The McNaughton Theorem

McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any recognizable subset of Σ^{ω} can be recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset construction to obtain a Rabin automaton equivalent to a given Büchi automaton. The Safra algorithm is optimal $2^{O(n \log n)}$.

This proves that recognizable ω-languages are closed under complement (Büchi Theorem).

Oriented Trees

Let Σ be an alphabet of labels.

An oriented tree is a pair of partial functions $t=\langle l, s\rangle$:

- $l: \mathbb{N} \mapsto \Sigma$ denotes the labels of the nodes
- $s: \mathbb{N} \mapsto \mathbb{N}^{*}$ gives the ordered list of children of each node
$\operatorname{dom}(l)=\operatorname{dom}(s) \stackrel{\operatorname{def}}{=} \operatorname{dom}(t)$
\leq denotes the successor, and \preceq the lexicographical ordering on tree positions

Safra Trees

Let $A=\langle S, I, T, F\rangle$ be a Büchi automaton.
A Safra tree is a pair $\langle t, m\rangle$, where t is a finite oriented tree labeled with non-empty subsets of S, and $m \subseteq \operatorname{dom}(t)$ is the set of marked positions, such that:

- each marked position is a leaf
- for each $p \in \operatorname{dom}(t)$, the union of labels of its children is a strict subset of $t(p)$
- for each $p, q \in \operatorname{dom}(t)$, if $p \not \leq q$ and $q \not \leq p$ then $t(p) \cap t(q)=\emptyset$

Proposition 1 A Safra tree has at most $\|S\|$ nodes.

$$
\begin{aligned}
r(p) & =t(p) \backslash \bigcup_{q<p} t(q) \\
\|\operatorname{dom}(t)\| & =\sum_{p \in \operatorname{dom}(t)} 1 \leq \sum_{p \in \operatorname{dom}(t)}\|r(p)\| \leq\|S\|
\end{aligned}
$$

Initial State

We build a Rabin automaton $B=\left\langle S_{B}, i_{B}, T_{B}, \Omega_{B}\right\rangle$, where:

- S_{B} is the set of all Safra trees $\langle t, m\rangle$ labeled with subsets of S
- $i_{B}=\langle t, m\rangle$ is the Safra tree defined as either:
$-\operatorname{dom}(t)=\{\epsilon\}, t(\epsilon)=I$ and $m=\emptyset$ if $I \cap F=\emptyset$
$-\operatorname{dom}(t)=\{\epsilon\}, t(\epsilon)=I$ and $m=\{\epsilon\}$ if $I \subseteq F$
$-\operatorname{dom}(t)=\{\epsilon, 0\}, t(\epsilon)=I, t(0)=I \cap F$ and $m=\{0\}$ if $I \cap F \neq \emptyset$

Classical Subset Move

[Step 1] $\left\langle t_{1}, m_{1}\right\rangle$ is the tree with $\operatorname{dom}\left(t_{1}\right)=\operatorname{dom}(t), m_{1}=\emptyset$, and $t_{1}(p)=\left\{s^{\prime} \mid s \xrightarrow{\alpha} s^{\prime}, s \in t(p)\right\}$, for all $p \in \operatorname{dom}(t)$

Spawn New Children

[Step 2] $\left\langle t_{2}, m_{2}\right\rangle$ is the tree such that, for each $p \in \operatorname{dom}\left(t_{1}\right)$, if $t_{1}(p) \cap F \neq \emptyset$ we add a new child to the right, identified by the first available id, and labeled $t_{1}(p) \cap F$, and m_{2} is the set of all such children

Horizontal Merge

[Step 3] $\left\langle t_{3}, m_{3}\right\rangle$ is the tree with $\operatorname{dom}\left(t_{3}\right)=\operatorname{dom}\left(t_{2}\right), m_{3}=m_{2}$, such that, for all $p \in \operatorname{dom}\left(t_{3}\right), t_{3}(p)=t_{2}(p) \backslash \bigcup_{q \prec p} t_{2}(q)$

Delete Empty Nodes

[Step 4] $\left\langle t_{4}, m_{4}\right\rangle$ is the tree such that $\operatorname{dom}\left(t_{4}\right)=\operatorname{dom}\left(t_{3}\right) \backslash\left\{p \mid t_{3}(p)=\emptyset\right\}$ and $m_{4}=m_{3} \backslash\left\{p \mid t_{3}(p)=\emptyset\right\}$

Vertical Merge

[Step 5] $\left\langle t_{5}, m_{5}\right\rangle$ is $m_{5}=m_{4} \cup V, \operatorname{dom}\left(t_{5}\right)=\operatorname{dom}\left(t_{4}\right) \backslash\{q \mid p \in V, q<p\}$, $V=\left\{p \in \operatorname{dom}\left(t_{4}\right) \mid t_{4}(p)=\bigcup_{p<q} t_{4}(q)\right\}$

Accepting Condition

The Rabin accepting condition is defined as
$\Omega_{B}=\left\{\left(N_{q}, P_{q}\right) \mid q \in \bigcup_{\langle t, m\rangle \in S_{B}} \operatorname{dom}(t)\right\}$, where:

- $N_{q}=\left\{\langle t, m\rangle \in S_{B} \mid q \notin \operatorname{dom}(t)\right\}$
- $P_{q}=\left\{\langle t, m\rangle \in S_{B} \mid q \in m\right\}$

$$
\Omega_{B}=\left\{\left(\left\{R_{1}\right\},\left\{R_{2}\right\}\right),\left(\left\{R_{2}\right\},\left\{R_{1}\right\}\right)\right\}
$$

Example

Correctness of Safra Construction

Lemma 1 For $0 \leq i \leq n-1, S_{i+1} \subseteq T\left(S_{i}, \alpha_{i+1}\right)$. Moreover, for every $q \in S_{n}$, there is a path in A starting in some $q_{0} \in S_{0}$, ending in q and visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path in A (König's Lemma)

Correctness of Safra Construction

Conversely, an infinite accepting path of A over $u=\alpha_{0} \alpha_{1} \alpha_{2} \ldots$

$$
\pi: q_{0} \xrightarrow{\alpha_{0}} q_{1} \xrightarrow{\alpha_{1}} q_{2} \ldots
$$

corresponds to a unique infinite path of B :

$$
i_{B}=R_{0} \xrightarrow{\alpha_{0}} R_{1} \xrightarrow{\alpha_{1}} R_{2} \ldots
$$

where each q_{i} belongs to the root of R_{i}
If the root is marked infinitely often, then u is accepted. Otherwise, let n_{0} be the largest number such that the root is marked in $R_{n_{0}}$. Let $m>n_{0}$ be the smallest number such that q_{m} is repeated infinitely often in π.

Since $q_{m} \in F$ it appears in a child of the root. If it appears always on the same position p_{m}, then the path is accepting. Otherwise it appears to the left of p_{m} from some n_{1} on (step 3). This left switch can only occur a finite number of times.

Complexity of the Safra Construction

Given a Büchi automaton with n states, how many states we need for an equivalent Rabin automaton?

- The upper bound is $2^{\mathcal{O}(n \log n)}$ states
- The lower bound is of at least n ! states

Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree $\langle t, m\rangle$ can be uniquely described by the functions:

- $S \rightarrow\{0, \ldots, n\}$ gives for each $s \in S$ the characteristic position $p \in \operatorname{dom}(t)$ such that $s \in t(p)$, and s does not appear below p
- $\{1, \ldots, n\} \rightarrow\{0,1\}$ is the marking function
- $\{1, \ldots, n\} \rightarrow\{0, \ldots, n\}$ is the parent function
- $\{1, \ldots, n\} \rightarrow\{0, \ldots, n\}$ is the older brother function

Altogether we have at most $(n+1)^{n} \cdot 2^{n} \cdot(n+1)^{n} \cdot(n+1)^{n} \leq(n+1)^{4 n}$ Safra trees, hence the upper bound is $2^{\mathcal{O}(n \log n)}$.

The Language L_{n}

$\alpha \in L_{n}$ if there exist $i_{1}, \ldots, i_{n} \in\{1, \ldots, n\}$ such that

- $\alpha_{k}=i_{1}$ is the first occurrence of i_{1} in α and $q_{0} \xrightarrow{\alpha_{0} \ldots \alpha_{k}} q_{i_{1}}$
- the pairs $i_{1} i_{2}, i_{2} i_{3}, \ldots, i_{n} i_{1}$ appear infinitely often in α.

Example 1
$(3 \# 32 \# 21 \# 1)^{\omega} \in L_{3}$
$(312 \#)^{\omega} \notin L_{3}$

The Language L_{n}

Lemma 2 (Permutation) For each permutation $i_{1}, i_{2}, \ldots, i_{n}$ of $1,2, \ldots, n$, the infinite word $\left(i_{1} i_{2} \ldots i_{n} \#\right)^{\omega} \notin L_{n}$.

Lemma 3 (Union) Let $A=(S, i, T, \Omega)$ be a Rabin automaton with $\Omega=\left\{\left\langle N_{1}, P_{1}\right\rangle, \ldots,\left\langle N_{k}, P_{k}\right\rangle\right\}$ and ρ_{1}, ρ_{2}, ρ be runs of A such that

$$
\inf \left(\rho_{1}\right) \cup \inf \left(\rho_{2}\right)=\inf (\rho)
$$

If ρ_{1} and ρ_{2} are not successful, then ρ is not successful either.

Proving the n ! Lower Bound

Suppose that A recognizes L_{n}. We need to show that A has $\geq n!$ states.

Let $\alpha=i_{1}, i_{2}, \ldots, i_{n}$ and $\beta=j_{1}, j_{2}, \ldots, j_{n}$ be two permutations of $1,2, \ldots, n$. Then the words $\left(i_{1} i_{2} \ldots i_{n} \#\right)^{\omega}$ and $\left(j_{1} j_{2} \ldots j_{n} \#\right)^{\omega}$ are not accepted.

Let $\rho_{\alpha}, \rho_{\beta}$ be the non-accepting runs of A over α and β, respectivelly.

Claim $1 \inf \left(\rho_{\alpha}\right) \cap \inf \left(\rho_{\beta}\right)=\emptyset$

Then A must have $\geq n!$ states, since there are $n!$ permutations.

Proving the n ! Lower Bound

By contradiction, assume $q \in \inf \left(\rho_{\alpha}\right) \cap \inf \left(\rho_{\beta}\right)$. Then we can build a run ρ such that $\inf (\rho)=\inf \left(\rho_{1}\right) \cup \inf \left(\rho_{2}\right)$ and α, β appear infinitely often. By the union lemma, ρ is not accepting.

$$
\begin{array}{cccccccccc}
i_{1} & \ldots & i_{k-1} & i_{k} & i_{k+1} & \ldots & i_{l-1} & i_{l} & \ldots & i_{n} \\
= & & = & \neq & & & & & & \\
j_{1} & \ldots & j_{k-1} & j_{k} & j_{k+1} & \ldots & j_{r-1} & j_{r} & \ldots & j_{n}
\end{array}
$$

$$
i_{k} \quad i_{k+1}, \quad \ldots \quad i_{l}=j_{k} \quad j_{k+1}, \quad \ldots \quad j_{r-1} \quad j_{r}=i_{k}
$$

The new word is accepted since the pairs $i_{k} i_{k+1}, \ldots, j_{k} j_{k+1}, \ldots, j_{r-1} i_{k}$ occur infinitely often. Contradiction with the fact that ρ is not accepting.

Büchi Complementation Theorem

Büchi Complementation Theorem

Theorem 2 For every Büchi automaton A there exists a Büchi automaton B such that $\mathcal{L}(A)=\overline{\mathcal{L}(B)}$.

Already a consequence of McNaughton Theorem, since from A we can build a Rabin automaton R, complement it to \bar{R}, and build B from \bar{R}.

Next we present a direct proof.

Congruences

Definition 1 An equivalence relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ is said to be a left-congruence iff for all $u, v, w \in \Sigma^{*}$ we have $u \cong v \Rightarrow w u \cong w v$.

Definition 2 An equivalence relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ is said to be a right-congruence iff for all $u, v, w \in \Sigma^{*}$ we have $u R \Rightarrow u w R v w$.

Definition 3 An equivalence relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ is said to be a congruence iff it is both a left- and a right-congruence.

Ex: the Myhill-Nerode equivalence \sim_{L} is a right-congruence.

Congruences

Let $A=\langle S, I, T, F\rangle$ be a Büchi automaton and $s, s^{\prime} \in S$.

$$
W_{s, s^{\prime}}=\left\{w \in \Sigma^{*} \mid s \xrightarrow{w} s^{\prime}\right\}
$$

For $s, s^{\prime} \in S$ and $w \in \Sigma^{*}$, we denote $s \rightarrow_{w}^{F} s^{\prime}$ iff $s \xrightarrow{w} s^{\prime}$ visiting a state from F.

$$
W_{s, s^{\prime}}^{F}=\left\{w \in \Sigma^{*} \mid s \rightarrow \underset{w}{F} s^{\prime}\right\}
$$

For any two words $u, v \in \Sigma^{*}$ we have $u \cong v$ iff for all $s, s^{\prime} \in S$ we have:

- $s \xrightarrow{u} s^{\prime} \Longleftrightarrow s \xrightarrow{v} s^{\prime}$, and
- $s \rightarrow{ }_{u}^{F} s^{\prime} \Longleftrightarrow s \rightarrow{ }_{v}^{F} s^{\prime}$.

The relation \cong is a congruence of finite index on Σ^{*}

Congruences

Let $[w] \cong$ denote the equivalence class of $w \in \Sigma^{*}$ w.r.t. \cong.

Lemma 4 For any $w \in \Sigma^{*},[w] \cong$ is the intersection of all sets of the form $W_{s, s^{\prime}}, W_{s, s^{\prime}}^{F}, \overline{W_{s, s^{\prime}}}, \overline{W_{s, s^{\prime}}^{F}}$, containing w.

$$
T_{w}=\bigcap_{w \in W_{s, s^{\prime}}} W_{s, s^{\prime}} \cap \bigcap_{w \in W_{s, s^{\prime}}^{F}} W_{s, s^{\prime}}^{F} \cap \bigcap_{w \in \overline{W_{s, s^{\prime}}}} \overline{W_{s, s^{\prime}}} \cap \bigcap_{w \in \overline{W_{s, s}^{F}}} \overline{W_{s, s^{\prime}}^{F}}
$$

We show that $[w] \cong=T_{w}$.
" \subseteq " If $u \cong w$ then clearly $u \in T_{w}$.

Congruences

$" \supseteq "$ Let $u \in T_{w}$

- if $s \xrightarrow{w} s^{\prime}$, then $w \in W_{s, s^{\prime}}$, hence $u \in W_{s, s^{\prime}}$, then $s \xrightarrow{u} s^{\prime}$ as well.
- if $s \xrightarrow{\psi /} s^{\prime}$, then $w \in \overline{W_{s, s^{\prime}}}$, hence $u \in \overline{W_{s, s^{\prime}}}$, then $s \xrightarrow{\nmid} s^{\prime}$.

Also,

- if $s \rightarrow{ }_{w}^{F} s^{\prime}$, then $w \in W_{s, s^{\prime}}^{F}$, hence $u \in W_{s, s^{\prime}}^{F}$, then $s \rightarrow_{u}^{F} s^{\prime}$ as well.
- if $s \not \overbrace{w}^{F} s^{\prime}$, then $w \in \overline{W_{s, s^{\prime}}^{F}}$, hence $u \in \overline{W_{s, s^{\prime}}^{F}}$, then $s \not \nrightarrow ⿱_{u}^{F} s^{\prime}$.

Then $u \cong w$.

This lemma gives us a way to compute the \cong-equivalence classes.

Outline of the proof

We prove that:

$$
\mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A) \neq \emptyset} V W^{\omega}
$$

where V, W are \cong-equivalence classes

Then we have

$$
\Sigma^{\omega} \backslash \mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A)=\emptyset} V W^{\omega}
$$

Finally we obtain an algorithm for complementation of Büchi automata

Saturation

Definition $4 A$ congruence relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ saturates an ω-language L iff for all R-equivalence classes V and W, if $V W^{\omega} \cap L \neq \emptyset$ then $V W^{\omega} \subseteq L$.

Lemma 5 The congruence relation \cong saturates $\mathcal{L}(A)$.

Every word belongs to some $V W^{\omega}$

Let $\alpha \in \Sigma^{\omega}$ be an infinite word.

Since \cong is an equivalence relation, there exists a mapping $\varphi: \Sigma^{+} \rightarrow \Sigma^{+} \cong$ such that $\varphi(u)=[u]_{/ \cong}$, for all $u \in \Sigma^{+}$.

Then there exists a Ramseyan factorization of $\alpha=u v_{0} v_{1} v_{2} \ldots$ such that $\varphi\left(v_{i}\right)=[v] / \cong$ for some $v \in \Sigma^{+}$and for all $i \geq 0$.

Together with the saturation lemma, this proves

$$
\mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A) \neq \emptyset} V W^{\omega}
$$

Complementation of Büchi Automata

Theorem 3 For any Büchi automaton A there exists a Büchi automaton \bar{A} such that $\mathcal{L}(\bar{A})=\Sigma^{\omega} \backslash \mathcal{L}(A)$.

$$
\mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A) \neq \emptyset} V W^{\omega}
$$

where V, W are \cong-equivalence classes

$$
\Sigma^{\omega} \backslash \mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A)=\emptyset} V W^{\omega}
$$

Ramseyan Factorizations

Ramsey Theorem

Theorem 4 Let X be some countably infinite set and colour the subsets of X of size n in c different colours. Then there exists some infinite subset M of X such that the size n subsets of M all have the same colour.

A Particular Case of Ramsey Theorem

Let $\alpha \in \Sigma^{\omega}$ be an infinite word.
A factorization of α is an infinite sequence $\left\{\alpha_{i}\right\}_{i=0}^{\infty}$ of finite words such that $\alpha=\alpha_{0} \alpha_{1} \ldots$

Let E be a finite set of colors and $\varphi: \Sigma^{+} \rightarrow E$. A factorization $\alpha=u v_{0} v_{1} v_{2} \ldots$ is said to be Ramseyan for φ if there exists $e \in E$ such that

$$
\varphi\left(v_{i} v_{i+1} \ldots v_{i+j}\right)=e
$$

for all $i \leq j$.

A Particular Case of Ramsey Theorem

Theorem 5 Let $\varphi: \Sigma^{+} \rightarrow E$ be a map from Σ^{+}into a finite set E. Then every infinite word of Σ^{ω} admits a Ramseyan factorization for φ.

Let $\left\{U_{i}\right\}_{i=0}^{\infty}$ be an infinite sequence of infinite subsets of \mathbb{N} defined as:

$$
\begin{aligned}
U_{0} & =\mathbb{N} \\
U_{i+1} & =\left\{n \in U_{i} \mid \varphi\left(\alpha\left(\min U_{i}, n\right)\right)=e_{i}\right\}
\end{aligned}
$$

where $e_{i} \in E$ is chosen such that the set U_{i+1} is infinite (show the existence of e_{i})

Since E is finite, there exists an infinite subsequence of integers i_{0}, i_{1}, \ldots such that $e_{i_{0}}=e_{i_{1}}=\ldots=e$.

Then $v_{j}=\alpha\left(n_{i j}, n_{i j+1}\right)$ is the required factorization.

A Particular Case of Ramsey Theorem

A Particular Case of Ramsey Theorem

A Particular Case of Ramsey Theorem

A Particular Case of Ramsey Theorem

$U_{3}=\left\{n_{3}^{\prime \prime}, n_{4}^{\prime \prime}, \ldots\right\}$

