Efficient Model Checking of PSL Safety
Properties

Tuomas Launiainen, Keijo Heljanko, Tommi Junttila

April 3, 2011

Introduction

Model checking safety properties

Results

Conclusions

Motivation

» Safety properties are an important subclass of temporal
properties. Intuitively they are properties whose violation is of
the type “something bad happened” as opposed to
“something good did not happen”.

» Model checking safety properties, especially with BDDs, can
be done more efficiently than general properties (Hardin et al.
Formal Methods in System Design vol. 18, no. 2, 2001).

» Our approach handles PSL safety properties more efficiently
than a general purpose checker.

Overview

| Property —=| Observer |

Model
Checking

» Known way of dealing with safety properties

» Observer is a finite state automaton that accepts
counter-examples

PSL

PSL (Property Specification Language) is an industry standard
language for specifying temporal properties, i.e. statements about
values (or signals) that change over time.

PSL operators
Boolean connectives: V, —, etc.
G globally F finally X next
U until R releases
Sequential regular expressions: catenation, Kleene star, etc.
— tail implication ¢— tail conjunction

Transducers

» Transducers are a variant of finite state automata; their state
is represented by a set of boolean variables.

» Their transition relation is symbolic.

» Transducers also have initial and final states, but the final
states cannot be thought of as accepting.

» In addition to state variables, transducers have input variables.
One of the state variables is the output variable, through
which accepting is done.

» Transducers can be combined by plugging the output variable
of one to an input variable of another.

Transducer example

Transducer for the formula X i (g is the output variable and the
only state variable):

All states are initial, @ and {/} are final.

Tail implication

» The tail implication r — ¢ states that whenever a match is
found for r, ¢ must hold

» Example: open;read*; close — X G stopped

open read close stopped

open read fail deadlock

Transducer for tail implication

The tail implication r — ¢ states that whenever a match for r is
found, ¢ must hold. A transducer for the formula can be
constructed in the following way:

» An automaton is constructed for r.
» Multiple copies are simulated in the transducer.

» When a simulated copy reaches an accepting state, ¢ must
hold.

» The states of the automaton for r are the state variables. The
variable corresponding to the initial state is the output
variable.

Transducer for tail implication example

Example formula: open; read*;close — X G stopped

AA
open J

read —
close

stopped

Results

Results with real life PSL safety formulas with random-generated

parts:
1000 F =4 1000 L i
5 5
£ 3
£ o0 p 4£ 100} 4
£ £
a -
3 <
3 N
> >
. 42
= 0 g or RE
2 z
§ 5
= =
§ 1L 4 1k 1
3 g
£ + 5
£ LI H
5 + s
) . s
E o4 7 ve L B £
= 1E LI i 46 o1t J
g * ARSI St St g e
2 + o+ ++ Hy o 11
O L T AU S 8 +1
TH LT Lo i
Yoot i
001 \ \ \ \ | 0.01 \ \ \ \ |
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000

BDD implementation from Cimatti et al. (TCAD 2008) SBMC implementation from Cimatti et al. (TCAD 2008)

Results

Results with real life

models and random-generated safety formulas:

r r
100 L True |0 /] 100 L Tue ||
False False
:
2
s e ' £
2 10} - 45 top B
@
o 2 N
< * M £ o
o o/ + > +
> 2 " + s q +
2 z a
£ T ‘et 1§ r]
2 LoF E
< it s
s . + s
8 LA et . 5 & +8
] o+ s
H - A 5
2 £ +
g 8
g oop 42 o1p . B
= om +@ + * o F +
a g 7 = o
o o
w =] +
o+ o 4+
001 L L L 1 0.01 L L . L
0.01 01 1 10 100 0.01 0.1 1 10 100

BDD implementation from Cimatti et al. (TCAD 2008)

SBMC implementation from Cimatti et al. (TCAD 2008)

Conclusion

» Safety properties are an important subclass of specifications
that can be dealt with more efficiently than general properties.

» PSL is an industry standard specification language whose
safety properties have been specially dealt with only if they
are written in the syntactically restricted safety simple subset.

» Our approach is an efficient way to deal with PSL safety
properties.

» Our implementation is freely available and works with the
open source model checking tool NuSMV.

References

» Cindy Eisner and Dana Fisman. Structural contradictions. In
Proc. HVC 2008, volume 5394 of Lecture Notes in Computer
Science, pages 164-178. Springer, 2008.

» Alessandro Cimatti, Marco Roveri, and Stefano Tonetta.
Symbolic compilation of PSL. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
27(10):1737-1750, 2008.

» A. Pnueli and A. Zaks. On the merits of temporal testers. 25
Years of Model Checking, pages 172-195, 2008.

	Introduction
	Model checking safety properties
	Results
	Conclusions

