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Motivation

» Safety properties are an important subclass of temporal
properties. Intuitively they are properties whose violation is of
the type “something bad happened” as opposed to
“something good did not happen”.

» Model checking safety properties, especially with BDDs, can
be done more efficiently than general properties (Hardin et al.
Formal Methods in System Design vol. 18, no. 2, 2001).

» Our approach handles PSL safety properties more efficiently
than a general purpose checker.



Overview

| Property —=| Observer |

Model
Checking

» Known way of dealing with safety properties

» Observer is a finite state automaton that accepts
counter-examples



PSL

PSL (Property Specification Language) is an industry standard
language for specifying temporal properties, i.e. statements about
values (or signals) that change over time.

PSL operators
Boolean connectives: V, —, etc.
G globally F finally X next
U until R releases
Sequential regular expressions: catenation, Kleene star, etc.
—  tail implication ¢— tail conjunction




Transducers

» Transducers are a variant of finite state automata; their state
is represented by a set of boolean variables.

» Their transition relation is symbolic.

» Transducers also have initial and final states, but the final
states cannot be thought of as accepting.

» In addition to state variables, transducers have input variables.
One of the state variables is the output variable, through
which accepting is done.

» Transducers can be combined by plugging the output variable
of one to an input variable of another.



Transducer example

Transducer for the formula X i (g is the output variable and the
only state variable):

All states are initial, @ and {/} are final.



Tail implication

» The tail implication r — ¢ states that whenever a match is
found for r, ¢ must hold

» Example: open;read*; close — X G stopped

open read close stopped

open read fail deadlock




Transducer for tail implication

The tail implication r — ¢ states that whenever a match for r is
found, ¢ must hold. A transducer for the formula can be
constructed in the following way:

» An automaton is constructed for r.
» Multiple copies are simulated in the transducer.

» When a simulated copy reaches an accepting state, ¢ must
hold.

» The states of the automaton for r are the state variables. The
variable corresponding to the initial state is the output
variable.



Transducer for tail implication example

Example formula: open; read*;close — X G stopped

AA
open J

read —
close

stopped



Results

Results with real life PSL safety formulas with random-generated

parts:
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Results

Results with real life

models and random-generated safety formulas:

r r
100 L True |0 /] 100 L Tue ||
False False
:
2
s e ' £
2 10} - 45 top B
@
o 2 N
< * M £ o
o o/ + > +
> 2 " + s q +
2 z a
£ T ‘et 1§ r ]
2 LoF E
< it s
s . + s
8 LA et . 5 & +8
] o+ s
H - A 5
2 £ +
g 8
g oop 42 o1p . B
= om +@ + * o F +
a g 7 = o
o o
w =] +
o+ o 4+
001 L L L 1 0.01 L L . L
0.01 01 1 10 100 0.01 0.1 1 10 100

BDD implementation from Cimatti et al. (TCAD 2008)

SBMC implementation from Cimatti et al. (TCAD 2008)



Conclusion

» Safety properties are an important subclass of specifications
that can be dealt with more efficiently than general properties.

» PSL is an industry standard specification language whose
safety properties have been specially dealt with only if they
are written in the syntactically restricted safety simple subset.

» Our approach is an efficient way to deal with PSL safety
properties.

» Our implementation is freely available and works with the
open source model checking tool NuSMV.
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