Automatic Proofs and Refutations in Isabelle/HOL A Survey

Tobias Nipkow

Institut für Informatik Technische Universität München

Background

Isabelle

Background

Isabelle

• Interactive theorem prover

Background

Isabelle

- Interactive theorem prover
- Based on higher-order logic

Follows the *LCF-approach*:

The only way to derive new theorems is by composing inference rules of the logic

Follows the *LCF-approach*:

The only way to derive new theorems is by composing inference rules of the logic (and previously proved theorems)

Follows the *LCF-approach*:

The only way to derive new theorems is by composing inference rules of the logic (and previously proved theorems)

 \Rightarrow All theorems are correct by construction!

Follows the *LCF-approach*:

The only way to derive new theorems is by composing inference rules of the logic (and previously proved theorems)

 \Rightarrow All theorems are correct by construction!

An architecture for complex proof procedures:

 Produce some certificate (possibly summarizing a long search).

Follows the *LCF-approach*:

The only way to derive new theorems is by composing inference rules of the logic (and previously proved theorems)

 \Rightarrow All theorems are correct by construction!

An architecture for complex proof procedures:

- Produce some certificate (possibly summarizing a long search).
- 2 Translate the certificate into a theorem.

Internal Provers External Provers FO ATPs SMT Solvers SDP Solvers

Internal Provers External Provers FO ATPs SMT Solvers SDP Solvers

Automatic Refutation Nitpick Quickcheck

Automatic Refutation Nitpick Quickcheck

The provers:

• simp, auto, force:

The provers:

• simp, auto, force: rewriting, a bit of arithmetic, more and more logic

The provers:

 simp, auto, force: rewriting, a bit of arithmetic, more and more logic [rewriting interleaved with tableau]

The provers:

- simp, auto, force: rewriting, a bit of arithmetic, more and more logic [rewriting interleaved with tableau]
- blast:

The provers:

- simp, auto, force: rewriting, a bit of arithmetic, more and more logic [rewriting interleaved with tableau]
- blast:

logic, sets and relations, almost no =, no arithmetic.

The provers:

- simp, auto, force: rewriting, a bit of arithmetic, more and more logic [rewriting interleaved with tableau]
- blast:

logic, sets and relations, almost no =, no arithmetic. [tableau]

The provers:

- simp, auto, force: rewriting, a bit of arithmetic, more and more logic [rewriting interleaved with tableau]
- blast:

logic, sets and relations, almost no =, no arithmetic. [tableau]

The user perspective:

• Frequently fast and effective

The provers:

- simp, auto, force: rewriting, a bit of arithmetic, more and more logic [rewriting interleaved with tableau]
- blast:

logic, sets and relations, almost no =, no arithmetic. [tableau]

The user perspective:

- Frequently fast and effective
- Sometimes annoyingly incomplete

• Ordered resolution

- Ordered resolution
- Written in SML

- Ordered resolution
- Written in SML
- Performs in CASC (lower third)

- Ordered resolution
- Written in SML
- Performs in CASC (lower third)
- Generates resolution proof

- Ordered resolution
- Written in SML
- Performs in CASC (lower third)
- Generates resolution proof
- Isabelle theorem generated in a second step

Arithmetic and Algebra

• arith: linear real arithmetic & Presburger arithmetic

Arithmetic and Algebra

- arith: linear real arithmetic & Presburger arithmetic
- algebra: Gröbner basis

Automatic Refutation Nitpick Quickcheck

Automatic Refutation Nitpick Quickcheck

Sledgehammer

by Paulson, Meng, Susanto, Quigley (at Cambridge) Wenzel, Immler, Meyer, Blanchette (at Munich)

higher-order, typed

External ATPs act as relevance filter for Metis

• Short, cryptic, expensive to reconstruct:

lemma $f xs \neq Suc 0$

• Short, cryptic, expensive to reconstruct:

lemma f xs ≠ Suc 0
by (metis f.simps less_Suc_eq_0_disj list.exhaust less_irrefl
 Suc_not_Zero)

• Short, cryptic, expensive to reconstruct:

lemma f xs ≠ Suc 0
by (metis f.simps less_Suc_eq_0_disj list.exhaust less_irrefl
 Suc_not_Zero)

• Long, readable, easy to reconstruct:

lemma $f xs \neq Suc 0$

Short, cryptic, expensive to reconstruct:

lemma f xs ≠ Suc 0
by (metis f.simps less_Suc_eq_0_disj list.exhaust less_irrefl
 Suc_not_Zero)

• Long, readable, easy to reconstruct:

```
 \begin{array}{l} \mbox{lemma } f \ xs \neq Suc \ 0 \\ \mbox{proof} \ - \\ \mbox{have } F1: \ \forall x_1. \ Suc \ 0 < f \ x_1 \lor x_1 = [] \\ \mbox{by } (metis \ f.simps(2) \ less\_Suc\_eq\_0\_disj \ list.exhaust) \\ \{ \ \mbox{assume } xs \neq [] \\ \mbox{hence } f \ xs \neq Suc \ 0 \ \mbox{by } (metis \ F1 \ less\_irrefl) \ \} \\ \mbox{thus } f \ xs \neq Suc \ 0 \ \mbox{by } (metis \ f.simps(1) \ Suc\_not\_Zero) \\ \mbox{qed} \end{array}
```

• Short, cryptic, expensive to reconstruct:

lemma f xs ≠ Suc 0
by (metis f.simps less_Suc_eq_0_disj list.exhaust less_irrefl
 Suc_not_Zero)

• Long, readable, easy to reconstruct:

```
 \begin{array}{ll} \textbf{lemma } f \ xs \neq Suc \ 0 \\ \textbf{proof} \ - \\ & \textbf{have } F1: \ \forall x_1. \ Suc \ 0 < f \ x_1 \lor x_1 = [] \\ & \textbf{by } (metis \ f.simps(2) \ less\_Suc\_eq\_0\_disj \ list.exhaust) \\ \{ \ \textbf{assume } xs \neq [] \\ & \textbf{hence } f \ xs \neq Suc \ 0 \ \textbf{by } (metis \ F1 \ less\_irrefl) \ \} \\ & \textbf{thus } f \ xs \neq Suc \ 0 \ \textbf{by } (metis \ f.simps(1) \ Suc\_not\_Zero) \\ \textbf{qed} \end{array}
```

Work in progress!

Sledgehammer: empirical evaluation

Based on 1200 goals from diverse theories covering

- arithmetic
- inductive datatypes
- recursive functions
- inductive definitions
- set theory

• 45% of all goals (not lemmas!) can be proved automatically

- 45% of all goals (not lemmas!) can be proved automatically
- 33% of all non-trivial goals can be proved automatically

- 45% of all goals (not lemmas!) can be proved automatically
- 33% of all non-trivial goals can be proved automatically
- 3 ATPs for 5 secs \geq 1 ATP for 120 secs

- 45% of all goals (not lemmas!) can be proved automatically
- 33% of all non-trivial goals can be proved automatically
- 3 ATPs for 5 secs \geq 1 ATP for 120 secs

number of goals only a particular prover can prove

- 45% of all goals (not lemmas!) can be proved automatically
- 33% of all non-trivial goals can be proved automatically
- 3 ATPs for 5 secs \geq 1 ATP for 120 secs

number of goals only a particular prover can prove

[Böhme, Nipkow, IJCAR 2010]

Automatic Refutation Nitpick Quickcheck

Z3's proofs are conceptually simple:

- natural deduction
- (only) 34 inference rules
- theory reasoning: only two generic inference rules

Z3's proofs are conceptually simple:

- natural deduction
- (only) 34 inference rules
- theory reasoning: only two generic inference rules

 $T\mathrm{H\math{-}Lemma}$ inconsistency of theory atoms

- no hint towards kind of theory
- no further proof explanation

Z3's proofs are conceptually simple:

- natural deduction
- (only) 34 inference rules
- theory reasoning: only two generic inference rules

 $\operatorname{Th-LEMMA:}$ inconsistency of theory atoms

- no hint towards kind of theory
- no further proof explanation

 ${\rm REWRITE:} \ propositional/theory-related \ equivalences/equalities$

• nearly unspecified . . .

Z3's proofs are conceptually simple:

- natural deduction
- (only) 34 inference rules
- theory reasoning: only two generic inference rules

 $T\mathrm{H\math{-}Lemma}$ inconsistency of theory atoms

- no hint towards kind of theory
- no further proof explanation

 ${\rm REWRITE:} \ propositional/theory-related \ equivalences/equalities$

• nearly unspecified . . .

Theory rules are lacking valuable information!

Proof Reconstruction for Z3

Proof reconstruction:

- one Isabelle proof method for each Z3 inference rule
- depth-first traversal through Z3 proof graph

Proof Reconstruction for Z3

Proof reconstruction:

- one Isabelle proof method for each Z3 inference rule
- depth-first traversal through Z3 proof graph

Bottleneck: theory reasoning

- TH-LEMMA: expensive proof search
- REWRITE: try a bunch of different specific proof methods and internal provers

Proof Reconstruction for Z3

Proof reconstruction:

- one Isabelle proof method for each Z3 inference rule
- depth-first traversal through Z3 proof graph

Bottleneck: theory reasoning

- TH-LEMMA: expensive proof search
- REWRITE: try a bunch of different specific proof methods and internal provers

[Böhme, Weber, ITP2010]

Evaluation

SMT-LIB benchmarks:

Logic	Z3			lsabelle		Rates	
		Med.	Med.		Med.		Time-
	#	Time	Size	#	Time	Succ.	out
AUFLIA+p	187	0.03 s	5 KB	187	0.06 s	100%	0%
AUFLIA-p	192	0.04 s	4 KB	190	0.06 s	98%	0%
AUFLIRA	189	0.02 s	16 KB	144	0.04 s	76%	0%
:	:	:	:	:	:	:	:
•	•	•	•	•	•	•	•
Total	1273	3.66 s	13 MB	962	11.31 s	75%	19%

Evaluation

SMT-LIB benchmarks:

Z3			Isabelle		Rates	
	Med.	Med.		Med.		Time-
#	Time	Size	#	Time	Succ.	out
187	0.03 s	5 KB	187	0.06 s	100%	0%
192	0.04 s	4 KB	190	0.06 s	98%	0%
189	0.02 s	16 KB	144	0.04 s	76%	0%
:	:	:	:	:	:	÷
1273	3.66 s	13 MB	962	11.31 s	75%	19%
	# 187 192 189 : 1273	Z3 Med. # 187 0.03 s 192 0.04 s 189 1273 3.66 s	Z3 Med. Med. # Time Size 187 0.03 s 5 KB 192 0.04 s 4 KB 189 0.02 s 16 KB 1273 3.66 s 13 MB	Z3 Is: Med. Med. # Time Size 187 0.03 s 5 KB 187 192 0.04 s 4 KB 190 189 0.02 s 16 KB 144 1273 3.66 s 13 MB 962	Z3 Isabelle Med. Med. Med. # Time Size # Time 187 0.03 s 5 KB 187 0.06 s 192 0.04 s 4 KB 190 0.06 s 189 0.02 s 16 KB 144 0.04 s 1273 3.66 s 13 MB 962 11.31 s	Z3 Isabelle Ra Med. Med. Med. Med. # Time Size # Time Succ. 187 0.03 s 5 KB 187 0.06 s 100% 192 0.04 s 4 KB 190 0.06 s 98% 189 0.02 s 16 KB 144 0.04 s 76% 1273 3.66 s 13 MB 962 11.31 s 75%

Evaluation

SMT-LIB benchmarks:

Logic	Z3			Isabelle		Rates	
		Med.	Med.		Med.		Time-
	#	Time	Size	#	Time	Succ.	out
AUFLIA+p	187	0.03 s	5 KB	187	0.06 s	100%	0%
AUFLIA-p	192	0.04 s	4 KB	190	0.06 s	98%	0%
AUFLIRA	189	0.02 s	16 KB	144	0.04 s	76%	0%
:	÷	÷	÷	:	:	÷	÷
Total	1273	3.66 s	13 MB	962	11.31 s	75%	19%

Profiling:

- bottleneck: theory reasoning requires expensive proof search
- 50% of the runtime is spent on 15% of all Z3 proof steps

Automatic Refutation Nitpick Quickcheck

The sum-of-squares (SOS) method (by John Harrison):

• To prove $p(x_1, \ldots, x_n) \ge 0$, express p as a sum of squares

- To prove $p(x_1, \ldots, x_n) \ge 0$, express p as a sum of squares
- Generalized to boolean combinations of $p \ge q$ and p = q

- To prove $p(x_1, \ldots, x_n) \ge 0$, express p as a sum of squares
- Generalized to boolean combinations of $p \ge q$ and p = q
- The SOS decomposition is found with the help of an external *SDP solver*

- To prove $p(x_1, \ldots, x_n) \ge 0$, express p as a sum of squares
- Generalized to boolean combinations of $p \ge q$ and p = q
- The SOS decomposition is found with the help of an external *SDP solver*
- Incomplete in theory

- To prove $p(x_1, \ldots, x_n) \ge 0$, express p as a sum of squares
- Generalized to boolean combinations of $p \ge q$ and p = q
- The SOS decomposition is found with the help of an external *SDP solver*
- Incomplete in theory
- Works well in practice

- To prove $p(x_1, \ldots, x_n) \ge 0$, express p as a sum of squares
- Generalized to boolean combinations of $p \ge q$ and p = q
- The SOS decomposition is found with the help of an external *SDP solver*
- Incomplete in theory
- Works well in practice
- The Isabelle implementation:
 - Ported from HOL Light

- To prove $p(x_1, \ldots, x_n) \ge 0$, express p as a sum of squares
- Generalized to boolean combinations of $p \ge q$ and p = q
- The SOS decomposition is found with the help of an external *SDP solver*
- Incomplete in theory
- Works well in practice
- The Isabelle implementation:
 - Ported from HOL Light
 - Generates certificates that allow proof replay w/o SDP solver

- To prove $p(x_1, \ldots, x_n) \ge 0$, express p as a sum of squares
- Generalized to boolean combinations of $p \ge q$ and p = q
- The SOS decomposition is found with the help of an external *SDP solver*
- Incomplete in theory
- Works well in practice
- The Isabelle implementation:
 - Ported from HOL Light
 - Generates certificates that allow proof replay w/o SDP solver

Example:
$$x^2 + y^2 + z^2 = 1 \Longrightarrow (x + y + z)^2 \le 3$$

1 Automatic Proof

Internal Provers External Provers FO ATPs SMT Solvers SDP Solvers

2 Automatic Refutation Nitpick Quickcheck

• Complex specifications are hard to get right

- Complex specifications are hard to get right
- Many statements of "theorems" contain errors

- Complex specifications are hard to get right
- Many statements of "theorems" contain errors
- Finding errors by failed proof attempts is expensive

- Complex specifications are hard to get right
- Many statements of "theorems" contain errors
- Finding errors by failed proof attempts is expensive
- Counterexample generation can help to find errors quickly

• Complex specifications are hard to get right

- Many statements of "theorems" contain errors
- Finding errors by failed proof attempts is expensive
- Counterexample generation can help to find errors quickly

Approaches for counterexample generation

- Complex specifications are hard to get right
- Many statements of "theorems" contain errors
- Finding errors by failed proof attempts is expensive
- Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using external tools (SAT solvers)

- Complex specifications are hard to get right
- Many statements of "theorems" contain errors
- Finding errors by failed proof attempts is expensive
- Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using external tools (SAT solvers)

• Covers most of HOL, including non-executable constructs (e.g. quantifiers)

• Complex specifications are hard to get right

- Many statements of "theorems" contain errors
- Finding errors by failed proof attempts is expensive
- Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using external tools (SAT solvers)

- Covers most of HOL, including non-executable constructs (e.g. quantifiers)
- Slow for complex data structures

Counterexample Generation: Motivation

Why counterexamples are important

- Complex specifications are hard to get right
- Many statements of "theorems" contain errors
- Finding errors by failed proof attempts is expensive
- Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using external tools (SAT solvers)

- Covers most of HOL, including non-executable constructs (e.g. quantifiers)
- Slow for complex data structures
- Quickcheck evaluate formula on random values for free variables using code generator

• Complex specifications are hard to get right

- Many statements of "theorems" contain errors
- Finding errors by failed proof attempts is expensive
- Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using external tools (SAT solvers)

- Covers most of HOL, including non-executable constructs (e.g. quantifiers)
- Slow for complex data structures

Quickcheck evaluate formula on random values for free variables using code generator

• Fast

• Complex specifications are hard to get right

- Many statements of "theorems" contain errors
- Finding errors by failed proof attempts is expensive
- Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using external tools (SAT solvers)

- Covers most of HOL, including non-executable constructs (e.g. quantifiers)
- Slow for complex data structures

Quickcheck evaluate formula on random values for free variables using code generator

- Fast
- Restricted to executable fragment of HOL

1 Automatic Proof

Internal Provers External Provers FO ATPs SMT Solvers SDP Solvers

$$\begin{array}{c} \mathsf{Nitpick} \longrightarrow \mathsf{Kodkod} \longrightarrow \begin{array}{c} \mathsf{SAT} \\ \mathsf{solver} \end{array}$$

Nitpick:

• converts HOL formula to first-order relational logic (FORL)

$$\begin{array}{c} \mathsf{Nitpick} \longrightarrow \mathsf{Kodkod} \longrightarrow \begin{array}{c} \mathsf{SAT} \\ \mathsf{solver} \end{array}$$

Nitpick:

- converts HOL formula to first-order relational logic (FORL)
- invokes the SAT-based Kodkod model finder (Alloy's backend) on FORL formula

$$\begin{array}{c} \mathsf{Nitpick} \longrightarrow \mathsf{Kodkod} \longrightarrow \begin{array}{c} \mathsf{SAT} \\ \mathsf{solver} \end{array}$$

Nitpick:

- converts HOL formula to first-order relational logic (FORL)
- invokes the SAT-based Kodkod model finder (Alloy's backend) on FORL formula
- handles HOL's definitional principles specially:
 - (co)inductive predicates and datatypes
 - (co)recursive functions

$$\begin{array}{c} \mathsf{Nitpick} \longrightarrow \mathsf{Kodkod} \longrightarrow \begin{array}{c} \mathsf{SAT} \\ \mathsf{solver} \end{array}$$

Nitpick:

- converts HOL formula to first-order relational logic (FORL)
- invokes the SAT-based Kodkod model finder (Alloy's backend) on FORL formula
- handles HOL's definitional principles specially:
 - (co)inductive predicates and datatypes
 - (co)recursive functions
- optimizes common higher-order idioms

Nitpick:

- converts HOL formula to first-order relational logic (FORL)
- invokes the SAT-based Kodkod model finder (Alloy's backend) on FORL formula
- handles HOL's definitional principles specially:
 - (co)inductive predicates and datatypes
 - (co)recursive functions
- optimizes common higher-order idioms

[Blanchette, Nipkow, ITP-10]

1. $(A \cup B)^+ = A^+ \cup B^+$

1.
$$(A \cup B)^+ = A^+ \cup B^+$$

 $A = \{(2,1)\}$ $B = \{(1,2)\}$

- 1. $(A \cup B)^+ = A^+ \cup B^+$ $A = \{(2,1)\}$ $B = \{(1,2)\}$
- 2. $xs @ ys = xs \iff ys = []$

- 1. $(A \cup B)^+ = A^+ \cup B^+$ $A = \{(2,1)\}$ $B = \{(1,2)\}$
- 2. $xs @ ys = xs \leftrightarrow ys = []$ (for coinductive lists)

- 1. $(A \cup B)^+ = A^+ \cup B^+$ $A = \{(2,1)\}$ $B = \{(1,2)\}$
- 2. $xs @ ys = xs \leftrightarrow ys = []$ (for coinductive lists) xs = ys = [1, 1, ...]

Nitpick: Empirical Evaluation

Mutation testing:
Nitpick: Empirical Evaluation

Mutation testing:

On average, Nitpick falsifies ${\approx}42\%$ of all mutants

1 Automatic Proof

Internal Provers External Provers FO ATPs SMT Solvers SDP Solvers

2 Automatic Refutation Nitpick Quickcheck

Focus: Sledgehammer

Focus: Sledgehammer

• Can we give the ATPs more information?

Focus: Sledgehammer

- Can we give the ATPs more information?
- Proof replay in Isabelle

Focus: Sledgehammer

- Can we give the ATPs more information?
- Proof replay in Isabelle
- Improved treatment of HO problems

Focus: Sledgehammer

- Can we give the ATPs more information?
- Proof replay in Isabelle
- Improved treatment of HO problems

What we would like:

Focus: Sledgehammer

- Can we give the ATPs more information?
- Proof replay in Isabelle
- Improved treatment of HO problems

What we would like:

• bigger, better, faster, more ATPs

Focus: Sledgehammer

- Can we give the ATPs more information?
- Proof replay in Isabelle
- Improved treatment of HO problems

What we would like:

- bigger, better, faster, more ATPs
- bigger, better, faster, more SMT solvers

Focus: Sledgehammer

- Can we give the ATPs more information?
- Proof replay in Isabelle
- Improved treatment of HO problems

What we would like:

- bigger, better, faster, more ATPs
- bigger, better, faster, more SMT solvers
- bigger, better, faster, more SAT solvers