# Craig Interpolation for Integer Arithmetic, Uninterpreted Functions, and the Theory of Arrays 

# Angelo Brillout ${ }^{1}$ Daniel Kroening ${ }^{2}$ Jérôme Leroux ${ }^{3}$ Philipp Rümmer ${ }^{4}$ Thomas Wahl ${ }^{2}$ 

${ }^{1}$ ETH Zurich<br>${ }^{2}$ University of Oxford<br>${ }^{3}$ Laboratoire Bordelais de Recherche en Informatique<br>${ }^{4}$ Uppsala University

SVARM, April 2nd, 2011

## Motivation: inference of invariants

## Generic verification problem ("safety")

$$
\text { \{ pre \} while (*) Body \{ post \} }
$$

Standard approach: loop rule using invariant

$$
\frac{\text { pre } \Rightarrow \phi \quad\{\phi\} \text { Body }\{\phi\} \quad \phi \Rightarrow \text { post }}{\{\text { pre }\} \text { while (*) Body \{ post \}}}
$$

How to compute $\phi$ automatically?

## From intermediate assertions to invariants

$$
\text { \{pre\} Body; Body \{post\} ? }
$$

Bounded model checking problem

Compute intermediate assertion $\psi_{1}$

$$
\left.\{\text { pre }\} \text { Body }\left\{\psi_{1}\right\} \quad\left\{\psi_{1}\right\} \text { Body \{post }\right\}
$$

[McMillan, 2003]

## From intermediate assertions to invariants

$$
\text { \{pre\} Body; Body \{post\} ? }
$$

Bounded model checking problem

Compute intermediate assertion $\psi_{1}$

$$
\begin{aligned}
& \text { \{pre } \left.\} \text { Body }\left\{\psi_{1}\right\} \quad\left\{\psi_{1}\right\} \text { Body \{post }\right\} \\
& {\left[\psi_{1} \Rightarrow \text { pre }\right]} \\
& \text { pre is invariant }
\end{aligned}
$$

[McMillan, 2003]

## From intermediate assertions to invariants

$$
\text { \{pre\} Body; Body \{post\} ? }
$$

Bounded model checking problem

Compute intermediate assertion $\psi_{1}$

$$
\begin{array}{lc}
\text { \{pre }\} \text { Body }\left\{\psi_{1}\right\} & \left.\left\{\psi_{1}\right\} \text { Body \{post }\right\} \\
{\left[\psi_{1} \Rightarrow\right. \text { pre] }} & \text { [otherwise] } \\
\text { pre is invariant }
\end{array}
$$

## From intermediate assertions to invariants

$$
\left.\left\{\text { pre } \vee \psi_{1}\right\} \text { Body; Body \{post }\right\} \text { ? }
$$

## Bounded model checking problem

Compute intermediate assertion $\psi_{2}$

$$
\begin{array}{cc}
\left\{\text { pre } \vee \psi_{1}\right\} \text { Body }\left\{\psi_{2}\right\} & \left.\left\{\psi_{2}\right\} \text { Body \{post }\right\} \\
{\left[\psi_{1} \Rightarrow\right. \text { pre] }} & \text { [otherwise] } \\
\text { pre is invariant } &
\end{array}
$$

## From intermediate assertions to invariants

$$
\left.\left\{\text { pre } \vee \psi_{1}\right\} \text { Body; Body \{post }\right\} \text { ? }
$$

## Bounded model checking problem

Compute intermediate assertion $\psi_{2}$

$$
\begin{array}{lc}
\text { \{pre } \left.\vee \psi_{1}\right\} \text { Body }\left\{\psi_{2}\right\} & \left.\left\{\psi_{2}\right\} \text { Body \{post }\right\} \\
{\left[\psi_{2} \Rightarrow \text { pre } \vee \psi_{1}\right]} & \text { [otherwise] } \\
\text { pre } \vee \psi_{1} \text { is invariant } &
\end{array}
$$

## From intermediate assertions to invariants

$$
\left.\left\{\text { pre } \vee \psi_{1}\right\} \text { Body; Body \{post }\right\} \text { ? }
$$

## Bounded model checking problem

Compute intermediate assertion $\psi_{2}$

$$
\begin{aligned}
& \left\{\text { pre } \vee \psi_{1}\right\} \text { Body }\left\{\psi_{2}\right\}
\end{aligned} \quad\left\{\psi_{2}\right\} \text { Body }\{\text { post }\}
$$

[McMillan, 2003]

## How to compute intermediate assertions?

| VC generation |  |
| :---: | :---: |
|  | - |
| \{ pre \} | pre ( $s_{0}$ ) |
| Body; | $\rightarrow \operatorname{Body}\left(s_{0}, s_{1}\right)$ |
| Body | $\rightarrow \operatorname{Body}\left(s_{1}, s_{2}\right)$ |
| \{ post \} | $\rightarrow$ post ( $s_{2}$ ) |

## How to compute intermediate assertions?



## Theorem (Craig, 1957)

Suppose $A \Rightarrow C$ is a valid implication. Then there is a formula I (an interpolant) such that

- $A \Rightarrow I$ and $I \Rightarrow C$ are valid,
- every non-logical symbol of I occurs in both $A$ and $C$.


## How to compute intermediate assertions?



## Theorem (Craig, 1957)

Suppose $A \Rightarrow C$ is a valid implication. Then there is a formula I (an interpolant) such that

- $A \Rightarrow I$ and $I \Rightarrow C$ are valid,
- every non-logical symbol of I occurs in both $A$ and $C$.


## How to compute intermediate assertions?



## Theorem (Craig, 1957)

Suppose $A \Rightarrow C$ is a valid implication. Then there is a formula I (an interpolant) such that

- $A \Rightarrow I$ and $I \Rightarrow C$ are valid,
- every non-logical symbol of I occurs in both $A$ and $C$.

Interpolant I can be computed from proofs of $A \Rightarrow C$

## Interpolation + theories

Interpolation procedures need to support the program logic:

| $\operatorname{int} a[], i ;$ |
| :--- |
| $\max =a[0] ;$ |
| for $(i=1 ; i<n ;++i)$ |
| $\quad$ if $(a[i]>\max )$ |
| $\max =a[i] ;$ |
| $\operatorname{assert}(\max >=a[i / 2]) ;$ |

E.g., combined use of linear integer arithmetic and arrays

## Theories investigated by us

- Quantifier-free Presburger Arithmetic (PA) (linear integer arithmetic)
[IJCAR, 2010]
[LPAR, 2010]
$+$
- Quantifiers (Q)
[VERIFY, 2010]
- Uninterpreted predicates (UP)
- Uninterpreted functions (UF)
- Arrays (AR)


## Theories investigated by us

- Quantifier-free Presburger Arithmetic (PA) (linear integer arithmetic)
[IJCAR, 2010]
[LPAR, 2010]
$+$
- Quantifiers (Q)
- Uninterpreted predicates (UP)
- Uninterpreted functions (UF)
- Arrays (AR)


## Interpolation outline



Craig interpolant $A \Rightarrow I \Rightarrow C$

## Interpolation outline



Craig interpolant $A \Rightarrow I \Rightarrow C$

## Underlying calculus for Presburger Arithmetic

- Gentzen-style sequent calculus for PA
[LPAR, 2008]

|  | Calculus rules | Possible procedures |
| :---: | :---: | :---: |
| Equalities | Linear combination, <br> fresh constants | Omega eq. elimination, <br> Smith decomposition |
| Inequalities | Linear combination, <br> rounding, ineq. splitting | Omega test, <br> Simplex + Gomory cuts <br> + branch-and-bound |
| Prop. logic | Standard Gentzen propositional rules |  |

## Interpolation outline

## QFPA implication $A \Rightarrow C$



Interpolating proof of $A \Rightarrow C$

Craig interpolant $A \Rightarrow I \Rightarrow C$

## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$

$$
\frac{\frac{\Gamma_{3} \vdash \Delta_{3}}{\Gamma_{2} \vdash \Delta_{2}}}{\frac{\Gamma_{1} \vdash \Delta_{1}}{\vdots}} \begin{gathered}
A \vdash C
\end{gathered}
$$

## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$
annotation of

formulae with labels $\uparrow$| $\frac{\Gamma_{3} \vdash \Delta_{3}}{\Gamma_{2} \vdash \Delta_{2}}$ |
| :---: |
|  |
|  |
|  |
| $1 \vdash \Delta_{1}$ |
| $\vdots$ |

## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$


## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$


## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$


## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$

$$
\begin{gathered}
\stackrel{*}{\vdots} \\
\frac{\Gamma_{3}^{*} \vdash \Delta_{3}^{*}}{\Gamma_{2}^{*} \vdash \Delta_{2}^{*}} \\
\Gamma_{1}^{*} \vdash \Delta_{1}^{*} \\
\vdots \\
\lfloor A\rfloor_{L} \stackrel{\vdash}{ }\lfloor C\rfloor_{R}
\end{gathered}
$$

## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$


## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$


## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$


## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$


## Basic idea of proof lifting

Interpolation problem: $A \Rightarrow I \Rightarrow C$


## Properties of the interpolating calculus

## Lemma (Soundness)

The annotation at the root of a closed proof is a valid interpolant.

## Lemma (Completeness)

Every proof can be lifted to an interpolating proof. This implies: completeness for PA.

## Generality

Applicable to various procedures:

- Simplex + cuts
(cf. [Griggio, Le, Sebastiani, 2011])
- Omega test


## Properties of the interpolating calculus

## Lemma (Soundness)

The annotation at the root of a closed proof is a valid interpolant.

## Lemma (Completeness)

Every proof can be lifted to an interpolating proof. This implies: completeness for PA.

## Generality

Applicable to various procedures:

- Simplex + cuts (cf. [Griggio, Le, Sebastiani, 2011])
- Omega test

Can be generalised to further theories ...

## Beyond Presburger Arithmetic

- Quantifier-free Presburger Arithmetic (PA) (linear integer arithmetic)
[IJCAR, 2010]
[LPAR, 2010]
$+$
- Quantifiers (Q)
- Uninterpreted predicates (UP)
- Uninterpreted functions (UF)
- Arrays (AR)


## Fragments of extensions of Presburger Arithmetic

Considered logics:

- PA+UP, PA+UF: PA + unint. predicates/functions
- QPA+UP, QPA+UF: PA + quantifiers $+\cdots$
- PA+AR:

PA + select, store functions

$$
\begin{aligned}
& \phi::=t=t|t \leq t| \alpha|t| p(\bar{t})|\phi \wedge \phi| \phi \vee \phi|\neg \phi| \forall x . \phi \mid \exists x . \phi \\
& t::=\alpha|c| x|\alpha t+\cdots+\alpha t| f(\bar{t})
\end{aligned}
$$

## Interesting questions

- Closure under interpolation
- Practical interpolation procedures


## Definition

Logic $L$ is closed under interpolation if for all $A, B \in F$ such that $A \Rightarrow B$, there is an interpolant expressible in $L$.
[Kapur et al, 2006: "L is interpolating"]

## Known results

(Q)PA $\quad \Rightarrow \quad$ closed under interpolation (as it allows quantifier elimination)

PA $+A R \quad \Rightarrow$ not closed
(not even without PA, [Kapur et al, 2006])
QPA+AR $\quad \Rightarrow$ closed
(add quantifiers for local variables)
QPA+UP $\Rightarrow$ not closed
QPA + UF (since interpolation could simulate second-order quantifier elimination)

## Known results

(Q)PA $\quad \Rightarrow \quad$ closed under interpolation (as it allows quantifier elimination)

PA $+A R \quad \Rightarrow$ not closed (not even without PA, [Kapur et al, 2006])

QPA+AR $\quad \Rightarrow$ closed (add quantifiers for local variables)

QPA+UP $\Rightarrow$ not closed
QPA+UF (since interpolation could simulate second-order quantifier elimination)

PA+UP $\quad \Rightarrow \quad$ ?
$\mathrm{PA}+\mathrm{UF} \quad \Rightarrow$ ?

## New negative result

## Theorem

$P A+U P$ is not closed under interpolation.
(Similarly for PA+UF)

## New negative result

## Theorem

$P A+U P$ is not closed under interpolation.
(Similarly for PA+UF)

Example

$$
\phi \quad:: \quad(2 c=y \wedge p(c)) \quad \Rightarrow \quad(2 d=y \Rightarrow p(d))
$$

Interpolants: strongest: $\quad I_{1}: \exists c .(2 c=y \wedge p(c))$

$$
\text { weakest: } \quad I_{2}: \quad \forall d .(2 d=y \Rightarrow p(d))
$$

No quantifier-free interpolants exist!

## Closure results

(Q)PA $\quad \Rightarrow \quad$ closed under interpolation (as it allows quantifier elimination)

PA $+A R \quad \Rightarrow$ not closed (not even without PA, [Kapur et al, 2006])

QPA+AR $\quad \Rightarrow$ closed (add quantifiers for local variables)

QPA+UP $\Rightarrow$ not closed
QPA+UF (since interpolation could simulate second-order quantifier elimination)

PA+UP $\quad \Rightarrow$ not closed
PA+UF $\quad \Rightarrow$ not closed

## Positive results

## Lemma (interpolants with quantifiers)

If $A \Rightarrow B$ is a valid $P A+U P$ formula, then there is a $Q P A+U P$ interpolant $A \Rightarrow I \Rightarrow B$.
(Similarly for $P A+U F, P A+A R$.)

Theorem (extension of PA+UP)
There is a (natural) extension of PA+UP that is

- decidable, and
- closed under interpolation.
(Similarly for PA+UF.)


## How to close PA+UP under interpolation

Consider example:

$$
\phi \quad:: \quad(2 c=y \wedge p(c)) \quad \Rightarrow \quad(2 d=y \Rightarrow p(d))
$$

"Feels-like interpolant": $p\left(\frac{y}{2}\right)$

## How to close PA+UP under interpolation

Consider example:

$$
\phi \quad:: \quad(2 c=y \wedge p(c)) \quad \Rightarrow \quad(2 d=y \Rightarrow p(d))
$$

"Feels-like interpolant": $p\left(\frac{y}{2}\right)$

## Definition

PAID $+U P=P A+U P$ plus guarded quantification:

$$
\exists x \cdot(\alpha x=t \wedge \phi) \quad \forall x \cdot(\alpha x=t \Rightarrow \phi) \quad(\alpha \neq 0, x \text { not in } t)
$$

## How to close PA+UP under interpolation

Consider example:

$$
\phi \quad:: \quad(2 c=y \wedge p(c)) \quad \Rightarrow \quad(2 d=y \Rightarrow p(d))
$$

"Feels-like interpolant": $p\left(\frac{y}{2}\right)$

## Definition

PAID $+U P=P A+U P$ plus guarded quantification:

$$
\exists x \cdot(\alpha x=t \wedge \phi) \quad \forall x \cdot(\alpha x=t \Rightarrow \phi) \quad(\alpha \neq 0, x \text { not in } t)
$$

Is this just to accommodate $\phi$ 's interpolant??

## Interpolating in PAID+UP

## Theorem

PAID $+U P$ is closed under interpolation.
(Similarly for PAID+UF)

## Proof:

1. Define a restricted version of our calculus that only generates PAID+UP interpolants

- Only unify atoms $p(\bar{s}), p(\bar{t})$ or terms $f(\bar{s}), f(\bar{t})$ if $\bar{s}=\bar{t}$ has been derived

2. Show that the restricted calculus is still complete for PAID+UP

## Summary of logics



## What do we have?

- Sound + complete interpolating calculus for PAID+UP, PAID+UF, PAID+AR
- Generated interpolants stay within PAID+UP, PAID+UF, QPA+AR
- Calculus is close to procedures used in SMT solvers
- Combinations UP +UF +AR are straightforward

Future directions:

- Extensions of PAID+AR closed under interpolation? (+ decidable)
- Implementations
- Integration in Yorsh + Musuvathi's combination framework?


## Related work: integer arithmetic interpolation

- Reduction to FOL [Kapur, Majumdar, Zarba, 2006]
- Simplex-based
[Lynch, Tang, 2008]
- Sequent calculus-based [Brillout, Kroening, Rümmer, Wahl, 2010]
- Again Simplex-based [Kroening, Leroux, Rümmer, 2010]
- Simplex-based, targetting SMT [Griggio, Le, Sebastiani, 2011]


## Related work: interpolation beyond integer arithmetic

- Uninterpreted functions
[McMillan, 2005], [Fuchs, Goel, Grundy, Krstić, Tinelli, 2009]
- Theory of arrays
[Kapur, Majumdar, Zarba, 2006], [McMillan, 2008]
- First-order logic
[Hoder, Kovács, Voronkov, 2010]
- Quantifiers
[Christ, Hoenicke, 2010]
- Combination of interpolation procedures [Yorsh, Musuvathi, 2005]


## End of Talk.

