The McNaughton Theorem

McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any recognizable subset of Σ^{ω} can be recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset construction to obtain a Rabin automaton equivalent to a given Büchi automaton. The Safra algorithm is optimal $2^{O(n \log n)}$.

This proves that recognizable ω -languages are closed under complement (Büchi Theorem).

Oriented Trees

Let Σ be an alphabet of labels.

An oriented tree is a pair of partial functions $t = \langle l, s \rangle$:

- $l: \mathbb{N} \mapsto \Sigma$ denotes the labels of the nodes
- $s: \mathbb{N} \mapsto \mathbb{N}^*$ gives the ordered list of children of each node

$$dom(l) = dom(s) \stackrel{def}{=} dom(t)$$

 \leq denotes the successor, and \preceq the lexicographical ordering on tree positions

Safra Trees

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton.

A Safra tree is a pair $\langle t, m \rangle$, where t is a finite oriented tree labeled with non-empty subsets of S, and $m \subseteq dom(t)$ is the set of marked positions, such that:

- each marked position is a leaf
- for each p ∈ dom(t), the union of labels of its children is a strict subset of t(p)
- for each $p,q \in dom(t)$, if $p \not\leq q$ and $q \not\leq p$ then $t(p) \cap t(q) = \emptyset$

Proposition 1 A Safra tree has at most ||S|| nodes.

$$\begin{aligned} r(p) &= t(p) \setminus \bigcup_{q < p} t(q) \\ \| dom(t) \| &= \sum_{p \in dom(t)} 1 \le \sum_{p \in dom(t)} \| r(p) \| \le \| S \| \end{aligned}$$

Initial State

We build a Rabin automaton $B = \langle S_B, i_B, T_B, \Omega_B \rangle$, where:

- S_B is the set of all Safra trees $\langle t, m \rangle$ labeled with subsets of S
- $i_B = \langle t, m \rangle$ is the Safra tree defined as either:

$$- dom(t) = \{\epsilon\}, t(\epsilon) = I \text{ and } m = \emptyset \text{ if } I \cap F = \emptyset$$

- $dom(t) = \{\epsilon\}, t(\epsilon) = I \text{ and } m = \{\epsilon\} \text{ if } I \subseteq F$
- $\ dom(t) = \{\epsilon, 0\}, t(\epsilon) = I, t(0) = I \cap F \text{ and } m = \{0\} \text{ if } I \cap F \neq \emptyset$

Classical Subset Move

[Step 1] $\langle t_1, m_1 \rangle$ is the tree with $dom(t_1) = dom(t), m_1 = \emptyset$, and $t_1(p) = \{s' \mid s \xrightarrow{\alpha} s', s \in t(p)\}$, for all $p \in dom(t)$

Spawn New Children

[Step 2] $\langle t_2, m_2 \rangle$ is the tree such that, for each $p \in dom(t_1)$, if $t_1(p) \cap F \neq \emptyset$ we add a new child to the right, identified by the first available id, and labeled $t_1(p) \cap F$, and m_2 is the set of all such children

Horizontal Merge

[Step 3] $\langle t_3, m_3 \rangle$ is the tree with $dom(t_3) = dom(t_2), m_3 = m_2$, such that, for all $p \in dom(t_3), t_3(p) = t_2(p) \setminus \bigcup_{q \prec p} t_2(q)$

Delete Empty Nodes

[Step 4] $\langle t_4, m_4 \rangle$ is the tree such that $dom(t_4) = dom(t_3) \setminus \{p \mid t_3(p) = \emptyset\}$ and $m_4 = m_3 \setminus \{p \mid t_3(p) = \emptyset\}$

Vertical Merge

[Step 5] $\langle t_5, m_5 \rangle$ is $m_5 = m_4 \cup V$, $dom(t_5) = dom(t_4) \setminus \{q \mid p \in V, q < p\}$, $V = \{p \in dom(t_4) \mid t_4(p) = \bigcup_{p < q} t_4(q)\}$

Accepting Condition

The Rabin accepting condition is defined as $\Omega_B = \{ (N_q, P_q) \mid q \in \bigcup_{\langle t, m \rangle \in S_B} dom(t) \}, \text{ where:}$

- $N_q = \{ \langle t, m \rangle \in S_B \mid q \notin dom(t) \}$
- $P_q = \{ \langle t, m \rangle \in S_B \mid q \in m \}$

 $\Omega_B = \{(\{R_1\}, \{R_2\}), (\{R_2\}, \{R_1\})\}\$

Correctness of Safra Construction

Lemma 1 For $0 \le i \le n-1$, $S_{i+1} \subseteq T(S_i, \alpha_{i+1})$. Moreover, for every $q \in S_n$, there is a path in A starting in some $q_0 \in S_0$, ending in q and visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path in A (König's Lemma)

Correctness of Safra Construction

Conversely, an infinite accepting path of A over $u = \alpha_0 \alpha_1 \alpha_2 \dots$

$$\pi : q_0 \xrightarrow{\alpha_0} q_1 \xrightarrow{\alpha_1} q_2 \dots$$

corresponds to a unique infinite path of B:

$$i_B = R_0 \xrightarrow{\alpha_0} R_1 \xrightarrow{\alpha_1} R_2 \dots$$

where each q_i belongs to the root of R_i

If the root is marked infinitely often, then u is accepted. Otherwise, let n_0 be the largest number such that the root is marked in R_{n_0} . Let $m > n_0$ be the smallest number such that q_m is repeated infinitely often in π .

Since $q_m \in F$ it appears in a child of the root. If it appears always on the same position p_m , then the path is accepting. Otherwise it appears to the left of p_m from some n_1 on (step 3). This left switch can only occur a finite number of times.

Complexity of the Safra Construction

Given a Büchi automaton with n states, how many states we need for an equivalent Rabin automaton?

- The upper bound is $2^{\mathcal{O}(n \log n)}$ states
- The lower bound is of at least n! states

Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree $\langle t, m \rangle$ can be uniquely described by the functions:

- $S \to \{0, \ldots, n\}$ gives for each $s \in S$ the characteristic position $p \in dom(t)$ such that $s \in t(p)$, and s does not appear below p
- $\{1, \ldots, n\} \rightarrow \{0, 1\}$ is the marking function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the parent function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the older brother function

Altogether we have at most $(n+1)^n \cdot 2^n \cdot (n+1)^n \cdot (n+1)^n \leq (n+1)^{4n}$ Safra trees, hence the upper bound is $2^{\mathcal{O}(n \log n)}$.

The Language L_n

 $\alpha \in L_n$ if there exist $i_1, \ldots, i_n \in \{1, \ldots, n\}$ such that

- $\alpha_k = i_1$ is the first occurrence of i_1 in α and $q_0 \xrightarrow{\alpha_0 \dots \alpha_k} q_{i_1}$
- the pairs $i_1i_2, i_2i_3, \ldots, i_ni_1$ appear infinitely often in α .

Example 1

 $(3\#32\#21\#1)^{\omega} \in L_3$

 $(312\#)^{\omega} \not\in L_3$

The Language L_n

Lemma 2 (*Permutation*) For each permutation i_1, i_2, \ldots, i_n of $1, 2, \ldots, n$, the infinite word $(i_1 i_2 \ldots i_n \#)^{\omega} \notin L_n$.

Lemma 3 (Union) Let $A = (S, i, T, \Omega)$ be a Rabin automaton with $\Omega = \{\langle N_1, P_1 \rangle, \dots, \langle N_k, P_k \rangle\}$ and ρ_1, ρ_2, ρ be runs of A such that

 $\inf(\rho_1) \cup \inf(\rho_2) = \inf(\rho)$

If ρ_1 and ρ_2 are not successful, then ρ is not successful either.

Proving the *n*! Lower Bound

Suppose that A recognizes L_n . We need to show that A has $\geq n!$ states.

Let $\alpha = i_1, i_2, \ldots, i_n$ and $\beta = j_1, j_2, \ldots, j_n$ be two permutations of $1, 2, \ldots, n$. Then the words $(i_1 i_2 \ldots i_n \#)^{\omega}$ and $(j_1 j_2 \ldots j_n \#)^{\omega}$ are not accepted.

Let ρ_{α} , ρ_{β} be the non-accepting runs of A over α and β , respectively.

Claim 1 $\inf(\rho_{\alpha}) \cap \inf(\rho_{\beta}) = \emptyset$

Then A must have $\geq n!$ states, since there are n! permutations.

Proving the *n*! Lower Bound

By contradiction, assume $q \in \inf(\rho_{\alpha}) \cap \inf(\rho_{\beta})$. Then we can build a run ρ such that $\inf(\rho) = \inf(\rho_1) \cup \inf(\rho_2)$ and α, β appear infinitely often. By the union lemma, ρ is not accepting.

$$i_k \quad i_{k+1}, \quad \dots \quad i_l = j_k \quad j_{k+1}, \quad \dots \quad j_{r-1} \quad j_r = i_k$$

The new word is accepted since the pairs $i_k i_{k+1}, \ldots, j_k j_{k+1}, \ldots, j_{r-1} i_k$ occur infinitely often. Contradiction with the fact that ρ is not accepting.

Büchi Complementation Theorem

Büchi Complementation Theorem

Theorem 2 For every Büchi automaton A there exists a Büchi automaton B such that $\mathcal{L}(A) = \overline{\mathcal{L}(B)}$.

Already a consequence of McNaughton Theorem, since from A we can build a Rabin automaton R, complement it to \overline{R} , and build B from \overline{R} .

Next we present a direct proof.

Definition 1 An equivalence relation $R \subseteq \Sigma^* \times \Sigma^*$ is said to be a left-congruence iff for all $u, v, w \in \Sigma^*$ we have $u \cong v \Rightarrow wu \cong wv$.

Definition 2 An equivalence relation $R \subseteq \Sigma^* \times \Sigma^*$ is said to be a right-congruence iff for all $u, v, w \in \Sigma^*$ we have $u \ R \ v \Rightarrow uw \ R \ vw$.

Definition 3 An equivalence relation $R \subseteq \Sigma^* \times \Sigma^*$ is said to be a congruence iff it is both a left- and a right-congruence.

Ex: the Myhill-Nerode equivalence \sim_L is a right-congruence.

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton and $s, s' \in S$.

$$W_{s,s'} = \{ w \in \Sigma^* \mid s \xrightarrow{w} s' \}$$

For $s, s' \in S$ and $w \in \Sigma^*$, we denote $s \to_w^F s'$ iff $s \xrightarrow{w} s'$ visiting a state from F.

$$W_{s,s'}^F = \{ w \in \Sigma^* \mid s \to^F_w s' \}$$

For any two words $u, v \in \Sigma^*$ we have $u \cong v$ iff for all $s, s' \in S$ we have:

- $s \xrightarrow{u} s' \iff s \xrightarrow{v} s'$, and
- $s \to_u^F s' \iff s \to_v^F s'.$

The relation \cong is a congruence of finite index on Σ^*

Let $[w]_{\cong}$ denote the equivalence class of $w \in \Sigma^*$ w.r.t. \cong .

Lemma 4 For any $w \in \Sigma^*$, $[w]_{\cong}$ is the intersection of all sets of the form $W_{s,s'}, W_{s,s'}^F, \overline{W_{s,s'}}, \overline{W_{s,s'}^F}, containing w.$

$$T_w = \bigcap_{w \in W_{s,s'}} W_{s,s'} \cap \bigcap_{w \in W_{s,s'}^F} W_{s,s'}^F \cap \bigcap_{w \in \overline{W_{s,s'}}} \overline{W_{s,s'}} \cap \bigcap_{w \in \overline{W_{s,s'}^F}} \overline{W_{s,s'}^F}$$

We show that $[w]_{\cong} = T_w$.

" \subseteq " If $u \cong w$ then clearly $u \in T_w$.

" \supseteq " Let $u \in T_w$

- if $s \xrightarrow{w} s'$, then $w \in W_{s,s'}$, hence $u \in W_{s,s'}$, then $s \xrightarrow{u} s'$ as well.
- if $s \not\xrightarrow{w} s'$, then $w \in \overline{W_{s,s'}}$, hence $u \in \overline{W_{s,s'}}$, then $s \not\xrightarrow{u} s'$.

Also,

- if $s \to_w^F s'$, then $w \in W_{s,s'}^F$, hence $u \in W_{s,s'}^F$, then $s \to_u^F s'$ as well.
- if $s \not\rightarrow^F_w s'$, then $w \in \overline{W^F_{s,s'}}$, hence $u \in \overline{W^F_{s,s'}}$, then $s \not\rightarrow^F_u s'$.

Then $u \cong w$.

This lemma gives us a way to compute the \cong -equivalence classes.

Outline of the proof

We prove that:

$$\mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) \neq \emptyset} VW^{\omega}$$

where V, W are \cong -equivalence classes

Then we have

$$\Sigma^{\omega} \setminus \mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) = \emptyset} VW^{\omega}$$

Finally we obtain an algorithm for complementation of Büchi automata

Saturation

Definition 4 A congruence relation $R \subseteq \Sigma^* \times \Sigma^*$ saturates an ω -language L iff for all R-equivalence classes V and W, if $VW^{\omega} \cap L \neq \emptyset$ then $VW^{\omega} \subseteq L$.

Lemma 5 The congruence relation \cong saturates $\mathcal{L}(A)$.

Let $\alpha \in \Sigma^{\omega}$ be an infinite word.

Since \cong is an equivalence relation, there exists a mapping $\varphi : \Sigma^+ \to \Sigma^+_{\cong}$ such that $\varphi(u) = [u]_{\cong}$, for all $u \in \Sigma^+$.

Then there exists a Ramseyan factorization of $\alpha = uv_0v_1v_2...$ such that $\varphi(v_i) = [v]_{\cong}$ for some $v \in \Sigma^+$ and for all $i \ge 0$.

Together with the saturation lemma, this proves

$$\mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) \neq \emptyset} VW^{\omega}$$

Complementation of Büchi Automata

Theorem 3 For any Büchi automaton A there exists a Büchi automaton \overline{A} such that $\mathcal{L}(\overline{A}) = \Sigma^{\omega} \setminus \mathcal{L}(A)$.

$$\mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) \neq \emptyset} VW^{\omega}$$

where V, W are \cong -equivalence classes

$$\Sigma^{\omega} \setminus \mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) = \emptyset} VW^{\omega}$$

Ramseyan Factorizations

Theorem 4 Let X be some countably infinite set and colour the subsets of X of size n in c different colours. Then there exists some infinite subset M of X such that the size n subsets of M all have the same colour.

Let $\alpha \in \Sigma^{\omega}$ be an infinite word.

A *factorization* of α is an infinite sequence $\{\alpha_i\}_{i=0}^{\infty}$ of finite words such that $\alpha = \alpha_0 \alpha_1 \dots$

Let E be a finite set of colors and $\varphi : \Sigma^+ \to E$. A factorization $\alpha = uv_0v_1v_2...$ is said to be *Ramseyan for* φ if there exists $e \in E$ such that

$$\varphi(v_i v_{i+1} \dots v_{i+j}) = e$$

for all $i \leq j$.

Theorem 5 Let $\varphi : \Sigma^+ \to E$ be a map from Σ^+ into a finite set E. Then every infinite word of Σ^{ω} admits a Ramseyan factorization for φ .

Let $\{U_i\}_{i=0}^{\infty}$ be an infinite sequence of infinite subsets of N defined as:

$$U_0 = \mathbb{N}$$
$$U_{i+1} = \{n \in U_i \mid \varphi(\alpha(\min U_i, n)) = e_i\}$$

where $e_i \in E$ is chosen such that the set U_{i+1} is infinite (show the existence of e_i)

Since E is finite, there exists an infinite subsequence of integers i_0, i_1, \ldots such that $e_{i_0} = e_{i_1} = \ldots = e$.

Then $v_j = \alpha(n_{ij}, n_{ij+1})$ is the required factorization.

 $U_1 = \{n_1, n_2, n_3, n_4, \ldots\}$

$$U_3 = \{n_3'', n_4'', \ldots\}$$