Types for Role-based Access Control of Dynamic Web Data

Mariangiola Dezani-Ciancaglini ¹ Silvia Ghilezan² Svetlana Jakšić ² Jovanka Pantović²

¹Università di Torino

²University of Novi Sad

SVARM 2010, Edinburgh

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

2 RXdπ-calculus Syntax Semantics

Outline

2 RXdπ-calculus Syntax Semantics

Distributed systems - decentralised peer-to-peer networks

- management of semi-structured and distributed data
- processes with different roles have different access rights
- different access policies in different locations
- exchange between data and processes preserving access control

- dynamic changes of access rights
- One solution typed models
 - control of access
 - control of movements rights

Distributed systems - decentralised peer-to-peer networks

- management of semi-structured and distributed data
- processes with different roles have different access rights
- different access policies in different locations
- exchange between data and processes preserving access control

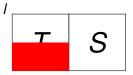
- dynamic changes of access rights
- One solution typed models
 - control of access
 - control of movements rights

Related work

(日) (日) (日) (日) (日) (日) (日)

- X $d\pi$ calculus extension of Active XML Gardner, Maffeis
 - localised mobile processes
 - distributed, dynamic, semi-structured web data
- Variety of type systems for $d\pi$ and related calculi
 - · controlling the use of accesses and mobility of processes
- Security types for Xdπ Dezani, Ghilezan, Pantovic, Varacca, 2008
 - partially ordered set (with bottom) as security levels
 - control of movements rights
 - network invariant and initial network

Distributed Network



Location

A peer or a location is represented with data and a process.

Access Rights

Security conditions

- not all data is visible to all processes
- · different locations with different access policies

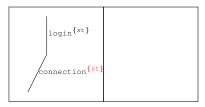
Roles

$\texttt{st}\sqsubseteq\texttt{pr}$

CLASSROOM

PUBLIC

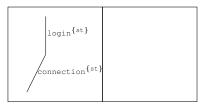
(ロ) (型) (E) (E) E のQC


Roles

$\texttt{st}\sqsubseteq\texttt{pr}$

CLASSROOM

PUBLIC


Roles

$\texttt{st}\sqsubseteq\texttt{pr}$

CLASSROOM

PUBLIC

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

(2) RXdπ-calculus Syntax Semantics

3 Types Types Safety

Locations, Networks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Each location consists of data in a form of a tree and a process
- A well-formed network is a parallel composition (|) of *locations* with different names.

$$\mathbf{N} ::= \mathbf{0} | \mathbf{N} | \mathbf{N} | \mathbf{I} | [T \parallel R] | (\nu c^{Tv}) \mathbf{N}$$

Data

- *R*-scripted process
- *p*-path
- *p*@λ-pointer
- run, read, change
- dynamic changes of access rights

Data

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- *R*-scripted process
- *p*-path
- *p*@λ-pointer
- run, read, change
- dynamic changes of access rights

Processes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

π -calculus

| |

L

- P ::= 0 the nil process
 - *P* | *P* composition of processes
 - $\bar{c}^{Tv} \langle v \rangle$ output value v on a channel c
 - $c^{Tv}(x).P$ input parameterized by a variable x
 - $!c^{Tv}(x).P$ replication of an input process

Processes

π -calculus

P ::= 0 the nil process	
-------------------------	--

- *P* | *P* composition of processes
- $\bar{c}^{Tv} \langle v \rangle$ output value v on a channel c
- $c^{Tv}(x).P$ input parameterized by a variable x
- $!c^{Tv}(x).P$ replication of an input process

$d\pi$ -calculus

L

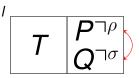
I

P ::= go $\lambda . R$ migrate to location λ , continue as R

$Xd\pi$ -calculus

 $P ::= run_{\rho} run command$ $| read_{\rho}(\chi).P read command$ $| change_{\rho}(\chi, V).P change command$

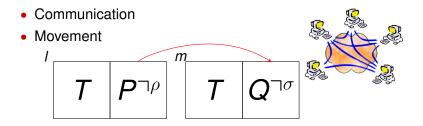
Processes


\mathbb{R} X $d\pi$ -calculus

- Communication
- Movement
- Interaction with local data
- Permission change

イロト イポト イヨト イヨト ヨー のくぐ

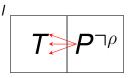
Communication



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Movement
- Interaction with local data
- Permission change

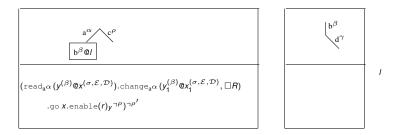
・ロット (雪) (日) (日) (日)



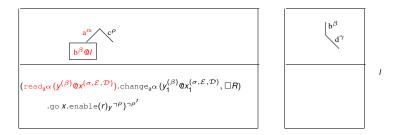
- Interaction with local data
- Permission change

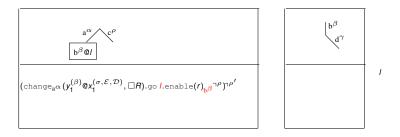
- Communication
- Movement
- Interaction with local data

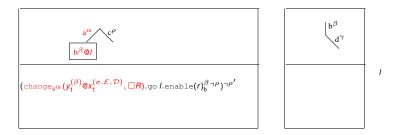
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

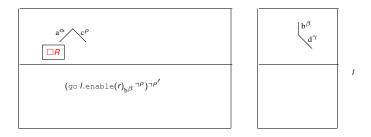


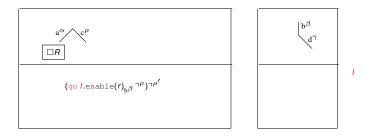
• Permission change


- Communication
- Movement
- Interaction with local data
- Permission change




▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Motivation

Related Work Access control - $\mathbb{R}Xd\pi$ -calculus

2 RXdπ-calculus Syntax Semantics

▲□▶▲@▶▲臣▶▲臣▶ 臣 のへで

Type System

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main goals

- to control communication of values
- to control migration and activation of processes
- to control access to data and their modification

Location Policy

$(\sigma, \mathcal{E}, \mathcal{D})$

- σ: set of minimal roles which can access data
- \mathcal{E} : policy for role enabling
- \mathcal{D} : policy for role disabling

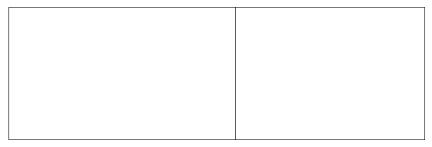
Type System

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main goals

- to control communication of values
- to control migration and activation of processes
- to control access to data and their modification

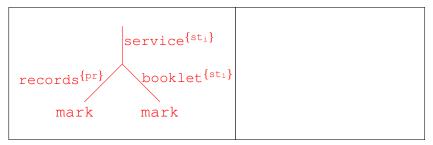
Location Policy

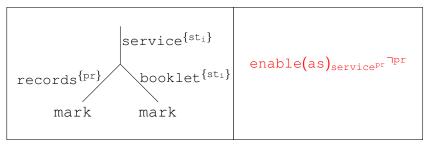

 $(\sigma, \mathcal{E}, \mathcal{D})$

- σ: set of minimal roles which can access data
- *E*: policy for role enabling
- \mathcal{D} : policy for role disabling

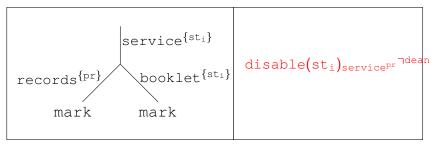
st \sqsubseteq st_i \sqsubseteq as \sqsubseteq prof \sqsubseteq dean where i \in *I*.

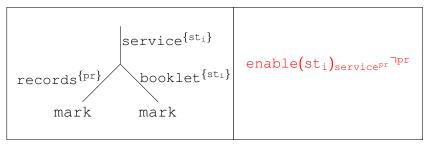
▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで


st \sqsubseteq st_i \sqsubseteq as \sqsubseteq prof \sqsubseteq dean where i \in *I*.


▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

st \sqsubseteq st_i \sqsubseteq as \sqsubseteq prof \sqsubseteq dean where i \in *I*.


$$\begin{array}{l} \text{FACULTY}: (\sigma_{\text{F}}, \mathcal{E}_{\text{F}}, \mathcal{D}_{\text{F}})\\ \sigma_{\text{F}} = \{\texttt{st}_{\texttt{i}}\} \quad \mathcal{E}_{\text{F}} = (\{\texttt{prof}\}, \texttt{as}) \quad \mathcal{D}_{\text{C}} = (\{\texttt{dean}\}, \texttt{st}_{\texttt{i}}) \end{array}$$


 $\texttt{st}\sqsubseteq\texttt{st}_{\texttt{i}}\sqsubseteq\texttt{as}\sqsubseteq\texttt{prof}\sqsubseteq\texttt{dean} \ \texttt{where} \ \texttt{i}\in\textit{I}.$

 $\texttt{st}\sqsubseteq\texttt{st}_{\texttt{i}}\sqsubseteq\texttt{as}\sqsubseteq\texttt{prof}\sqsubseteq\texttt{dean} \ \texttt{where} \ \texttt{i}\in\textit{I}.$

 $\texttt{st}\sqsubseteq\texttt{st}_{\texttt{i}}\sqsubseteq\texttt{as}\sqsubseteq\texttt{prof}\sqsubseteq\texttt{dean} \ \texttt{where} \ \texttt{i}\in\textit{I}.$

Safety properties

- (Subject reduction) If $\vdash N$: *Net* and $N \rightarrow N'$, then $\vdash N'$: *Net*.
- Properties of location policies and communication:
 - P0 All trees and processes in a location agree with the location policy;
 - **P1** A process with roles can communicate only values with characteristic roles accessible to the process.
- Properties of migration between locations:
 - **P2** A process with roles can migrate to another location only if it is well typed for that location.
- Properties of access of processes to local data trees:
 - **P3** A process with roles looks for a path in the local tree only if the path is accessible to the process.

Safety properties

- Properties of manipulation of local data trees by processes:
 - P4 A script is activated in a location only if the corresponding process with roles can stay in that location;
 - **P5** A process with roles generated by a read command in a location can stay in that location;
 - P6 A process with roles can erase a subtree of data only if it can access all data;
 - **P7** A tree built by a change command in a location can stay in that location;
 - **P8** A process with roles can add a role to an edge in the local tree only if this is allowed by the location policy;
 - **P9** A tree built by an enable command in a location can stay in that location;
 - **P10** A process with roles can erase a role from an edge in the local tree only if this is allowed by the location policy;
 - **P11** A tree built by a disable command in a location can stay in that location.

RDP 2011 Announcement

May 29 to June 3, 2011 Novi Sad, Serbia http://www.rdp2011.uns.ac.rs/

→ C fi ☆ ht	ttp://www.rdp2011.uns.ac.rs/	
About	RDP 2011 Federated Conference on Rewriting, Deduction, and Programming	
RDP'11 Venue Programme	Sunday, May 23, 2011 to Friday, June 3, 2011 Nevi Sarl, Sorbia	
Organisation Sponsors	RDP'11 is the sixth edition of the International Conference on Rewriting, Deduction, and Programming, consisting of two main conferences	
Conferences	Rewriting Techniques and Applications (RTA'11) Typed Lambda Calculi and Applications (RLCA'11)	
RIA ILGA	and related events.	
Workshops	Previous editions of RDP took place in	
	Valencia (Spain) 2003 Aachen (Germany) 2004	
Practical	Nars (Japan) 2005 Paris (France) 2007	
Registration Student Grants Accomodation	Brasila (Brasili 2002	

▲□▶★□▶★□▶★□▶ = のへで