
The McNaughton Theorem



McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any recognizable subset of Σω can be

recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset

construction to obtain a Rabin automaton equivalent to a given Büchi

automaton. The Safra algorithm is optimal 2O(n log n).

This proves that recognizable ω-languages are closed under complement

(Büchi Theorem).



Oriented Trees

Let Σ be an alphabet of labels.

An oriented tree is a pair of partial functions t = 〈l, s〉:

• l : N 7→ Σ denotes the labels of the nodes

• s : N 7→ N
∗ gives the ordered list of children of each node

dom(l) = dom(s)
def
= dom(t)

≤ denotes the successor, and � the lexicographical ordering on tree

positions



Safra Trees

Let A = 〈S, I, T, F 〉 be a Büchi automaton.

A Safra tree is a pair 〈t,m〉, where t is a finite oriented tree labeled with

non-empty subsets of S, and m ⊆ dom(t) is the set of marked positions,

such that:

• each marked position is a leaf

• for each p ∈ dom(t), the union of labels of its children is a strict

subset of t(p)

• for each p, q ∈ dom(t), if p 6≤ q and q 6≤ p then t(p) ∩ t(q) = ∅

Proposition 1 A Safra tree has at most ||S|| nodes.

r(p) = t(p) \
⋃

q<p

t(q)

||dom(t)|| =
∑

p∈dom(t)

1 ≤
∑

p∈dom(t)

||r(p)|| ≤ ||S||



Initial State

We build a Rabin automaton B = 〈SB, iB , TB ,ΩB〉, where:

• SB is the set of all Safra trees 〈t,m〉 labeled with subsets of S

• iB = 〈t,m〉 is the Safra tree defined as either:

– dom(t) = {ǫ}, t(ǫ) = I and m = ∅ if I ∩ F = ∅

– dom(t) = {ǫ}, t(ǫ) = I and m = {ǫ} if I ⊆ F

– dom(t) = {ǫ, 0}, t(ǫ) = I, t(0) = I ∩ F and m = {0} if I ∩ F 6= ∅
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Classical Subset Move

[Step 1] 〈t1,m1〉 is the tree with dom(t1) = dom(t),m1 = ∅, and

t1(p) = {s′ | s
α
−→ s′, s ∈ t(p)}, for all p ∈ dom(t)
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Spawn New Children

[Step 2] 〈t2,m2〉 is the tree such that, for each p ∈ dom(t1), if

t1(p) ∩ F 6= ∅ we add a new child to the right, identified by the first

available id, and labeled t1(p) ∩ F , and m2 is the set of all such children
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Horizontal Merge

[Step 3] 〈t3,m3〉 is the tree with dom(t3) = dom(t2), m3 = m2, such that,

for all p ∈ dom(t3), t3(p) = t2(p) \
⋃

q≺p t2(q)
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Delete Empty Nodes

[Step 4] 〈t4,m4〉 is the tree such that dom(t4) = dom(t3) \ {p | t3(p) = ∅}

and m4 = m3 \ {p | t3(p) = ∅}
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Vertical Merge

[Step 5] 〈t5,m5〉 is m5 = m4 ∪ V , dom(t5) = dom(t4) \ {q | p ∈ V, q < p},

V = {p ∈ dom(t4) | t4(p) =
⋃

p<q t4(q)}
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Accepting Condition

The Rabin accepting condition is defined as

ΩB = {(Nq, Pq) | q ∈
⋃

〈t,m〉∈SB
dom(t)}, where:

• Nq = {〈t,m〉 ∈ SB | q 6∈ dom(t)}

• Pq = {〈t,m〉 ∈ SB | q ∈ m}
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Correctness of Safra Construction

Sn−1

p

R1

p

Rn−1

p

Rn

α1 α2 αn−1 αn
p

R0

S0 S1 Sn

. . .

Lemma 1 For 0 ≤ i ≤ n − 1, Si+1 ⊆ T (Si, αi+1). Moreover, for every

q ∈ Sn, there is a path in A starting in some q0 ∈ S0, ending in q and

visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path

in A (König’s Lemma)



Correctness of Safra Construction

Conversely, an infinite accepting path of A over u = α0α1α2 . . .

π : q0
α0−→ q1

α1−→ q2 . . .

corresponds to a unique infinite path of B:

iB = R0
α0−→ R1

α1−→ R2 . . .

where each qi belongs to the root of Ri

If the root is marked infinitely often, then u is accepted. Otherwise, let n0

be the largest number such that the root is marked in Rn0
. Let m > n0 be

the smallest number such that qm is repeated infinitely often in π.

Since qm ∈ F it appears in a child of the root. If it appears always on the

same position pm, then the path is accepting. Otherwise it appears to the

left of pm from some n1 on (step 3). This left switch can only occur a

finite number of times.



Complexity of the Safra Construction

Given a Büchi automaton with n states, how many states we need for an

equivalent Rabin automaton?

• The upper bound is 2O(n log n) states

• The lower bound is of at least n! states



Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree 〈t,m〉 can be uniquely described by the functions:

• S → {0, . . . , n} gives for each s ∈ S the characteristic position

p ∈ dom(t) such that s ∈ t(p), and s does not appear below p

• {1, . . . , n} → {0, 1} is the marking function

• {1, . . . , n} → {0, . . . , n} is the parent function

• {1, . . . , n} → {0, . . . , n} is the older brother function

Altogether we have at most (n + 1)n · 2n · (n + 1)n · (n + 1)n ≤ (n + 1)4n

Safra trees, hence the upper bound is 2O(n log n).



The Language Ln

q0 qnq2q1

1
2

n

1, . . . , n, # 1, . . . , n, # 1, . . . , n, #

α ∈ Ln if there exist i1, . . . , in ∈ {1, . . . , n} such that

• αk = i1 is the first occurrence of i1 in α and q0
α0...αk−−−−→ qi1

• the pairs i1i2, i2i3, . . . , ini1 appear infinitely often in α.

Example 1

(3#32#21#1)ω ∈ L3

(312#)ω 6∈ L3



The Language Ln

Lemma 2 (Permutation) For each permutation i1, i2, . . . , in of

1, 2, . . . , n, the infinite word (i1i2 . . . in#)ω 6∈ Ln.

Lemma 3 (Union) Let A = (S, i, T,Ω) be a Rabin automaton with

Ω = {〈N1, P1〉, . . . , 〈Nk, Pk〉} and ρ1, ρ2, ρ be runs of A such that

inf(ρ1) ∪ inf(ρ2) = inf(ρ)

If ρ1 and ρ2 are not successful, then ρ is not successful either.



Proving the n! Lower Bound

Suppose that A recognizes Ln. We need to show that A has ≥ n! states.

Let α = i1, i2, . . . , in and β = j1, j2, . . . , jn be two permutations of

1, 2, . . . , n. Then the words (i1i2 . . . in#)ω and (j1j2 . . . jn#)ω are not

accepted.

Let ρα, ρβ be the non-accepting runs of A over α and β, respectivelly.

Claim 1 inf(ρα) ∩ inf(ρβ) = ∅

Then A must have ≥ n! states, since there are n! permutations.



Proving the n! Lower Bound

By contradiction, assume q ∈ inf(ρα) ∩ inf(ρβ). Then we can build a run ρ

such that inf(ρ) = inf(ρ1) ∪ inf(ρ2) and α, β appear infinitely often. By

the union lemma, ρ is not accepting.

i1 . . . ik−1 ik ik+1 . . . il−1 il . . . in

= = 6=

j1 . . . jk−1 jk jk+1 . . . jr−1 jr . . . jn

ik ik+1, . . . il = jk jk+1, . . . jr−1 jr = ik

The new word is accepted since the pairs ikik+1, . . . , jkjk+1, . . . , jr−1ik

occur infinitely often. Contradiction with the fact that ρ is not accepting.



Büchi Complementation Theorem



Büchi Complementation Theorem

Theorem 2 For every Büchi automaton A there exists a Büchi

automaton B such that L(A) = L(B).

Already a consequence of McNaughton Theorem, since from A we can

build a Rabin automaton R, complement it to R, and build B from R.

Next we present a direct proof.



Congruences

Definition 1 An equivalence relation R ⊆ Σ∗ × Σ∗ is said to be a

left-congruence iff for all u, v,w ∈ Σ∗ we have u ∼= v ⇒ wu ∼= wv.

Definition 2 An equivalence relation R ⊆ Σ∗ × Σ∗ is said to be a

right-congruence iff for all u, v,w ∈ Σ∗ we have u R v ⇒ uw R vw.

Definition 3 An equivalence relation R ⊆ Σ∗ × Σ∗ is said to be a

congruence iff it is both a left- and a right-congruence.

Ex: the Myhill-Nerode equivalence ∼L is a right-congruence.



Congruences

Let A = 〈S, I, T, F 〉 be a Büchi automaton and s, s′ ∈ S.

Ws,s′ = {w ∈ Σ∗ | s
w
−→ s′}

For s, s′ ∈ S and w ∈ Σ∗, we denote s →F
w s′ iff s

w
−→ s′ visiting a state

from F .

WF
s,s′ = {w ∈ Σ∗ | s →F

w s′}

For any two words u, v ∈ Σ∗ we have u ∼= v iff for all s, s′ ∈ S we have:

• s
u
−→ s′ ⇐⇒ s

v
−→ s′, and

• s →F
u s′ ⇐⇒ s →F

v s′.

The relation ∼= is a congruence of finite index on Σ∗



Congruences

Let [w]∼= denote the equivalence class of w ∈ Σ∗ w.r.t. ∼=.

Lemma 4 For any w ∈ Σ∗, [w]∼= is the intersection of all sets of the form

Ws,s′ ,W
F
s,s′ ,Ws,s′ ,W

F
s,s′, containing w.

Tw =
⋂

w∈Ws,s′

Ws,s′ ∩
⋂

w∈WF
s,s′

WF
s,s′ ∩

⋂

w∈Ws,s′

Ws,s′ ∩
⋂

w∈WF
s,s′

WF
s,s′

We show that [w]∼= = Tw.

“⊆” If u ∼= w then clearly u ∈ Tw.



Congruences

“⊇” Let u ∈ Tw

• if s
w
−→ s′, then w ∈ Ws,s′ , hence u ∈ Ws,s′ , then s

u
−→ s′ as well.

• if s 6
w
−→ s′, then w ∈ Ws,s′ , hence u ∈ Ws,s′ , then s 6

u
−→ s′.

Also,

• if s →F
w s′, then w ∈ WF

s,s′ , hence u ∈ WF
s,s′ , then s →F

u s′ as well.

• if s 6→F
w s′, then w ∈ WF

s,s′ , hence u ∈ WF
s,s′ , then s 6→F

u s′.

Then u ∼= w.

This lemma gives us a way to compute the ∼=-equivalence classes.



Outline of the proof

We prove that:

L(A) =
⋃

V Wω∩L(A) 6=∅

V Wω

where V,W are ∼=-equivalence classes

Then we have

Σω \ L(A) =
⋃

V Wω∩L(A)=∅

V Wω

Finally we obtain an algorithm for complementation of Büchi automata



Saturation

Definition 4 A congruence relation R ⊆ Σ∗ × Σ∗ saturates an

ω-language L iff for all R-equivalence classes V and W , if V Wω ∩ L 6= ∅

then V Wω ⊆ L.

Lemma 5 The congruence relation ∼= saturates L(A).



Every word belongs to some V W
ω

Let α ∈ Σω be an infinite word.

Since ∼= is an equivalence relation, there exists a mapping ϕ : Σ+ → Σ+
/∼=

such that ϕ(u) = [u]/∼=, for all u ∈ Σ+.

Then there exists a Ramseyan factorization of α = uv0v1v2 . . . such that

ϕ(vi) = [v]/∼= for some v ∈ Σ+ and for all i ≥ 0.

Together with the saturation lemma, this proves

L(A) =
⋃

V Wω∩L(A) 6=∅

V Wω



Complementation of Büchi Automata

Theorem 3 For any Büchi automaton A there exists a Büchi automaton

A such that L(A) = Σω \ L(A).

L(A) =
⋃

V Wω∩L(A) 6=∅

V Wω

where V,W are ∼=-equivalence classes

Σω \ L(A) =
⋃

V Wω∩L(A)=∅

V Wω



Ramseyan Factorizations



Ramsey Theorem

Theorem 4 Let X be some countably infinite set and colour the subsets

of X of size n in c different colours. Then there exists some infinite subset

M of X such that the size n subsets of M all have the same colour.



A Particular Case of Ramsey Theorem

Let α ∈ Σω be an infinite word.

A factorization of α is an infinite sequence {αi}
∞
i=0 of finite words such

that α = α0α1 . . .

Let E be a finite set of colors and ϕ : Σ+ → E. A factorization

α = uv0v1v2 . . . is said to be Ramseyan for ϕ if there exists e ∈ E such

that

ϕ(vivi+1 . . . vi+j) = e

for all i ≤ j.
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A Particular Case of Ramsey Theorem

Theorem 5 Let ϕ : Σ+ → E be a map from Σ+ into a finite set E. Then

every infinite word of Σω admits a Ramseyan factorization for ϕ.

Let {Ui}
∞
i=0 be an infinite sequence of infinite subsets of N defined as:

U0 = N

Ui+1 = {n ∈ Ui | ϕ(α(min Ui, n)) = ei}

where ei ∈ E is chosen such that the set Ui+1 is infinite (show the

existence of ei)

Since E is finite, there exists an infinite subsequence of integers i0, i1, . . .

such that ei0 = ei1 = . . . = e.

Then vj = α(nij , nij+1) is the required factorization.



A Particular Case of Ramsey Theorem
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A Particular Case of Ramsey Theorem
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A Particular Case of Ramsey Theorem
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A Particular Case of Ramsey Theorem
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