Automata on Finite Words



Definition

A non-deterministic finite automaton (NFA) over ¥ is a tuple
A= (S 1,T, F) where:

e S is a finite set of states,
e /] C Sis a set of initial states,

o I'C S x> xS isa transition relation,

o ['C Sis aset of final states.

We denote T'(s,a) ={s' € S| (s,a,s") € T}. When T is clear from the

context we denote (s,a,s’) € T by s = 5.



Determinism and Completeness

Definition 1 An automaton A = (S,I,T,F) is deterministic (DFA) iff
|I| =1 and, for each s € S and for each o € X, |T'(s, )| < 1.

If A is deterministic we write T'(s, ) = &’ instead of T'(s, ) = {s'}.

Definition 2 An automaton A = (S,I, T, F) is complete iff for each
s € S and for each a € X, |T'(s, )| > 1.



Runs and Acceptance Conditions

Given a finite word w € X*, w = a1 ... @y, a 7un of A over w is a finite
’ %

sequence of states si,s92,...,Sp,Sp11 such that s; € I and s; SN s;+1 for
all 1 <1 <n.

. w
A run over w between s; and s; is denoted as s; — s;.

The run is said to be accepting iff s, € F'. If A has an accepting run

over w, then we say that A accepts w.
The language of A, denoted L(A) is the set of all words accepted by A.

A set of words S C X* is recognizable if there exists an automaton A such

that S = L(A).



Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each

input word.

Proposition 2 If A is complete, then it has at least one run for each

input word.



Determinization

Theorem 1 For every NFA A there exists a DFA Ay such that
L(A) = L(Ag).

Let Ay = (2°,{I},Ty,{G C S| GNF # (}), where

(S1,,82) €Ty — Sy ={s"|3dse S . (s,,5) €T}

This definition is known as subset construction



On the Exponential Blowup of Complementation

Theorem 2 For everyn € N, n > 1, there exists an automaton A, with
size(A) =n + 1 such that no deterministic automaton with less than 2"

states recognizes the complement of L(A).

Let ¥ = {a,b} and L = {uav | u,v € ¥X*,|v| =n — 1}.

There exists a NFA with exactly n + 1 states which recognizes L.

Suppose that B = (S,{so},T, F), is a (complete) DFA with |S| < 2" that
accepts X* \ L.



On the Exponential Blowup of Complementation

[{w € ¥* | lw| =n}| =2" and |S|| < 2™ (by the pigeonhole principle)

uav ubvo
= Juavy, ubvsy . luavi| = |ubvs| =n and s € S . sp —— s and 59 —— s

Let s; be the (unique) state of B such that s — s;.
Since |uavi| = n, then uaviu € L = uaviu € L(B), i.e. s is not accepting.

On the other hand, ubvou ¢ L = ubveu € L(B), i.e. s is accepting,

contradiction.



Completion

Lemma 1 For every NFA A there exists a complete NFA A. such that
L(A) = L(A.).

Let A, = (SU{c},I,T., F), where o € S is a new sink state. The

transition relation 7, is defined as:
Vse SVaeX . (s,a,0) €T, — Vs'eS.(s,a,8)&T

and Va € X . (0,a,0) € T,.



Closure Properties

Theorem 3 Let Ay = (S1, 11,11, F1) and Ay = (So, Is,T5, F5) be two
NFA. There exists automata Ay, A, and An that recognize the languages
Y\ L(AL), L(A1) U L(A2), and L(A1) N L(A2) respectivelly.

Let A" = (8", I',T', F') be the complete deterministic automaton such
that £(A1) = L(A"), and A = (S", ', T", 5"\ I").

Let A, = <Sl U Sy, I1 ULy, Ty UTy, Fy U F2>.

Let Am = <Sl X 52,11 X IQ,Tm,Fl X F2> where:

((s1,t1), a, (s2,t9)) € Th <= (s1,a,82) € T1 and (t1, a,ta) € Th



Projections

Let the input alphabet > = 3J; X 5. Any word w € ¥* can be uniquely

identified to a pair (w1, wq) € X7 x X5 such that |wi| = |we| = |w|.

The projection operations are
pri(L) ={u € X7 | (u,v) € L, for some v € 35} and
pro(L) = {v € X5 | (u,v) € L, for some u € 37}

Theorem 4 If the language L C (31 X Xo)* s recognizable, then so are
the projections pr;(L), fori=1,2.



Remark

The operations of union, intersection and complement correspond to the

boolean V, A and —.

The projection corresponds to the first-order existential quantifier dx.



The Myhill-Nerode Theorem

Let A= (S,I,T,F) be an automaton over the alphabet >*.

Define the relation ~4 C >* x X* as:

UV = Vs, €S .5 55 = 555

~ 4 is an equivalence relation of finite index

Let L C X* be a language. Define the relation ~;C »X* x ™ as:

un~pv <= VweX' . uwe L < vw € L]

~, 18 an equivalence relation



The Myhill-Nerode Theorem

Theorem 5 A language L C X% is recognizable iff ~1 is of finite index.

“=" Suppose L = L(A) for some automaton A.
~ 4 is of finite index.
for all u,v € X* we have u ~4 v = u ~p v

index of ~; < index of ~4 < o0



The Myhill-Nerode Theorem

“<” ~ is an equivalence relation of finite index, and let |u] denote the

equivalence class of u € >*.

A= (S,I,T,F), where:
o S={[u] |ue¥x}
o I =,
o [u] L] <= ua~p v,

o "= {|u] | ue L}



Isomorphism and Canonical Automata

Two automata A; = (S;, I;,T;, F;), i = 1,2 are said to be isomorphic iff
there exists a bijection h : S — Sy such that, for all s, s’ € S; and for all

a € 2 we have :
e sc | < h(s) € Iy,
o (s,a,8) €T < (h(s),a,h(s")) € Tb,

e sc I < h(s) € Fy.

For DFA all minimal automata are isomorphic.

For NFA there may be more non-isomorphic minimal automata.



Pumping Lemma

Lemma 2 (Pumping) Let A= (S,1,T,F) be a finite automaton with
size(A) =n, and w € L(A) be a word of length |w| > n. Then there exists
three words u,v,t € X* such that:

1. |v| > 1,
2. w = uvt and,

3. for all k > 0, uv*t € L(A).



Example

L ={a™b" | n € N} is not recognizable:

Suppose that there exists an automaton A with size(A) = N, such that
L=L(A).

Consider the word a™Vb" € L = L(A).

There exists words u, v, w such that |v| > 1, vow = a0V and w*w € L
for all £ > 1.

e v=2a", for some m € N.
e v =2a"bP for some m,p € N.

e v=>0" for some m € N.



Decidability

Given automata A and B:
e Emptiness L(A) =07
e Equality £L(A) =L(B) ?
e Infinity |L(A)| < 0 7

e Universality £(A) = ¥* 7



Emptiness

Theorem 6 Let A be an automaton with size(A) =n. If L(A) £ 0, then
there exists a word of length less than n that is accepted by A.

Let u be the shortest word in L(A).

If |u| < n we are done.

If |u| > n, there exists ui,v,us € X* such that |v| > 1 and ujvus = u.

Then uijus € L(A) and |ujus| < |ujvus|, contradiction.



Everything is decidable

Theorem 7 The emptiness, equality, infinity and universality problems

are decidable for automata on finite words.



Automata on Finite Words and WS1S



WSI1S

Let ¥ = {a,b,...} be a finite alphabet.

Any finite word w € ¥* induces the finite sets p, = {p | w(p) = a}.
e v <y : xisless than y,
e s(x) =1y : y is the successor of x,

e p.(x) : a occurs at position z in w

Remember that < and s(.) can be defined one from another.



Problem Statement

Let L(p) = {w | my, = o}

A language L C X* is said to be WS1S-definable iff there exists a WS1S
formula ¢ such that L = L(p).

1. Given A build ¢4 such that £(A) = L(p)
2. Given ¢ build A, such that L(A) = L(p)

The recognizable and WS1S-definable languages coincide



Coding of X

Let m € N be the smallest number such that || < 2™.
W.lo.g. assume that ¥ ={0,1}™, and let X1 ... X,, 2p11,...2m

A word w € X* induces an interpretation of Xy ... Xp, xpi1, ... Tm:
o i € [,(X;) iff the j-th element of w; is 1, and

o [,(x;) =1 iff w; has 1 on the j-th position and, for all k£ # ¢ wy has 0
on the j-th position.



Example

Example 1 Let 3 = {a,b,c,d}, encoded as a = (00), b = (01), ¢ = (10)
and d = (11). Then the word abbaacdd induces the valuation
X, = {5,6,7}, Xo = {1,2,6,7}. O



From Automata to Formulae

Let A= (S,I,T,F) with S = {s1,...,5}, and X = {0,1}".
Build ® 4(X1,...,X,,) such that Vw € ¥* . w e L(A) < w = Py

Let a € {0,1}™. Let ®,(z, X1,...,X,,) be the conjunction of:
o X;(x) if the a; =1, and

e —X,;(x) otherwise.

For all w € ¥* we have w =V . V5 Doz, X)

Notice that &, A & is unsatisfiable, for a # b.



Coding of S

Let {Yo,...,Y,} be set variables.

Y; is the set of all positions labeled by A with state s; during some run

Os(Yi,...,Y,) 1 Vz. \/ Yilz) A N\ —32.Yi(2) AY(2)
1<:<p I1<i<y<p



Coding of [

Every run starts from an initial state:

Gr(Yy,...,Y,) « JavVy .z <yA \/ Yi(z)
s, el



Coding of T

. o« e a
Consider the transition s; — s;:

Op(X1,. .o, X, Y1,..,Yp) t Voo # s(2)AY(2) A (2, X) = \/  Yj(s(x))
cT

(Sivavsj)



Coding of F

The last state on the run is a final state:

Cr(Yr,...,Y,) : JzvVy.y<xA \/ Yi(z)
s, EF

(I)AZHY1...3}/]9.(I)S/\(I)[/\(I)T/\(I)F



From Formulae to Automata

Let ®(X1,..., Xp, Zpt+1,...,Tm) be a WS1S formula.

We build an automaton Ag such that L(A) = L(P).

Let ®(X1, Xo,x3,14) be:
1. X1(£B3>
2. x3 < 24

3. X1 =X



From Formulae to Automata

Ag is built by induction on the structure of &:
o for ® = ¢; A 2 we have L(Ag) = L(Ap,) N L(Ay,)
o for ® = ¢1 V ¢p2 we have L(Ag) = L(Ap,) U L(Ay,)

o for & = —¢ we have L(As) = L(Ay)
o for & =3X; . ¢, we have L(Ag) = pri(L(Ay)).



Consequences

Theorem 8 A language L C X is definable in WS1S iff it is recognizable.

Corollary 1 The SAT problem for WS1S is decidable.

Lemma 3 Any WS1S formula ¢(X1,..., X)) is equivalent to an WS1S
formula of the form 3Y7...3Y, . ¢, where ¢ does not contain other set
variables than Xq,..., X, Y1,...,Y).



Finite Semigroups



Monoids and Semigroups

A semigroup is a set (S, -), where:

Ve,y,z€S . (x-y)-z=z-(y-2)

A monoid is a semigroup (M, -) such that
NeM.z-1=1-z=x

If S is a semigroup, we denote by S' the monoid obtained by adding an
identity element to S, i.e. St =S U {1}.

Example 2
o X1 with concatenation forms a semigroup
e X" with concatenation and € forms a monoid

o the set R(S) of relations over a set S with composition of relations

and the identity relation forms a monoid



Morphisms

Let (S,-) and (7T, x) be semigroup(s). A semigroup morphism is a
function ¢ : S — T such that :

Vz,y €S . o(x-y)= o) x p(y)

Let (S,-,1g) and (T, X, 17) be monoid(s). A monoid morphism is a

semigroup morphism ¢ : S — T such that :

p(ls) =17



Recognition by Morphism

Let S and T be semigroup(s). A surjective semigroup morphism
@ : S — T recognizes I C § iff there exists J C T' such that:

I=¢ ' (J)
FExample 8 Let S be the semaigroup of multiplicative matrices generated
by:
0 1 0 0
A p— B p—
0 O 1 0

¥ ={a,b} and ¢ : X — S defined by p(a) = A and p(b) = B. Then
o~ (A) = (ab)"a, ¢~ (B) = (ba)*b, ¢~ (AB) = (ab)", ¢~ (BA) = (ba)"

o 1 (AA) = o~ YBB) = Y*aa¥* U S*bby*



From Automata to Semigroups

Let A= (S,I,T, F) be an automaton over an alphabet 3. Define the
semigroup morphism ¢ : X7 — R(S) by

ola) = {(s,5)eSxS|(s,a,8)eT}

p(ao) o plag)o...op(ap)
= {(s,5) e SxS|s 20, s'}

e(apgag ... o)

L(A) = ¢ 1({(s,s') € I x F | there exists a path from s to s'})
©(XT) is called the transition semigroup of A

The transition monoid of A, is p(3*), where ¢ is a monoid morphism



From Semigroups to Automata

Let (S,-) be a semigroup and ¢ : ¥ — S be a surjective semigroup
morphism recognizing L C X7, i.e. L = ¢~ }(F) for some F' C S.
Then A = (S, {1}, T, F), where

T={(s,a,s - p(a)) | s€ S, aecd}

recognizes L.

CA) = fuext [1-pu)c F)
— {ue Tt pw) € F)
= ¢ '(F)



Congruences

Definition 3 An equivalence relation R C X* X X% is said to be a

left-congruence ff for all u,v,w € X* we have u = v = wu = wv.

Definition 4 An equivalence relation R C X* x X* is said to be a

right-congruence ff for all u,v,w € X* we have u R v = uw R vw.

Definition 5 An equivalence relation R C X* x X* is said to be a

congruence iff it is both a left- and a right-congruence.

Ex: the Myhill-Nerode equivalence ~7, is a right-congruence.



The Syntactic Semigroup (Monoid)

Let L C X7 (X*) be a language. The relation ~;C X1 x X1 (X* x ¥*) is
defined as

x>~y : Yu,veX .urzve Ll < uyv € L

The quotient semigroup (monoid) ZLL (E“/kzL) is called the syntactic

monoid ot L.

It is the coarsest semigroup (monoid) that recognizes L. It is also the
transition semigroup (monoid) of the minimal deterministic automaton

recognizing L.

A language is recognizable iff it is recognized by a finite semigroup.



Syntactic Monoid Example

Let L = (ab)*. Then we have:
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Syntactic Monoid Example

Let S be the semigroup of multiplicative matrices generated by:

0 1 0 0
A= B =
0 0 1 0

> ={a,b} and ¢ : 3 — S defined by ¢(a) = A and ¢(b) = B.




