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Overview

Designing software architectures is more art than science.

The challenges are especially acute for inference architectures.

Inference components can interact in ways that bend and
break modularity.

This talk covers inference architectures both at the micro-level
and macro-level.

At the micro-level, we focus on architectures for satisfiability
modulo theories (SMT).

At the macro-level, we describe two ongoing projects
1 The Evidential Tool Bus (ETB) for coarse-grained integration

of inference components
2 The Kernel of Truth (KoT) for certifying claims from inference

tools
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SMT and Architecture

SMT solvers are extremely useful for a number of applications.

Such solvers are not easy to build/maintain.

We (SRI) have been involved in building SMT solvers for a
very long time.

And we’re still trying to get the architecture right.

Existing architecture (e.g., Yices 1 and 2) for SMT solvers
have important limitations.

We outline a new architecture for SMT that will serve as the
basis for the next version of Yices.

The ideas in this talk are inspired by various SMT
implementations over the years, from Shostak’s STP to
Yices 1 and 2.
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Should We Care About Architecture?

Any complex piece of software lives and dies by the quality of
its design.

The design elements include the API, architecture, algorithms,
and data structures.

In the last few years, there has been good progress on all of
these fronts.

But current SMT solvers are not even adequate to replace the
30-year-old Shostak implementation currently used in PVS.

In these solvers, the theory solver is subordinate to the SAT
solver.

We outline a new framework that is centered around the
e-graph module that maintains equality/disequality
information.
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Historical Perspective

Shostak (1979) introduced the idea of a combined decision
procedure with equality and arithmetic.
Nelson and Oppen (1979) introduced a technique for
combining disjoint theory decision procedures

1 Input constraint φ is purified as φ1 ∧ . . . ∧ φn where each φi is
a constraint in theory i .

2 If for some arrangement A of equalities on the shared variables,
each A ∧ φi is satisfiable in theory i , then φ is satisfiable in the
union of the theories.

Shostak (1982/84; corrected/explained in Rueß/S 2001/02)
introduced a way of combining disjoint theory decision
procedures constructed using solvers and canonizers.
Solvers reduce equalities to solved form, and canonizers
simplify arbitrary terms to normal form modulo the solution
state (context).
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SAT + Theory Solvers

SMT solvers in the Stanford Pascal Verifier (1979) and
Simplify (mid-90s) used the Nelson/Oppen method.

Shostak’s method was part of the SMT solver in the (original)
STP (1982) solver, and later in the EHDM (1983-88) and ICS
(2002) SMT solvers.

Both methods used an e-graph structure to maintain and
propagate equality information.

Wolfman and Weld’s LPSAT (1999) was the first serious
DPLL-based SMT solver, and the noughties saw a flurry of
new ones (Verifun, ICS, MathSAT, CVC, . . . ).
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Shostak in PVS

Shostak’s architecture was convenient for use in interactive
proof.

The context consists of a usealist, findalist, and sigalist, and
these were implemented as stacks.

Terms and formulas can be canonized relative to the context,

Literals can be asserted to a context to yield a new context
without affecting the old one.

Push/Pop are easily implemented since retraction is just
popping the stack.

Shostak’s implementation was also more open-ended and
incremental than Nelson/Oppen implementations.
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Shostak in PVS

Context

Subgoal 2 Subgoal 3Subgoal 1

Goal

Context Context Context

In PVS, each sequent has a decision procedure context, but
the stack architecture enables safe context-sharing.

The canonizer is also used heavily within PVS to test for
contextual equality.

PVS has a contextual rewriter/simplifier that exploits the
conditional and predicate subtype information available in a
context.
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Fast Forward

Yices is many orders of magnitude faster, and significantly
more robust.

But it still lacks some of the functionality of Shostak.

PVS can invoke Yices as an oracle, but only to terminate a
proof goal, not to simplify it.

Some of the Shostak functionality can be recovered with a
tighter embedding of Yices in PVS.

But a different architecture would benefit both Yices and its
clients.
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Language

Signature Σ[X ] contains functions and predicate symbols with
associated arities, and X is a set of variables.

The signature can be used to construct

Terms τ := x | f (τ1, . . . , τn)
Atoms α := p(τ1, . . . τn),
Literals λ := α | ¬α
Constraints λ1 ∧ . . . ∧ λn,
Clauses λ1 ∨ . . . ∨ λn,
Formulas ψ := p(τ1, . . . , τn) | τ0 = τ1 | ¬ψ0 |

ψ0 ∨ ψ1 | ψ0 ∧ ψ1 | (∃x : ψ0) | (∀x : ψ0)
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Semantics

A Σ-structure M consists of

A domain |M|
A map M(f ) from |M|n → M for each n-ary function f ∈ Σ
A map M(p) from |M|n → {>,⊥} for each n-ary predicate p.

Σ[X ]-structure M also maps variables in X to domain
elements in |M|.
The interpretation of terms and formulas in M is standard.

With this, we have M |= ψ when M satisfies formula ψ.

A theory τ has a signature Στ and a class of models Mτ .
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Inference System

An inference system I for a Σ-theory T is a Σ[X ]-inference
structure 〈Ψ,Λ,`〉 that is

1 Conservative: Whenever ϕ `I ϕ′, Λ(ϕ) and Λ(ϕ′) are
T -equisatisfiable.

2 Progressive: The reduction relation `I should be
well-founded, i.e., infinite sequences of the form
〈ϕ0 ` ϕ1 ` ϕ2 ` . . .〉 must not exist.

3 Canonizing: A state is irreducible only if it is either ⊥ or is
T -satisfiable.

For any class of Σ[X ]-formulas Ψ, if there is a mapping ν
from Ψ to Φ such that Λ(ν(A)) = A, then a T -inference
system is a sound and complete decision procedure for
T -satisfiability in Ψ(given a function f such that κ ` f (κ)
when there is a κ′ such that κ ` κ′) .

N. Shankar (with Bruno Dutertre) Inference Architectures for Satisfiability Modulo Theories



Introduction
Inference Systems
SMT Architecture

Evidential Tool Bus
Kernel of Truth

Conflict-Driven Clause Learning (CDCL) SAT

Name Rule Condition

Propagate
h, 〈M〉,K ,C

h, 〈M, l [Γ]〉,K ,C
Γ ≡ l ∨ Γ′ ∈ K ∪ C
M |= ¬Γ′

Decide
h, 〈M〉,K ,C

h + 1, 〈M; l []〉,K ,C
M 6|= l
M 6|= ¬l

Conflict
0, 〈M〉,K ,C

⊥
M |= ¬Γ
for some Γ ∈ K ∪ C

Backjump
h + 1, 〈M〉,K ,C

h′, 〈M≤h′ , l [Γ′]〉,K ,C ∪ {Γ′}

M |= ¬Γ
for some Γ ∈ K ∪ C
〈h′, Γ′〉
= analyze(ψ)(Γ)

for ψ = h, 〈M〉,K ,C
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Example Inference Systems

Inference systems help structure the correctness arguments.

Several theoretical results are in Modularity and refinement in
inference systems [Ganzinger, R, S].

Simplifiers are inference systems without canonicity.

Many inference algorithms can be described as inference
systems, e.g.,

1 Union-find for equality
2 Propositional resolution
3 Basic superposition for equality/propositional reasoning
4 CDCL
5 Simplex-based linear arithmetic reasoning
6 SMT
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SMT Overview

In SMT solving, the Boolean atoms represent constraints over
individual variables ranging over integers, reals, datatypes, and
arrays.

The constraints can involve theory operations, equality, and
inequality.

The SAT solver has to interact with a theory constraint solver
which propagates truth assignments and adds new clauses.
The theory solver can detect conflicts involving theory
reasoning, e.g.,

1 f (x) = f (y) ∨ x 6= y
2 f (x − 2) 6= f (y + 3) ∨ x − y ≤ 5 ∨ y − z ≤ −2 ∨ z − x ≤ −3
3 x XOR y 6= 0b0000000 ∨ select(store(A, x , v), y) = v

The theory solver must produce efficient explanations,
incremental assertions, and efficient backtracking.

N. Shankar (with Bruno Dutertre) Inference Architectures for Satisfiability Modulo Theories



Introduction
Inference Systems
SMT Architecture

Evidential Tool Bus
Kernel of Truth

Example Constraint Solvers

Core theory: Equalities between variables x = y , offset
equalities x = y + c .

Term equality: Congruence closure for uninterpreted
function symbols

Difference constraints: Incremental negative cycle
detection for inequality constraints of the form x − y ≤ k.

Linear arithmetic constraints: Fourier’s method, Simplex.

Bit Vectors: Bit-blasting
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Theory Constraint Solver Interface

The satisfiability procedure uses a theory constraint solver oracle
which maintains the theory state S with the interface operations:

1 assert(l ,S) adds literal l to the theory state S returning a
new state S ′ or ⊥[∆]

2 check(S) checks if the conjunction of literals asserted to S is
satisfiable, and returns either > or ⊥[∆].

3 retract(S , l): Retracts, in reverse chronological order, the
assertions up to and including l from state S .

4 model(S): Builds a model for a state known to be satisfiable.
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Satisfiability Modulo Theories

SMT deals with formulas with theory atoms like x = y ,
x 6= y , x − y ≤ 3, and select(store(A, i , v), j) = w .

The DPLL search state is augmented with a theory state S in
addition to the partial assignment.

Total assignments are checked for theory satisfiability.

When a literal is added to M by unit propagation, it is also
asserted to S .

When a literal is implied by S , it is propagated to M.

When backjumping, the literals deleted from M are also
retracted from S .
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SMT Architecture (Yices 2)

Propagate

Add
Push
Pop
Check

SAT E−Graph

Arithmetic

Arrays

Bit Vectors

Assert
Retract
Check

Propagate
Add

Add

Propagate
Add

Preprocessing is the dirty little secret of SMT solving.
In some categories, 30% of the problems are directly seen to be
unsatisfiable by simplification.
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The E-Graph Structure (Yices 2)

Given a set of equalities
f (select(store(A, i , v), j)) = w , f (u) = w − 2, i = j , u = v
The e-graph contains the terms
x , y , z , k, f (x),w , f (u), y , z , i , j , u, v .
The bindings x 7→ select(store(A, i , v), j), y 7→ w − 2, and the
equivalences z ∼ f (x) and k ∼ f (u) are maintained by the
e-graph.
The e-graph is a congruence-closed graph with
f (x) ∼ w , f (u) ∼ y , i ∼ j , u ∼ v .
The array theory infers that select(store(A, i , v), j) = v .
The arithmetic theory infers that k 6= w .
The discrepancy between arithmetic and e-graph models leads
to a split u = v yielding an arithmetic conflict in one branch,
and an e-graph conflict in the other.
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Critique of SMT Architectures

Mismatched interface: The interface needs access to the
information in the e-graph, not the SAT solver.

Redundant information: Equality reasoning is done within
both the e-graph and the theory solvers.

Possible race conditions: Propagation of atoms from
e-graph to theories and back is buffered, and information
needed to simplify an atom might be in one of the queues.

Lack of contextual simplification: No easy way to simplify
the input relative to the known facts to reduce the size of the
term universe.

Lack of multiple contexts: Applications like PVS require
multiple SMT contexts with cloning.
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E(SAT) Architecture

Atoms are treated as Boolean terms.

All clauses and literals are asserted to the e-graph.

The e-graph contains nodes for the entire term universe
excluding clauses. This similar to Simplify.

The SAT solver is a satellite theory.

Clauses are processed by the SAT solver which also initiates
splitting and backtracking.

The e-graph maintains the global context with a single
propagation queue.

Bit-vectors are just tuples of Booleans, so a bit-vector solver is
not needed.

N. Shankar (with Bruno Dutertre) Inference Architectures for Satisfiability Modulo Theories



Introduction
Inference Systems
SMT Architecture

Evidential Tool Bus
Kernel of Truth

E(SAT) Architecture

Assert

E−Graph

SAT

Theory 1

Theory N

Add
Push

Pop
Check

Add
Check

Assert
Retract

Add
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Advantages of E(SAT)

Contextual simplification: Input clauses, literals, and terms
can be simplified relative to the e-graph.

Absence of race conditions: There is only one propagation
queue.

E-graph propagation: Equality information can be used to
detect new equalities between terms.

Model building: The e-graph has all the information needed
to build and maintain a consistent model.

Proof: All the explanation information needed to construct
proofs can be kept in the e-graph.
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E-Graph Propagation

The e-graph can be augmented with propagation rules, e.g.,
1 (a1, . . . , an) ∼ (b1, . . . , bn) =⇒ ai ∼ bi

2 . . . =⇒ IF(a, b, c) ∼ . . .
3 a ∼ b =⇒ eq(a, b) ∼ TRUE
4 cons(a1, a2) ∼ cons(b1, b2) =⇒ ai ∼ bi

5 (p1 ∨ . . . ∨ pn) ∼ FALSE =⇒ pi ∼ FALSE

The e-graph can also initiate non-SAT case-splitting (as in
Yices 0).
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Coarse-Grained Integration: The Evidential Tool Bus

Fine-grained integration as in SMT requires high-performance
interaction between components in a single program.

Large inference tasks require the coarse-grained cooperation
between multiple tools.

The Evidential Tool Bus ontology consists of files and
judgements.
Judgements can be

1 Syntactic: C is the concrete syntax for A according to tool τ ,
or

2 Semantic: A is the abstraction of C with respect to predicates
π according to tool τ

We take a minimalist approach to language standardization,
but advocate formally justified translations between different
notations.
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The Kernel of Truth

Deduction can be carried out by rigorous formal rules of
inference.

With mechanization, we can, in principle, achieve nearly
absolute certainty, but in practice, there are many gaps.

How can we combine a high degree of automation in
verification tools while retaining trust?

Check the verification, but verify the checker.

The Kernel of Truth contains verified checkers whose
verifications have been checked.
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Did I Ever Tell You How Lucky You are? [Dr. Seuss]

Oh, the jobs people work at!
Out west, near Hawtch-Hawtch,
there’s a Hawtch-Hawtcher Bee-Watcher.
His job is to watch . . .
is to keep both his eyes on the lazy town bee.
A bee that is watched will work harder, you see.
Well . . . he watched and he watched.
But, in spite of his watch,
that bee didn’t work any harder. Not mawtch.
So then somebody said,
“Our old bee-watching man
just isn’t bee-watching as hard as he can.
He ought to be watched by another Hawtch-Hawtcher.
The thing that we need
is a Bee-Watcher-Watcher.”

WELL . . .
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Did I Ever Tell You How Lucky You are? [Dr. Seuss]

. . .
The Bee-Watcher Watcher watched the Bee-Watcher.
He didn’t watch well. So another Hawtch-Hawtcher
had to come in as a Watch-Watcher-Watcher.
And today all the Hawtchers who live in Hawtch-Hawtch
are watching on Watch-Watcher-Watchering-Watch,
Watch-Watching the Watcher who’s watching that bee.

You’re not a Hawtch-Hawtcher. You’re lucky you see.
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N. G. de Bruijn on Trust

. . . we ask whether this guarantee would be weakened by leav-
ing the mechanical verification to a machine. This is a very
reasonable, relevant and important question. It is related to
proving the correctness of fairly extensive computer programs,
and checking the interpretation of the specifications of those
programs. And there is more: the hardware, the operating sys-
tem have to be inspected thoroughly, as well as the syntax, the
semantics and the compiler of the programming language. And
even if all this would be covered to satisfaction, there is the fear
that a computer might make errors without indicating them by
total breakdown.

I do not see how we ever can get to an absolute guarantee. But
one has to admit that compared to human mechanical verification,
computers are superior in every respect.
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Proof Generation to Verified Inference Procedures

There are a spectrum of options for achieving trust.

At one extreme, we can generate formal proofs that are
validated by a primitive proof checker.

This kernel proof checker and its runtime environment will
have to be trusted.

Proof generation imposes a serious time, space, effort
overhead.

At the other extreme, we can verify the inference procedure by
proving that every claim has a proof.

We have to recursively/reflectively trust the inference
procedures used in this verification.

Verifying cutting-edge inference tools is a fool’s errand.
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Kernel of Truth

Certificates

Proof generation

Hints

Proofs

Verified Verifiers

Offline

Trusted

Verifier

Verified

Untrusted

Frontline

Kernel

Verifier

Proof 

Verified

Checker
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A Hierarchy of Checkers

Many inference tools can have their claims certified relative to
other inference tools.

For example, the computations of a BDD package can be
certified by a SAT solver.

Similarly, a static analysis tool can be certified by an SMT
solver.

An SMT solver can itself be certified using a SAT solver and
certificate checkers for the individual theories.

A SAT solver can be certified by generating resolution proofs.

But we can also have verified reference tools, like a verified
SAT solver.

Claims that are reducible to a common foundation can be
shared across different systems.
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Certifying PicoSAT

PicoSAT generates resolution traces in a specific DIMACS-like
format.

With Andrei Dan and Antoine Toubhans, we have defined and
verified a trace checker for these proofs in PVS.

If the resolution proof derives the (possibly empty) clause κ
from K , then ` K , κ.

th_list: THEOREM
LET result: (tr_clause?) =

resolution_list(lntcA) IN
conclusion(proof_th_list(lntcA)) =
append(not_or_map(lntcA),

translate_clause(result))
AND checkProof(empty_seq)(proof_th_list(lntcA))

The trace checker is executable.
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Conclusions

Inference systems should be modular.

And the software architecture should reflect this modularity.

But this is easier said than done.

We have outlined architectural designs for both fine-grained
and coarse-grained composition of inference procedures.

We have also presented an architecture for trust in inference.

Many of these ideas and principles are applicable to software
in general, but are critical for inference tools.
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Verified Software: Theories, Tools, and Experiments
(August 16–19, 2010)

Please attend the VSTTE conference next month. For details,
see

http://www.macs.hw.ac.uk/vstte10/

It runs alongside the incredible Edinburgh Festival.

Students can essentially attend it for free.

We will have an informal verification competition during the
meeting.
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