoid is a semigroup (\mathcal{M}, \cdot) such that

$$\exists 1 \in \mathcal{M} \, . \, x \cdot 1 = 1 \cdot x = x$$

If S is a semigroup, we denote by S^1 the monoid obtained by adding an identity element to S, i.e. $S^1 = S \cup \{1\}$.

Example 2

- Σ^+ with concatenation forms a semigroup
- Σ^* with concatenation and ϵ forms a monoid
- the set $\mathcal{R}(S)$ of relations over a set S with composition of relations and the identity relation forms a monoid

Morphisms

Let (S, \cdot) and (T, \times) be semigroup(s). A *semigroup morphism* is a function $\varphi: S \to T$ such that :

$$\forall x, y \in S \ . \ \varphi(x \cdot y) = \varphi(x) \times \varphi(y)$$

Let $(S, \cdot, 1_S)$ and $(T, \times, 1_T)$ be monoid(s). A *monoid morphism* is a semigroup morphism $\varphi : S \to T$ such that :

$$\varphi(1_S) = 1_T$$

Recognition by Morphism

Let S and T be semigroup(s). A surjective semigroup morphism $\varphi: S \to T$ recognizes $I \subseteq S$ iff there exists $J \subseteq T$ such that:

$$I = \varphi^{-1}(J)$$

Example 3 Let S be the semigroup of multiplicative matrices generated by:

$$A = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} \quad B = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix}$$

 $\Sigma = \{a, b\}$ and $\varphi : \Sigma \to S$ defined by $\varphi(a) = A$ and $\varphi(b) = B$. Then

$$\varphi^{-1}(A) = (ab)^* a, \ \varphi^{-1}(B) = (ba)^* b, \ \varphi^{-1}(AB) = (ab)^+, \ \varphi^{-1}(BA) = (ba)^+$$
$$\varphi^{-1}(AA) = \varphi^{-1}(BB) = \Sigma^* aa\Sigma^* \cup \Sigma^* bb\Sigma^*$$

From Automata to Semigroups

Let $A = \langle S, I, T, F \rangle$ be an automaton over an alphabet Σ . Define the semigroup morphism $\varphi : \Sigma^+ \to \mathcal{R}(S)$ by

$$\varphi(\alpha) = \{(s, s') \in S \times S \mid (s, \alpha, s') \in T\}$$

$$\varphi(\alpha_0 \alpha_1 \dots \alpha_n) = \varphi(\alpha_0) \circ \varphi(\alpha_1) \circ \dots \circ \varphi(\alpha_n)$$
$$= \{(s, s') \in S \times S \mid s \xrightarrow{\alpha_0 \alpha_1 \dots \alpha_n} s'\}$$

 $\mathcal{L}(A) = \varphi^{-1}(\{(s, s') \in I \times F \mid \text{there exists a path from } s \text{ to } s'\})$

 $\varphi(\Sigma^+)$ is called the *transition semigroup* of A

The *transition monoid* of A, is $\varphi(\Sigma^*)$, where φ is a monoid morphism

From Semigroups to Automata

Let (S, \cdot) be a semigroup and $\varphi : \Sigma^+ \to S$ be a surjective semigroup morphism recognizing $L \subseteq \Sigma^+$, i.e. $L = \varphi^{-1}(F)$ for some $F \subseteq S$.

Then $A = \langle S^1, \{1\}, T, F \rangle$, where

$$T = \{ (s, \alpha, s \cdot \varphi(\alpha)) \mid s \in S, \alpha \in \Sigma \}$$

recognizes L.

$$\mathcal{L}(A) = \{ u \in \Sigma^+ \mid 1 \cdot \varphi(u) \in F \}$$
$$= \{ u \in \Sigma^+ \mid \varphi(u) \in F \}$$
$$= \varphi^{-1}(F)$$
$$= L$$

Congruences

Definition 3 An equivalence relation $R \subseteq \Sigma^* \times \Sigma^*$ is said to be a left-congruence iff for all $u, v, w \in \Sigma^*$ we have $u \cong v \Rightarrow wu \cong wv$.

Definition 4 An equivalence relation $R \subseteq \Sigma^* \times \Sigma^*$ is said to be a right-congruence iff for all $u, v, w \in \Sigma^*$ we have $u \ R \ v \Rightarrow uw \ R \ vw$.

Definition 5 An equivalence relation $R \subseteq \Sigma^* \times \Sigma^*$ is said to be a congruence iff it is both a left- and a right-congruence.

Ex: the Myhill-Nerode equivalence \sim_L is a right-congruence.

The Syntactic Semigroup (Monoid)

Let $L \subseteq \Sigma^+$ (Σ^*) be a language. The relation $\simeq_L \subseteq \Sigma^+ \times \Sigma^+$ ($\Sigma^* \times \Sigma^*$) is defined as

$$x \simeq_L y : \forall u, v \in \Sigma^* . uxv \in L \iff uyv \in L$$

The quotient semigroup (monoid) $\Sigma_{/\simeq_L}^+$ ($\Sigma_{/\simeq_L}^*$) is called the *syntactic monoid* of *L*.

It is the coarsest semigroup (monoid) that recognizes L. It is also the transition semigroup (monoid) of the minimal deterministic automaton recognizing L.

A language is recognizable iff it is recognized by a finite semigroup.

Syntactic Monoid Example

Let $L = (ab)^*$. Then we have:

$$\epsilon \simeq_L ab \simeq_L abab \simeq_L ababb \simeq_L ababab...$$

 $a \simeq_L aba \simeq_L ababa \simeq_L abababa \simeq_L abababa...$
 $b \simeq_L bab \simeq_L bababb \simeq_L bababab \ldots$

• • •

$$\epsilon \not\simeq_L a$$
 $a \not\simeq_L ab$ $a \not\simeq_L b$ $\epsilon \not\simeq_L b$ $b \not\simeq_L ba$ $b \not\simeq_L ba$

Syntactic Monoid Example

Let S be the semigroup of multiplicative matrices generated by:

$$A = \left| \begin{array}{ccc} 0 & 1 \\ 0 & 0 \end{array} \right| \quad B = \left| \begin{array}{ccc} 0 & 0 \\ 1 & 0 \end{array} \right|$$

 $\Sigma = \{a, b\}$ and $\varphi : \Sigma \to S$ defined by $\varphi(a) = A$ and $\varphi(b) = B$.

