
Efficient Model Checking of PSL Safety
Properties

Tuomas Launiainen, Keijo Heljanko, Tommi Junttila

April 3, 2011

Introduction

Model checking safety properties

Results

Conclusions

Motivation

I Safety properties are an important subclass of temporal
properties. Intuitively they are properties whose violation is of
the type “something bad happened” as opposed to
“something good did not happen”.

I Model checking safety properties, especially with BDDs, can
be done more efficiently than general properties (Hardin et al.
Formal Methods in System Design vol. 18, no. 2, 2001).

I Our approach handles PSL safety properties more efficiently
than a general purpose checker.

Overview

Model
Checking

Property Observer

Model

I Known way of dealing with safety properties

I Observer is a finite state automaton that accepts
counter-examples

PSL

PSL (Property Specification Language) is an industry standard
language for specifying temporal properties, i.e. statements about
values (or signals) that change over time.

PSL operators
Boolean connectives: ∨, ¬, etc.

G globally F finally X next
U until R releases

Sequential regular expressions: catenation, Kleene star, etc.

7→ tail implication �→ tail conjunction

Transducers

I Transducers are a variant of finite state automata; their state
is represented by a set of boolean variables.

I Their transition relation is symbolic.

I Transducers also have initial and final states, but the final
states cannot be thought of as accepting.

I In addition to state variables, transducers have input variables.
One of the state variables is the output variable, through
which accepting is done.

I Transducers can be combined by plugging the output variable
of one to an input variable of another.

Transducer example

Transducer for the formula X i (q is the output variable and the
only state variable):

{i}
{q}

{q, i}
∅

All states are initial, ∅ and {i} are final.

Tail implication

I The tail implication r 7→ φ states that whenever a match is
found for r , φ must hold

I Example: open; read∗; close 7→ X G stopped

open read close stopped

open read fail deadlock

Transducer for tail implication

The tail implication r 7→ φ states that whenever a match for r is
found, φ must hold. A transducer for the formula can be
constructed in the following way:

I An automaton is constructed for r .

I Multiple copies are simulated in the transducer.

I When a simulated copy reaches an accepting state, φ must
hold.

I The states of the automaton for r are the state variables. The
variable corresponding to the initial state is the output
variable.

Transducer for tail implication example

Example formula: open; read∗; close 7→ X G stopped

read
X

G

open

stopped

7→

close

Results

Results with real life PSL safety formulas with random-generated
parts:

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

BD
D

im
pl

em
en

ta
tio

n
fro

m
 N

uS
M

V
2.

4.
3

wi
th

 o
bs

er
ve

r

BDD implementation from Cimatti et al. (TCAD 2008)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

SB
M

C
im

pl
em

en
ta

tio
n

fro
m

 N
uS

M
V

2.
4.

3
wi

th
 o

bs
er

ve
r

SBMC implementation from Cimatti et al. (TCAD 2008)

Results

Results with real life models and random-generated safety formulas:

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

BD
D

 im
pl

em
en

ta
tio

n
fro

m
 N

uS
M

V
2.

4.
3

w
ith

 o
bs

er
ve

r

BDD implementation from Cimatti et al. (TCAD 2008)

True
False

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

SB
M

C
 im

pl
em

en
ta

tio
n

fro
m

 N
uS

M
V

2.
4.

3
w

ith
 o

bs
er

ve
r

SBMC implementation from Cimatti et al. (TCAD 2008)

True
False

Conclusion

I Safety properties are an important subclass of specifications
that can be dealt with more efficiently than general properties.

I PSL is an industry standard specification language whose
safety properties have been specially dealt with only if they
are written in the syntactically restricted safety simple subset.

I Our approach is an efficient way to deal with PSL safety
properties.

I Our implementation is freely available and works with the
open source model checking tool NuSMV.

References

I Cindy Eisner and Dana Fisman. Structural contradictions. In
Proc. HVC 2008, volume 5394 of Lecture Notes in Computer
Science, pages 164–178. Springer, 2008.

I Alessandro Cimatti, Marco Roveri, and Stefano Tonetta.
Symbolic compilation of PSL. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
27(10):1737–1750, 2008.

I A. Pnueli and A. Zaks. On the merits of temporal testers. 25
Years of Model Checking, pages 172–195, 2008.

	Introduction
	Model checking safety properties
	Results
	Conclusions

