Linear Temporal Logic

Safety vs. Liveness

- Safety : something bad never happens

A counterexample is an finite execution leading to something bad happening (e.g. an assertion violation).

- Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good happens (e.g. the program does not terminate).

Verification of Reactive Systems

- Classical verification à la Floyd-Hoare considered three problems:
- Partial Correctness :
$\{\varphi\} \mathbf{P}\{\psi\}$ iff for any $s \models \varphi$, if P terminates on s, then $P(s) \models \psi$
- Total Correctness :
$\{\varphi\} \mathbf{P}\{\psi\}$ iff for any $s \models \varphi, P$ terminates on s and $P(s) \models \psi$
- Termination :

$$
P \text { terminates on } s
$$

- Need to reason about infinite computations :
- systems that are in continuous interaction with their environment
- servers, control systems, etc.
- e.g. "every request is eventually answered"

Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states
- Each state in the sequence gives an interpretation to the atomic propositions
- Temporal operators indicate in which states a formula should be interpreted

Example 1 Consider the sequence of states:

$$
\{p, q\}\{\neg p, \neg q\}(\{\neg p, q\}\{p, q\})^{\omega}
$$

Starting from position 2, q holds forever.

Kripke Structures

Let $\mathcal{P}=\{p, q, r, \ldots\}$ be a finite alphabet of atomic propositions.

A Kripke structure is a tuple $K=\left\langle S, s_{0}, \rightarrow, L\right\rangle$ where:

- S is a set of states,
- $s_{0} \in S$ a designated initial state,
- \rightarrow : $S \times S$ is a transition relation,
- $L: S \rightarrow 2^{\mathcal{P}}$ is a labeling function.

Paths in Kripke Structures

A path in K is an infinite sequence $\pi: s_{0}, s_{1}, s_{2} \ldots$ such that, for all $i \geq 0$, we have $s_{i} \rightarrow s_{i+1}$.

By $\pi(i)$ we denote the i-th state on the path.

By π_{i} we denote the suffix $s_{i}, s_{i+1}, s_{i+2} \ldots$.

$$
\inf (\pi)=\{s \in S \mid s \text { appears infinitely often on } \pi\}
$$

If S is finite and π is infinite, then $\inf (\pi) \neq \emptyset$.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- atomic proposition symbols p, q, r, \ldots,
- boolean connectives $\neg, \vee, \wedge, \rightarrow, \leftrightarrow$,
- temporal connectives $\bigcirc, \square, \diamond, \mathcal{U}, \mathcal{R}$.

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if φ and ψ are formulae, then $\neg \varphi$ and $\varphi \bullet \psi$, for $\bullet \in\{\vee, \wedge, \rightarrow, \leftrightarrow\}$ are also formulae.
- if φ and ψ are formulae, then $\bigcirc \varphi, \square \varphi, \diamond \varphi, \varphi \mathcal{U} \psi$ and $\varphi \mathcal{R} \psi$ are formulae,
- nothing else is a formula.

Temporal Operators

- \bigcirc is read at the next time (in the next state)
- \square is read always in the future (in all future states)
- \diamond is read eventually (in some future state)
- \mathcal{U} is read until
- \mathcal{R} is read releases

Linear Temporal Logic: Semantics

$$
\begin{array}{ccc}
K, \pi \models p & \Longleftrightarrow & p \in L(\pi(0)) \\
K, \pi \models \neg \varphi & \Longleftrightarrow & K, \pi \not \models \varphi \\
K, \pi \models \varphi \wedge \psi & \Longleftrightarrow & K, \pi \models \varphi \text { and } K, \pi \models \psi \\
K, \pi \models \bigcirc \varphi & \Longleftrightarrow & K, \pi_{1} \models \varphi
\end{array}
$$

$\Longleftrightarrow \quad$ there exists $k \in \mathbb{N}$ such that $K, \pi_{k} \models \psi$ and $K, \pi_{i} \models \varphi$ for all $0 \leq i<k$

Derived meanings:

$$
\begin{array}{rlc}
K, \pi \models \diamond \varphi & \Longleftrightarrow & K, \pi \models \top \mathcal{U} \varphi \\
K, \pi \models \square \varphi & \Longleftrightarrow & K, \pi \models \neg \diamond \neg \varphi \\
K, \pi \models \varphi \mathcal{R} \psi & \Longleftrightarrow & K, \pi \models \neg(\neg \varphi \mathcal{U} \neg \psi)
\end{array}
$$

Examples

- p holds throughout the execution of the system (p is invariant) : $\square p$
- whenever p holds, q is bound to hold in the future : $\square(p \rightarrow \diamond q)$
- p holds infinitely often : $\square \diamond p$
- p holds forever starting from a certain point in the future : $\diamond \square p$
- $\square(p \rightarrow \bigcirc(\neg q \mathcal{U} r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where r is true, which must occur.
- $p \mathcal{R} q: q$ is true unless this obligation is released by p being true in a previous state.

$\underline{\mathrm{LTL}} \equiv \mathrm{FOL}$

Theorem 1 LTL and FOL on infinite words have the same expressive power.

From LTL to FOL:

$$
\begin{array}{ccc}
\operatorname{Tr}(q) & = & p_{q}(t) \\
\operatorname{Tr}(\neg \varphi) & = & \neg \operatorname{Tr}(\varphi) \\
\operatorname{Tr}(\varphi \wedge \psi) & = & \operatorname{Tr}(\varphi) \wedge \operatorname{Tr}(\psi) \\
\operatorname{Tr}(\bigcirc \varphi) & = & \operatorname{Tr}(\varphi)[t+1 / t] \\
\operatorname{Tr}(\varphi \mathcal{U} \psi) & = & \exists x \cdot \operatorname{Tr}(\psi)[x / t] \wedge \forall y \cdot y<x \rightarrow \operatorname{Tr}(\varphi)[y / t]
\end{array}
$$

The direction from FOL to LTL is done using star-free sets.

LTL < S1S

Definition 1 A language $L \subseteq \Sigma^{\omega}$ is said to be non-counting iff:

$$
\exists n_{0} \forall n \geq n_{0} \forall u, v \in \Sigma^{*} \forall \beta \in \Sigma^{\omega} \cdot u v^{n} \beta \in L \Longleftrightarrow u v^{n+1} \beta \in L
$$

Example 2 $0^{*} 1^{\omega}$ is non-counting. Let $n_{0}=2$. We have three cases:

1. $u, v \in 0^{*}$ and $\beta \in 0^{*} 1^{\omega}$:

$$
\forall n \geq n_{0} \cdot u v^{n} \beta \in L
$$

2. $u \in 0^{*}, v \in 0^{*} 1^{*}$ and $\beta \in 1^{\omega}$:

$$
\forall n \geq n_{0} \cdot u v^{n} \beta \notin L
$$

3. $u \in 0^{*} 1^{*}, v \in 1^{*}$ and $\beta \in 1^{\omega}$:

$$
\forall n \geq n_{0} \cdot u v^{n} \beta \in L
$$

LTL < S1S

Conversely, a language $L \subseteq \Sigma^{\omega}$ is said to be counting iff:
$\forall n_{0} \exists n \geq n_{0} \exists u, v \in \Sigma^{*} \exists \beta \in \Sigma^{\omega} .\left(u v^{n} \beta \notin L \wedge u v^{n+1} \beta \in L\right) \vee\left(u v^{n} \beta \in L \wedge u v^{n+1} \beta \notin L\right)$

Example $3(00)^{*} 1^{\omega}$ is counting.

Given n_{0} take the next even number $n \geq n_{0}, u=\epsilon, v=0$ and $\beta=1^{\omega}$.
Then $u v^{n} \beta \in(00)^{*} 1^{\omega}$ and $u v^{n+1} \beta \notin(00)^{*} 1^{\omega}$.

LTL < S1S

Proposition 1 Each LTL-definable ω-language is non-counting.

$$
\exists n_{0} \forall n \geq n_{0} \forall u, v \in \Sigma^{*} \forall \beta \in \Sigma^{\omega} . u v^{n} \beta \models \varphi \Longleftrightarrow u v^{n+1} \beta \models \varphi
$$

By induction on the structure of φ :

- $\varphi=a$: choose $n_{0}=1$.
- $\varphi=\neg \psi$: choose the same n_{0} as for ψ.
- $\varphi=\psi_{1} \wedge \psi_{2}$: let n_{1} for ψ_{1} and n_{2} for ψ_{2}, and choose $n_{0}=\max \left(n_{1}, n_{2}\right)$.

$\underline{\text { LTL }<\text { S1S }}$

- $\varphi=\bigcirc \psi$: let n_{1} for ψ and choose $n_{0}=n_{1}+1$.
- we show $\forall n \geq n_{0} \cdot\left(u v^{n} \beta\right)_{1} \models \psi \equiv\left(u v^{n+1} \beta\right)_{1} \models \psi$
- case $u \neq \epsilon$, i.e. $u=a u^{\prime}$:

$$
\begin{aligned}
\left(a u^{\prime} v^{n} \beta\right)_{1} \models \psi & \Longleftrightarrow u^{\prime} v^{n} \beta \models \psi \Longleftrightarrow \\
u^{\prime} v^{n+1} \beta \models \psi & \Longleftrightarrow\left(a u^{\prime} v^{n+1} \beta\right)_{1} \models \psi
\end{aligned}
$$

- case $u=\epsilon, v=a v^{\prime}$:

$$
\begin{gathered}
\left(\left(a v^{\prime}\right)^{n} \beta\right)_{1} \models \psi \Longleftrightarrow v^{\prime}\left(a v^{\prime}\right)^{n-1} \beta \models \psi \Longleftrightarrow \\
v^{\prime}\left(a v^{\prime}\right)^{n} \beta \models \psi \Longleftrightarrow\left(\left(a v^{\prime}\right)^{n+1} \beta\right)_{1} \models \psi
\end{gathered}
$$

$\underline{\text { LTL }<\text { S1S }}$

- $\varphi=\psi_{1} \mathcal{U} \psi_{2}$: let n_{1} for ψ_{1} and n_{2} for ψ_{2}, and choose
$n_{0}=\max \left(n_{1}, n_{2}\right)+1$.
- we show $\forall n \geq n_{0} \cdot u v^{n} \beta \models \psi_{1} \mathcal{U} \psi_{2} \Rightarrow u v^{n+1} \beta \models \psi_{1} \mathcal{U} \psi_{2}$
- we have $\left(u v^{n} \beta\right)_{j} \models \psi_{2}$ and $\forall i<j .\left(u v^{n} \beta\right)_{i} \models \psi_{1}$ for some $j \geq 0$
- case $j \leq|u|:\left(u v^{n+1} \beta\right)_{j} \models \psi_{2}$ and $\forall i<j .\left(u v^{n+1} \beta\right)_{i} \models \psi_{1}$
- case $j>|u|$: let $j^{\prime}=j+|v|$
* $\left(u v^{n+1} \beta\right)_{j^{\prime}}=\left(u v^{n} \beta\right)_{j} \models \psi_{2}$
* for all $|u|+|v| \leq i<j+|v| \cdot\left(u v^{n+1} \beta\right)_{i}=\left(u v^{n} \beta\right)_{i-|v|} \models \psi_{1}$
* for all $i<|u|+|v| .\left((u v) v^{n} \beta\right)_{i} \models \psi_{1} \Leftarrow\left((u v) v^{n-1} \beta\right)_{i} \models \psi_{1}$
- the direction \Leftarrow is left to the reader.

Theorem 2 LTL is strictly less expressive than S1S.

LTL Model Checking

System verification using LTL

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often)
- Given an LTL formula φ over a set of atomic propositions \mathcal{P}, specifying all bad behaviors, we build a Büchi automaton A_{φ} that accepts all sequences over $2^{\mathcal{P}}$ satisfying φ.

Q: Since LTL $\subset S 1 S$, this automaton can be built, so why bother?

- Check whether $\mathcal{L}\left(A_{\varphi}\right) \cap \mathcal{L}(K)=\emptyset$. In case it is not, we obtain a counterexample.

Generalized Büchi Automata

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A=\langle S, I, T, \mathcal{F}\rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\} \subseteq 2^{S}$ is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all $1 \leq i \leq k$, we have

$$
\inf (\pi) \cap F_{i} \neq \emptyset
$$

GBA and BA are equivalent

Let $A=\langle S, I, T, \mathcal{F}\rangle$, where $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$.

Build $A^{\prime}=\left\langle S^{\prime}, I^{\prime}, T^{\prime}, F^{\prime}\right\rangle$:

- $S^{\prime}=S \times\{1, \ldots, k\}$,
- $I^{\prime}=I \times\{1\}$,
- $(\langle s, i\rangle, a,\langle t, j\rangle) \in T^{\prime}$ iff $(s, t) \in T$ and:
$-j=i$ if $s \notin F_{i}$,
$-j=(i \bmod k)+1$ if $s \in F_{i}$.
- $F^{\prime}=F_{1} \times\{1\}$.

The idea of the construction

Let $K=\left\langle S, s_{0}, \rightarrow, L\right\rangle$ be a Kripke structure over a set of atomic propositions $\mathcal{P}, \pi: \mathbb{N} \rightarrow S$ be an infinite path through K, and φ be an LTL formula.

To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.

Closure

Let φ be an LTL formula written in negation normal form.

The closure of φ is the set $C l(\varphi) \in 2^{\mathcal{L}(L T L)}$:

- $\varphi \in C l(\varphi)$
- $\bigcirc \psi \in C l(\varphi) \Rightarrow \psi \in C l(\varphi)$
- $\psi_{1} \bullet \psi_{2} \in C l(\varphi) \Rightarrow \psi_{1}, \psi_{2} \in C l(\varphi)$, for all $\bullet \in\{\wedge, \vee, \mathcal{U}, \mathcal{R}\}$.

Example \& $C l(\diamond p)=C l(T \mathcal{U} p)=\{\diamond p, p, \top\} \square$

Q: What is the size of the closure relative to the size of φ ?

Labeling rules

Given $\pi: \mathbb{N} \rightarrow 2^{\mathcal{P}}$ and φ, we define $\tau: \mathbb{N} \rightarrow 2^{C l(\varphi)}$ as follows:

- for $p \in \mathcal{P}$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \notin \pi(i)$
- if $\psi_{1} \wedge \psi_{2} \in \tau(i)$ then $\psi_{1} \in \tau(i)$ and $\psi_{2} \in \tau(i)$
- if $\psi_{1} \vee \psi_{2} \in \tau(i)$ then $\psi_{1} \in \tau(i)$ or $\psi_{2} \in \tau(i)$

Labeling rules

$$
\begin{aligned}
\varphi \mathcal{U} \psi & \Longleftrightarrow \psi \vee(\varphi \wedge \bigcirc(\varphi \mathcal{U} \psi)) \\
\varphi \mathcal{R} \psi & \Longleftrightarrow \psi \wedge(\varphi \vee \bigcirc(\varphi \mathcal{R} \psi))
\end{aligned}
$$

- if $\bigcirc \psi \in \tau(i)$ then $\psi \in \tau(i+1)$
- if $\psi_{1} \mathcal{U} \psi_{2} \in \tau(i)$ then either $\psi_{2} \in \tau(i)$, or $\psi_{1} \in \tau(i)$ and $\psi_{1} \mathcal{U} \psi_{2} \in \tau(i+1)$
- if $\psi_{1} \mathcal{R} \psi_{2} \in \tau(i)$ then $\psi_{2} \in \tau(i)$ and either $\psi_{1} \in \tau(i)$ or $\psi_{1} \mathcal{R} \psi_{2} \in \tau(i+1)$

Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above
- $\varphi \in \tau(0)$, and
- if $\psi_{1} \mathcal{U} \psi_{2} \in \tau(i)$, then for some $j \geq i, \psi_{2} \in \tau(j)$ (the eventuality condition)
$\underline{\text { Building the GBA } A_{\varphi}=\langle S, I, T, \mathcal{F}\rangle}$
The automaton A_{φ} is the set of labeling rules + the eventuality condition(s)!
- $\Sigma=2^{\mathcal{P}}$ is the alphabet
- $S \subseteq 2^{C l(\varphi)}$, such that, for all $s \in S$:
$-\varphi_{1} \wedge \varphi_{2} \in s \Rightarrow \varphi_{1} \in s$ and $\varphi_{2} \in s$
$-\varphi_{1} \vee \varphi_{2} \in s \Rightarrow \varphi_{1} \in s$ or $\varphi_{2} \in s$
- $I=\{s \in S \mid \varphi \in s\}$,
- $(s, \alpha, t) \in T$ iff:
- for all $p \in \mathcal{P}, p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \notin \alpha$,
$-\bigcirc \psi \in s \Rightarrow \psi \in t$,
$-\psi_{1} \mathcal{U} \psi_{2} \in s \Rightarrow \psi_{2} \in s$ or $\left[\psi_{1} \in s\right.$ and $\left.\psi_{1} \mathcal{U} \psi_{2} \in t\right]$
$-\psi_{1} \mathcal{R} \psi_{2} \in s \Rightarrow \psi_{2} \in s$ and $\left[\psi_{1} \in s\right.$ or $\left.\psi_{1} \mathcal{R} \psi_{2} \in t\right]$
$\underline{\text { Building the GBA } A_{\varphi}=\langle S, I, T, \mathcal{F}\rangle}$
- for each eventuality $\phi \mathcal{U} \psi \in C l(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ
- it is sufficient to ensure that, for each $\phi \mathcal{U} \psi \in C l(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi \mathcal{U} \psi$ and ψ appear
- let $\phi_{1} \mathcal{U} \psi_{1}, \ldots \phi_{n} \mathcal{U} \psi_{n}$ be the "until" subformulae of φ
$\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$, where:

$$
F_{i}=\left\{s \in S \mid \phi_{i} \mathcal{U} \psi_{i} \in s \text { and } \psi_{i} \in s \text { or } \phi_{i} \mathcal{U} \psi_{i} \notin s\right\}
$$

for all $1 \leq i \leq n$.

