
www.kit.eduKIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

Bernhard Beckert | SVARM, 21.07.10

Experiences from the Verisoft XT Project

Formal Verification of System Software

INSTITUTE FOR THEORETICAL INFORMATICS

http://www.kit.edu


The Karlsruhe Institute of Technology



Karlsruhe Institute of Technology

Merger of

Karlsruhe University (state funded)

Research Center Karlsruhe (funded by federal government)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 3/54





COST Action IC0701
Formal Verification of Object-Oriented Software



What is the Action About?

Formal Verification of Object-Oriented Software

Methods for . . .
specification

proving correctness

Tools to . . .
automate the verification process

Integration of . . .
specification and verification into mainstream software development
tools and processes

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 5/54



What is the Action About?

Formal Verification of Object-Oriented Software

Methods for . . .
specification

proving correctness

Tools to . . .
automate the verification process

Integration of . . .
specification and verification into mainstream software development
tools and processes

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 5/54



What is the Action About?

Formal Verification of Object-Oriented Software

Methods for . . .
specification

proving correctness

Tools to . . .
automate the verification process

Integration of . . .
specification and verification into mainstream software development
tools and processes

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 5/54



What is the Action About?

Formal Verification of Object-Oriented Software

Methods for . . .
specification

proving correctness

Tools to . . .
automate the verification process

Integration of . . .
specification and verification into mainstream software development
tools and processes

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 5/54



What is the Action About?

Formal Verification of Object-Oriented Software

Methods for . . .
specification

proving correctness

Tools to . . .
automate the verification process

Integration of . . .
specification and verification into mainstream software development
tools and processes

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 5/54



What is the Action About?

Formal Verification of Object-Oriented Software

Methods for . . .
specification

proving correctness

Tools to . . .
automate the verification process

Integration of . . .
specification and verification into mainstream software development
tools and processes

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 5/54



What is the Action About?

Formal Verification of Object-Oriented Software

Methods for . . .
specification

proving correctness

Tools to . . .
automate the verification process

Integration of . . .
specification and verification into mainstream software development
tools and processes

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 5/54



Main Objective of the Action

To co-ordinate the research into verification technology

to achieve reach and power

needed to assure reliability of object-oriented programs

on industrial scale.

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 6/54



Secondary Objectives

Secondary Objectives of the Action

Development and Standardisation of Specification Languages and
Methods

Standardisation of Tool Interfaces, Common Framework

Education of Users in the Application of Tools and Methods

Co-ordination of European Research in the Field

Increase in Market Penetration of Formal Verification

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 7/54



Secondary Objectives

Secondary Objectives of the Action

Development and Standardisation of Specification Languages and
Methods

Standardisation of Tool Interfaces, Common Framework

Education of Users in the Application of Tools and Methods

Co-ordination of European Research in the Field

Increase in Market Penetration of Formal Verification

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 7/54



Secondary Objectives

Secondary Objectives of the Action

Development and Standardisation of Specification Languages and
Methods

Standardisation of Tool Interfaces, Common Framework

Education of Users in the Application of Tools and Methods

Co-ordination of European Research in the Field

Increase in Market Penetration of Formal Verification

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 7/54



Secondary Objectives

Secondary Objectives of the Action

Development and Standardisation of Specification Languages and
Methods

Standardisation of Tool Interfaces, Common Framework

Education of Users in the Application of Tools and Methods

Co-ordination of European Research in the Field

Increase in Market Penetration of Formal Verification

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 7/54



Secondary Objectives

Secondary Objectives of the Action

Development and Standardisation of Specification Languages and
Methods

Standardisation of Tool Interfaces, Common Framework

Education of Users in the Application of Tools and Methods

Co-ordination of European Research in the Field

Increase in Market Penetration of Formal Verification

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 7/54



COST is supported by 
the EU RTD Framework Programme

ESF provides the 
COST Office through an EC contract4

Working Groups

WG1: Customisable and Reusable Programs

WG2: Modularisation and Components

WG3: Concurrency

WG4: Tool Integration



COST is supported by 
the EU RTD Framework Programme

ESF provides the 
COST Office through an EC contract10

Action Participants

100100

80

100

120

YR 

1

YR 

2

YR 

3

YR 

4

Total of individual
participants

ESRs

Female

Non-COST Countries

0

1717

7070

20

40

60

1717

7070

20

40

60

1717

7070

20

40

60

1717

7070

20

40

60

125125

8484

171717171717 1919

2211



COST is supported by 
the EU RTD Framework Programme

ESF provides the 
COST Office through an EC contract7

Action Website: www.cost-ic0701.org

Collection of Verification Benchmarks
VerifyThis
– Web-based
– Examples from many different sources
– Independent of tools and specification languages

Collection of Material
– inventories of tools and methods, projects, 

and events; 

– teaching material; 

– slides of all presentations given at meetings; 



Topic of this Talk:
Deductive Program Verification for System Software

– Verisoft Project –



System Software

Mikrokernels

Provide concurrency

(Para-)virtualization

System calls (e.g., for communication)

Interface to interrupts and devices

Typical Properties

Close to the hardware (assembly code)

Platform-dependent

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 9/54



System Software

Mikrokernels

Provide concurrency

(Para-)virtualization

System calls (e.g., for communication)

Interface to interrupts and devices

Typical Properties

Close to the hardware (assembly code)

Platform-dependent

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 9/54



System Software

Requirements

Functional correctness

Security features (e.g., process separation)

Fairness & liveness

Realtime requirements

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 10/54



Verisoft Project
Phase I: 2003–2007



Verisoft Project, Phase I

UNIVERSITÄT

DES
SAARLANDES

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 12/54



Verisoft Project, Phase I

UNIVERSITÄT

DES
SAARLANDES

Complete (pervasive) formal verification of
integrated computer system

“Verifications as an Engineering Science”

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 12/54



Verisoft Project, Phase I

UNIVERSITÄT

DES
SAARLANDES

Complete (pervasive) formal verification of
integrated computer system

“Verifications as an Engineering Science”

Four application areas (three from industry)

Mobile phones (system-on-a-chip)

Automotive

Biometric identification

Academic system

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 12/54



Verisoft Project, Phase I

UNIVERSITÄT

DES
SAARLANDES

Complete (pervasive) formal verification of
integrated computer system

“Verifications as an Engineering Science”

Four application areas (three from industry)

Mobile phones (system-on-a-chip)

Automotive

Biometric identification

Academic system

Funding

Bundesministerium für Bildung und Forschung (bmb+f)
approx. 4 Mio Euro / year

Plus matching funds from industry

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 12/54



A Fully Verified Computer System

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 13/54



A Fully Verified Computer System

Implementation languages

Gate-level description of processor

DLX assembler

C0

Verification technology

Interactive verification with Isabelle

Verified properties

Functional correctness

Security properties
– No access to private memory of other processes
– Secure inter-process communication

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 14/54



A Fully Verified Computer System

Implementation languages

Gate-level description of processor

DLX assembler

C0

Verification technology

Interactive verification with Isabelle

Verified properties

Functional correctness

Security properties
– No access to private memory of other processes
– Secure inter-process communication

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 14/54



A Fully Verified Computer System

Implementation languages

Gate-level description of processor

DLX assembler

C0

Verification technology

Interactive verification with Isabelle

Verified properties

Functional correctness

Security properties
– No access to private memory of other processes
– Secure inter-process communication

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 14/54



Verisoft XT
Phase II: 2007–2010



Verisoft XT (Phase II)

Three (new) industrial applications

Hypervisor Microsoft’s Hypervisor (Kernel of Hyper-V)
shipped with Microsoft Windows Server 2008

Avionics Sysgo’s PikeOS Microkernel
Hypervisor for embedded systems

Automotive Micro controler for safety-critical application in new Audi
(timing analysis, model checking)

Verification technology

Verification with VCC from Microsoft Research

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 16/54



Verisoft XT (Phase II)

Three (new) industrial applications

Hypervisor Microsoft’s Hypervisor (Kernel of Hyper-V)
shipped with Microsoft Windows Server 2008

Avionics Sysgo’s PikeOS Microkernel
Hypervisor for embedded systems

Automotive Micro controler for safety-critical application in new Audi
(timing analysis, model checking)

Verification technology

Verification with VCC from Microsoft Research

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 16/54



Verisoft XT (Phase II)

Three (new) industrial applications

Hypervisor Microsoft’s Hypervisor (Kernel of Hyper-V)
shipped with Microsoft Windows Server 2008

Avionics Sysgo’s PikeOS Microkernel
Hypervisor for embedded systems

Automotive Micro controler for safety-critical application in new Audi
(timing analysis, model checking)

Verification technology

Verification with VCC from Microsoft Research

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 16/54



Verisoft XT (Phase II)

Three (new) industrial applications

Hypervisor Microsoft’s Hypervisor (Kernel of Hyper-V)
shipped with Microsoft Windows Server 2008

Avionics Sysgo’s PikeOS Microkernel
Hypervisor for embedded systems

Automotive Micro controler for safety-critical application in new Audi
(timing analysis, model checking)

Verification technology

Verification with VCC from Microsoft Research

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 16/54



Verisoft XT (Phase II)

Three (new) industrial applications

Hypervisor Microsoft’s Hypervisor (Kernel of Hyper-V)
shipped with Microsoft Windows Server 2008

Avionics Sysgo’s PikeOS Microkernel
Hypervisor for embedded systems

Automotive Micro controler for safety-critical application in new Audi
(timing analysis, model checking)

Verification technology

Verification with VCC from Microsoft Research

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 16/54



Verifying the PikeOS Microkernel

Avionics Application (Sysgo’s PikeOS)

L4-based, industrial, safety- and security-critical microkernel

Flies in Airbus A350

ca. 20,000 LOC (90% C, 10% assembler)

Challenges

Complexity and size of kernel

“Real” implementation in C + assembly

Not implemented with verification in mind

Concurrency (with preemption)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 17/54



Verifying the PikeOS Microkernel

Avionics Application (Sysgo’s PikeOS)

L4-based, industrial, safety- and security-critical microkernel

Flies in Airbus A350

ca. 20,000 LOC (90% C, 10% assembler)

Challenges

Complexity and size of kernel

“Real” implementation in C + assembly

Not implemented with verification in mind

Concurrency (with preemption)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 17/54



Verifying the PikeOS Microkernel

Avionics Application (Sysgo’s PikeOS)

L4-based, industrial, safety- and security-critical microkernel

Flies in Airbus A350

ca. 20,000 LOC (90% C, 10% assembler)

Challenges

Complexity and size of kernel

“Real” implementation in C + assembly

Not implemented with verification in mind

Concurrency (with preemption)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 17/54



Verifying the PikeOS Microkernel

Avionics Application (Sysgo’s PikeOS)

L4-based, industrial, safety- and security-critical microkernel

Flies in Airbus A350

ca. 20,000 LOC (90% C, 10% assembler)

Challenges

Complexity and size of kernel

“Real” implementation in C + assembly

Not implemented with verification in mind

Concurrency (with preemption)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 17/54



Verifying the PikeOS Microkernel

Avionics Application (Sysgo’s PikeOS)

L4-based, industrial, safety- and security-critical microkernel

Flies in Airbus A350

ca. 20,000 LOC (90% C, 10% assembler)

Challenges

Complexity and size of kernel

“Real” implementation in C + assembly

Not implemented with verification in mind

Concurrency (with preemption)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 17/54



Verifying the PikeOS Microkernel

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 18/54



Verifying the PikeOS Microkernel

Implementation properties and context

Single-processor system (limited concurrency)

Para-virtualising
(more a microkernel than a hypervisor)

PikeOS system software has to be taken into consideration

Preemption

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 19/54



Verifying the PikeOS Microkernel

Implementation properties and context

Single-processor system (limited concurrency)

Para-virtualising
(more a microkernel than a hypervisor)

PikeOS system software has to be taken into consideration

Preemption

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 19/54



Verifying the PikeOS Microkernel

Implementation properties and context

Single-processor system (limited concurrency)

Para-virtualising
(more a microkernel than a hypervisor)

PikeOS system software has to be taken into consideration

Preemption

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 19/54



Verifying the PikeOS Microkernel

Implementation properties and context

Single-processor system (limited concurrency)

Para-virtualising
(more a microkernel than a hypervisor)

PikeOS system software has to be taken into consideration

Preemption

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 19/54



Microsoft’s VCC

Approach: Verifying Compiler

Specification annotated directly in the program text
(pre-/post-conditions, invariants, ownership, . . . )

Generate verification conditions, give them to SMT solver (tool chain)

Automatic proof construction (interaction by changing the input)

Concurency: Rely-guarantee paradigm

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 20/54



Microsoft’s VCC

Approach: Verifying Compiler

Specification annotated directly in the program text
(pre-/post-conditions, invariants, ownership, . . . )

Generate verification conditions, give them to SMT solver (tool chain)

Automatic proof construction (interaction by changing the input)

Concurency: Rely-guarantee paradigm

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 20/54



Microsoft’s VCC

Approach: Verifying Compiler

Specification annotated directly in the program text
(pre-/post-conditions, invariants, ownership, . . . )

Generate verification conditions, give them to SMT solver (tool chain)

Automatic proof construction (interaction by changing the input)

Concurency: Rely-guarantee paradigm

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 20/54



Microsoft’s VCC

Approach: Verifying Compiler

Specification annotated directly in the program text
(pre-/post-conditions, invariants, ownership, . . . )

Generate verification conditions, give them to SMT solver (tool chain)

Automatic proof construction (interaction by changing the input)

Concurency: Rely-guarantee paradigm

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 20/54



Microsoft’s VCC

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 21/54



The VCC Toolchain

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 22/54



The VCC Toolchain

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 23/54



Example Specification (Sequential)

P4_prio_t p4_runner_changeprio
(P4k_thrinfo_t *proc , P4_prio_t newprio)
requires(proc ==

abstractModel.currentThread)
ensures(proc ->schedprio == newprio && ...)
returns(old(proc ->userprio))

maintains(wrapped (...))
writes(...)

{
...

}

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 24/54



Structure of the Overall Proof

Trace State

P3
P2
P1

Kernel P1 ... Pn

P3
P2
P1

Kernel P1 ... Pn

P3
P2
P1

Kernel CPU Memory

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 25/54



State and Achievements of the Project

Methodological

Method for handling memory management
(allocation, page handling, separation, . . . )

Method for handling inline assembler

Method for handling preemption

Abstract model
Abstract model of the kernel
(tasks, threads, IPC-related, . . . )

Verification
Partial verification of the code – sequential and concurrent
(complete verification possible but for lack in man-power)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 26/54



State and Achievements of the Project

Methodological

Method for handling memory management
(allocation, page handling, separation, . . . )

Method for handling inline assembler

Method for handling preemption

Abstract model
Abstract model of the kernel
(tasks, threads, IPC-related, . . . )

Verification
Partial verification of the code – sequential and concurrent
(complete verification possible but for lack in man-power)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 26/54



State and Achievements of the Project

Methodological

Method for handling memory management
(allocation, page handling, separation, . . . )

Method for handling inline assembler

Method for handling preemption

Abstract model
Abstract model of the kernel
(tasks, threads, IPC-related, . . . )

Verification
Partial verification of the code – sequential and concurrent
(complete verification possible but for lack in man-power)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 26/54



State and Achievements of the Project

Methodological

Method for handling memory management
(allocation, page handling, separation, . . . )

Method for handling inline assembler

Method for handling preemption

Abstract model
Abstract model of the kernel
(tasks, threads, IPC-related, . . . )

Verification
Partial verification of the code – sequential and concurrent
(complete verification possible but for lack in man-power)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 26/54



State and Achievements of the Project

Methodological

Method for handling memory management
(allocation, page handling, separation, . . . )

Method for handling inline assembler

Method for handling preemption

Abstract model
Abstract model of the kernel
(tasks, threads, IPC-related, . . . )

Verification
Partial verification of the code – sequential and concurrent
(complete verification possible but for lack in man-power)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 26/54



State and Achievements of the Project

Methodological

Method for handling memory management
(allocation, page handling, separation, . . . )

Method for handling inline assembler

Method for handling preemption

Abstract model
Abstract model of the kernel
(tasks, threads, IPC-related, . . . )

Verification
Partial verification of the code – sequential and concurrent
(complete verification possible but for lack in man-power)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 26/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Bottom-up vs. top-down

Bottom-up: start with individual functions

Top-down: start with global requirement spec

We started bottom-up

understand → specify → verify (iterative)
– helper functions
– individual system calls

first sequential, then concurrent

Result

Verification of functions / system calls possible with VCC
(both sequential and concurrent)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 27/54



Insights

Top-down understanding / specification

Understanding of global data structures, scheduling mechanism, etc.
more difficult to achieve than an understanding of individual functions

VCC is not ideal for developing top-level models:
– local (single thread) focus, obfuscation of global view

Therefore . . .

Decided to use Isabelle for developing formal top-level model of the kernel

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 28/54



Insights

Top-down understanding / specification

Understanding of global data structures, scheduling mechanism, etc.
more difficult to achieve than an understanding of individual functions

VCC is not ideal for developing top-level models:
– local (single thread) focus, obfuscation of global view

Therefore . . .

Decided to use Isabelle for developing formal top-level model of the kernel

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 28/54



Insights

Top-down understanding / specification

Understanding of global data structures, scheduling mechanism, etc.
more difficult to achieve than an understanding of individual functions

VCC is not ideal for developing top-level models:
– local (single thread) focus, obfuscation of global view

Therefore . . .

Decided to use Isabelle for developing formal top-level model of the kernel

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 28/54



Insights

Top-down understanding / specification

Understanding of global data structures, scheduling mechanism, etc.
more difficult to achieve than an understanding of individual functions

VCC is not ideal for developing top-level models:
– local (single thread) focus, obfuscation of global view

Therefore . . .

Decided to use Isabelle for developing formal top-level model of the kernel

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 28/54



Insights

Top-down understanding / specification

Understanding of global data structures, scheduling mechanism, etc.
more difficult to achieve than an understanding of individual functions

VCC is not ideal for developing top-level models:
– local (single thread) focus, obfuscation of global view

Therefore . . .

Decided to use Isabelle for developing formal top-level model of the kernel

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 28/54



Handling Concurrency



Example: System Call p4 fast set prio

From the kernel reference manual

“This function sets the current thread’s priority to newprio. Invalid or too high
priorities are limited to the caller’s task MCP. Upon success, a call to this
function returns the current thread’s priority before setting it to newprio.”

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 30/54



Implementation

P4_prio_t p4_runner_changeprio
(P4k_thrinfo_t *proc , P4_prio_t newprio)
{

P4_prio_t oldprio; P4_cpureg_t oldstat;

oldstat = p4arch_disable_int();
oldprio = proc ->userprio;
proc ->userprio = newprio;
proc ->schedprio = newprio;
kglobal.kinfo ->currprio = newprio;

p4arch_restore_int(oldstat);

return oldprio;
}

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 31/54



Specification (Sequential)

P4_prio_t p4_runner_changeprio
(P4k_thrinfo_t *proc , P4_prio_t newprio)
requires(proc ==

abstractModel.currentThread)
ensures(proc ->schedprio == newprio && ...)
returns(old(proc ->userprio))

maintains(wrapped (...))
writes(...)

{
...

}

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 32/54



Specification (Concurrent)

void setPrio(pThread t, int v
spec(update *up))

maintains(up->value == v)

requires(set_in((obj_t) up, t->hist)
&& !set_in((obj_t) up, t->done))

ensures(exists(update *u;
set_in((obj_t) u, t->done)
&& !set_in((obj_t) u, old(t->done))
&& t->prio == u->value))

ensures(set_in((obj_t) up, t->done))

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 33/54



Handling Preemption

Preemption

Means of scheduling (context switch)

Pause current C thread in kernel, run other

Voluntarily (IPC) or forced (interrupts)

Separate verification tasks

Verify thread switch to be correct (once)

Verify individual system call using thread-switch properties as axioms

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 34/54



Handling Preemption

Preemption

Means of scheduling (context switch)

Pause current C thread in kernel, run other

Voluntarily (IPC) or forced (interrupts)

Separate verification tasks

Verify thread switch to be correct (once)

Verify individual system call using thread-switch properties as axioms

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 34/54



Structure of the Overall Proof

Trace State

P3
P2
P1

Kernel P1 ... Pn

P3
P2
P1

Kernel P1 ... Pn

P3
P2
P1

Kernel CPU Memory

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 35/54



Running Example: Boostprio (abstract)

x+=2

x-=2

Tasks:

identify atomic blocks in the kernel and
preemption points

specify effect of each atomic block as
transition over abstract state

introduce additional information about
state; add axioms

deduce intended top-level property

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 36/54



Running Example: Boostprio (abstract)

x+=2

x-=2

1

2

PP1

A

A

S

E

Tasks:

identify atomic blocks in the kernel and
preemption points

specify effect of each atomic block as
transition over abstract state

introduce additional information about
state; add axioms

deduce intended top-level property

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 36/54



Running Example: Boostprio (abstract)

x+=2

x-=2 T2

T11

2

PP1

A

A

S

E

↪

↪

Tasks:

identify atomic blocks in the kernel and
preemption points

specify effect of each atomic block as
transition over abstract state

introduce additional information about
state; add axioms

deduce intended top-level property

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 36/54



System Transitions

x+=2

x-=2 T2

T11

2

PP1

A

A

S

E

↪

↪

Specify effect of each atomic block as
transition over abstract state:

T1 : old(location) == S
∧ location == PP1
∧ x == old(x) + 2

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 37/54



Running Example: Boostprio (abstract)

x+=2

x-=2 T2

T11

2

PP1

A

A

S

E

↪

↪

Tasks:

identify atomic blocks in the kernel and
preemption points

specify effect of each atomic block as
transition over abstract state

introduce additional information about
state; add axioms

deduce intended top-level property

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 38/54



Running Example: Boostprio (abstract)

x+=2

x-=2

#thr ⩾ 0

A1

A

#thr+=1

#thr-=1
2 T2

T1↪

↪

Tasks:

identify atomic blocks in the kernel and
preemption points

specify effect of each atomic block as
transition over abstract state

introduce additional information about
state; add axioms

deduce intended top-level property

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 38/54



Syscall Specification

x+=2

x-=2

#thr ⩾ 0

A1

A

#thr+=1

#thr-=1
2 T2

T1↪

↪

Introduce additional information about
state:

#thr represents number of threads at
PP1

”bookkeeping“ by ghost code

#thr >= 0 follows from scheduler
properties

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 39/54



Running Example: Boostprio (abstract)

x+=2

x-=2

#thr ⩾ 0

A1

A

#thr+=1

#thr-=1
2 T2

T1↪

↪

Tasks:

identify atomic blocks in the kernel and
preemption points

specify effect of each atomic block as
transition over abstract state

introduce additional information about
state; add axioms

deduce intended top-level property

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 40/54



Running Example: Boostprio (abstract)

x+=2

x-=2

#thr ⩾ 0

A1

A

#thr+=1

#thr-=1
2 T2

T1↪

↪

Tasks:

identify atomic blocks in the kernel and
preemption points

specify effect of each atomic block as
transition over abstract state

introduce additional information about
state; add axioms

deduce intended top-level property

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 40/54



Running Example: Boostprio (abstract)

x+=2

x-=2

#thr ⩾ 0

A1

A

#thr+=1

#thr-=1
2 T2

T1↪

↪

Tasks:

identify atomic blocks in the kernel and
preemption points

specify effect of each atomic block as
transition over abstract state

introduce additional information about
state; add axioms

deduce intended top-level property

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 40/54



Syscall Specification

x+=2

x-=2

#thr ⩾ 0

A1

A

#thr+=1

#thr-=1
2 T2

T1↪

↪

Deduce intended top-level property:

Given:

Initial state: x == 0

Axiom: #thr >= 0

Invariant: x >= 2 * #thr

We can show our intended property:
x >= 0

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 41/54



Completeness of Verifying Compilers



Relative Completeness

Given
P: program

REQ: requirement specification

|= definition of when a program satisfies a specification

(`S,ThS): verification system (deduction relation, axioms)

Relative Completeness

(`S,ThS) is relatively complete (w.r.t. arithmetics) if,
for each program P and specification REQ with

|= P+REQ ,

there is a set Arith of valid arithmetical formulas such that

ThS ∪Arith `S P+REQ .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 43/54



Relative Completeness

Given
P: program

REQ: requirement specification

|= definition of when a program satisfies a specification

(`S,ThS): verification system (deduction relation, axioms)

Relative Completeness

(`S,ThS) is relatively complete (w.r.t. arithmetics) if,
for each program P and specification REQ with

|= P+REQ ,

there is a set Arith of valid arithmetical formulas such that

ThS ∪Arith `S P+REQ .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 43/54



Completeness: Theory vs. Practice

Verifying Compiler in Theory

There exist Verifying Compilers that are relatively complete

For these, providing P+REQ is sufficient

All auxiliary annotations can be effectively computed
(e.g. loop invariants)
But . . .

“easily” generated invariants use Gödelisaion
are useless in practice

VC in Practice

Verifying Compilers are not relatively complete

User has to provide the right auxiliary annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 44/54



Completeness: Theory vs. Practice

Verifying Compiler in Theory

There exist Verifying Compilers that are relatively complete

For these, providing P+REQ is sufficient

All auxiliary annotations can be effectively computed
(e.g. loop invariants)
But . . .

“easily” generated invariants use Gödelisaion
are useless in practice

VC in Practice

Verifying Compilers are not relatively complete

User has to provide the right auxiliary annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 44/54



Completeness: Theory vs. Practice

Verifying Compiler in Theory

There exist Verifying Compilers that are relatively complete

For these, providing P+REQ is sufficient

All auxiliary annotations can be effectively computed
(e.g. loop invariants)
But . . .

“easily” generated invariants use Gödelisaion
are useless in practice

VC in Practice

Verifying Compilers are not relatively complete

User has to provide the right auxiliary annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 44/54



Completeness: Theory vs. Practice

Verifying Compiler in Theory

There exist Verifying Compilers that are relatively complete

For these, providing P+REQ is sufficient

All auxiliary annotations can be effectively computed
(e.g. loop invariants)
But . . .

“easily” generated invariants use Gödelisaion
are useless in practice

VC in Practice

Verifying Compilers are not relatively complete

User has to provide the right auxiliary annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 44/54



Completeness: Theory vs. Practice

Verifying Compiler in Theory

There exist Verifying Compilers that are relatively complete

For these, providing P+REQ is sufficient

All auxiliary annotations can be effectively computed
(e.g. loop invariants)
But . . .

“easily” generated invariants use Gödelisaion
are useless in practice

VC in Practice

Verifying Compilers are not relatively complete

User has to provide the right auxiliary annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 44/54



Completeness: Theory vs. Practice

Verifying Compiler in Theory

There exist Verifying Compilers that are relatively complete

For these, providing P+REQ is sufficient

All auxiliary annotations can be effectively computed
(e.g. loop invariants)
But . . .

“easily” generated invariants use Gödelisaion
are useless in practice

VC in Practice

Verifying Compilers are not relatively complete

User has to provide the right auxiliary annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 44/54



Completeness: Theory vs. Practice

Verifying Compiler in Theory

There exist Verifying Compilers that are relatively complete

For these, providing P+REQ is sufficient

All auxiliary annotations can be effectively computed
(e.g. loop invariants)
But . . .

“easily” generated invariants use Gödelisaion
are useless in practice

VC in Practice

Verifying Compilers are not relatively complete

User has to provide the right auxiliary annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 44/54



Completeness: Theory vs. Practice

Verifying Compiler in Theory

There exist Verifying Compilers that are relatively complete

For these, providing P+REQ is sufficient

All auxiliary annotations can be effectively computed
(e.g. loop invariants)
But . . .

“easily” generated invariants use Gödelisaion
are useless in practice

VC in Practice

Verifying Compilers are not relatively complete

User has to provide the right auxiliary annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 44/54



The VCC Toolchain

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 45/54



Completeness of Verifying Compilers

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 46/54



Annotation Completeness

Annotation Completeness of Verifying Compilers

(`S,ThS) is annotation complete if,
for each program P and specification REQ with

|= P+REQ ,

there is

a set AUX of annotations,

a set Arith of valid arithmetical formulas

such that
ThS ∪Arith `S P+(REQ∪AUX) .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 47/54



Insights and Conclusions



Conclusions I: Success!

Success!

Verification of microkernel
– i.e., complex concurrent C code –
possible with VCC

Rely-guarantee is a successful approach for verifying concurrent C

Modern SMT solvers are powerful

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 49/54



Conclusions I: Success!

Success!

Verification of microkernel
– i.e., complex concurrent C code –
possible with VCC

Rely-guarantee is a successful approach for verifying concurrent C

Modern SMT solvers are powerful

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 49/54



Conclusions I: Success!

Success!

Verification of microkernel
– i.e., complex concurrent C code –
possible with VCC

Rely-guarantee is a successful approach for verifying concurrent C

Modern SMT solvers are powerful

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 49/54



Conclusions II: But . . .

Effort

Specifying and verifying complex systems is still a huge effort

In particular if the system is not built with verification in mind

VCC (and similar tools) . . .

are not “push button”

are not ideal for developing top-level models

Not a good idea . . .

to a use tool while it is being developed for complex verification task

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 50/54



Conclusions II: But . . .

Effort

Specifying and verifying complex systems is still a huge effort

In particular if the system is not built with verification in mind

VCC (and similar tools) . . .

are not “push button”

are not ideal for developing top-level models

Not a good idea . . .

to a use tool while it is being developed for complex verification task

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 50/54



Conclusions II: But . . .

Effort

Specifying and verifying complex systems is still a huge effort

In particular if the system is not built with verification in mind

VCC (and similar tools) . . .

are not “push button”

are not ideal for developing top-level models

Not a good idea . . .

to a use tool while it is being developed for complex verification task

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 50/54



Conclusions II: But . . .

Effort

Specifying and verifying complex systems is still a huge effort

In particular if the system is not built with verification in mind

VCC (and similar tools) . . .

are not “push button”

are not ideal for developing top-level models

Not a good idea . . .

to a use tool while it is being developed for complex verification task

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 50/54



Conclusions II: But . . .

Effort

Specifying and verifying complex systems is still a huge effort

In particular if the system is not built with verification in mind

VCC (and similar tools) . . .

are not “push button”

are not ideal for developing top-level models

Not a good idea . . .

to a use tool while it is being developed for complex verification task

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 50/54



Conclusion III:
What Users Need to Know about
Internals of Tools

In Theory
Users do not need knowledge about internals

In Practice

To provide useful annotations, users need. . .

knowledge about how to influence proof search
to be aware of the distinction between

requirement and auxiliary annotations
essential and non-essential annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 51/54



Conclusion III:
What Users Need to Know about
Internals of Tools

In Theory
Users do not need knowledge about internals

In Practice

To provide useful annotations, users need. . .

knowledge about how to influence proof search
to be aware of the distinction between

requirement and auxiliary annotations
essential and non-essential annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 51/54



Conclusion III:
What Users Need to Know about
Internals of Tools

In Theory
Users do not need knowledge about internals

In Practice

To provide useful annotations, users need. . .

knowledge about how to influence proof search
to be aware of the distinction between

requirement and auxiliary annotations
essential and non-essential annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 51/54



Conclusion III:
What Users Need to Know about
Internals of Tools

In Theory
Users do not need knowledge about internals

In Practice

To provide useful annotations, users need. . .

knowledge about how to influence proof search
to be aware of the distinction between

requirement and auxiliary annotations
essential and non-essential annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 51/54



Conclusion III:
What Users Need to Know about
Internals of Tools

In Theory
Users do not need knowledge about internals

In Practice

To provide useful annotations, users need. . .

knowledge about how to influence proof search
to be aware of the distinction between

requirement and auxiliary annotations
essential and non-essential annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 51/54



Conclusion III:
What Users Need to Know about
Internals of Tools

In Theory
Users do not need knowledge about internals

In Practice

To provide useful annotations, users need. . .

knowledge about how to influence proof search
to be aware of the distinction between

requirement and auxiliary annotations
essential and non-essential annotations

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 51/54



Requirement vs. Auxiliary Specification

Annotations serve different purposes

Requirement specification: Express the properties to be verified

Auxiliary annotations: Provide knowledge about the program
Support the verification process / finding a proof

Two kinds of auxiliary annotations

Needed for efficiency (lemmas):

Allows shorter and/or easier to find proofs
Not needed for the existence of a proof

Essential: Needed for the existence of a proof:
loop invariants, assignable clauses, . . .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 52/54



Requirement vs. Auxiliary Specification

Annotations serve different purposes

Requirement specification: Express the properties to be verified

Auxiliary annotations: Provide knowledge about the program
Support the verification process / finding a proof

Two kinds of auxiliary annotations

Needed for efficiency (lemmas):

Allows shorter and/or easier to find proofs
Not needed for the existence of a proof

Essential: Needed for the existence of a proof:
loop invariants, assignable clauses, . . .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 52/54



Requirement vs. Auxiliary Specification

Annotations serve different purposes

Requirement specification: Express the properties to be verified

Auxiliary annotations: Provide knowledge about the program
Support the verification process / finding a proof

Two kinds of auxiliary annotations

Needed for efficiency (lemmas):

Allows shorter and/or easier to find proofs
Not needed for the existence of a proof

Essential: Needed for the existence of a proof:
loop invariants, assignable clauses, . . .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 52/54



Requirement vs. Auxiliary Specification

Annotations serve different purposes

Requirement specification: Express the properties to be verified

Auxiliary annotations: Provide knowledge about the program
Support the verification process / finding a proof

Two kinds of auxiliary annotations

Needed for efficiency (lemmas):

Allows shorter and/or easier to find proofs
Not needed for the existence of a proof

Essential: Needed for the existence of a proof:
loop invariants, assignable clauses, . . .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 52/54



Requirement vs. Auxiliary Specification

Annotations serve different purposes

Requirement specification: Express the properties to be verified

Auxiliary annotations: Provide knowledge about the program
Support the verification process / finding a proof

Two kinds of auxiliary annotations

Needed for efficiency (lemmas):

Allows shorter and/or easier to find proofs
Not needed for the existence of a proof

Essential: Needed for the existence of a proof:
loop invariants, assignable clauses, . . .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 52/54



Requirement vs. Auxiliary Specification

Annotations serve different purposes

Requirement specification: Express the properties to be verified

Auxiliary annotations: Provide knowledge about the program
Support the verification process / finding a proof

Two kinds of auxiliary annotations

Needed for efficiency (lemmas):

Allows shorter and/or easier to find proofs
Not needed for the existence of a proof

Essential: Needed for the existence of a proof:
loop invariants, assignable clauses, . . .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 52/54



Requirement vs. Auxiliary Specification

Annotations serve different purposes

Requirement specification: Express the properties to be verified

Auxiliary annotations: Provide knowledge about the program
Support the verification process / finding a proof

Two kinds of auxiliary annotations

Needed for efficiency (lemmas):

Allows shorter and/or easier to find proofs
Not needed for the existence of a proof

Essential: Needed for the existence of a proof:
loop invariants, assignable clauses, . . .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 52/54



Requirement vs. Auxiliary Specification

Annotations serve different purposes

Requirement specification: Express the properties to be verified

Auxiliary annotations: Provide knowledge about the program
Support the verification process / finding a proof

Two kinds of auxiliary annotations

Needed for efficiency (lemmas):

Allows shorter and/or easier to find proofs
Not needed for the existence of a proof

Essential: Needed for the existence of a proof:
loop invariants, assignable clauses, . . .

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 52/54



Conclusions IV: The Bottle-Neck Now

Bottle-neck now:

Specification (methodologies, formalisms) for

useful low-level spec

adequate abstract model
(important for verification but also certification)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 53/54



Conclusions IV: The Bottle-Neck Now

Bottle-neck now:

Specification (methodologies, formalisms) for

useful low-level spec

adequate abstract model
(important for verification but also certification)

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 53/54



Thank you
for your attention!

KIT COST Action Intro Verisoft I Verisoft XT Concurrency Completeness Conclusions

Bernhard Beckert – Formal Verification of System Software SVARM, 21.07.10 54/54


	KIT
	Merger
	Figures

	COST Action
	What is the Action About?
	Objectives

	Introduction
	System Software
	Requirements

	Verisoft I
	Overview of Project
	bbb
	Structure of Email Client
	A Fully Verified Computer System

	Verisoft XT
	VerisoftXT and PikeOS Overview
	VCC
	Example Specification (Sequential)
	Structure of the Overall Proof
	Achievements
	Insights

	Handling Concurrency
	Example
	Specification (Sequential)

	Completeness of Verifying Compilers
	Relative Completeness

	Insights and Conclusions
	Requirements


