Craig Interpolation for Integer Arithmetic, Uninterpreted Functions, and the Theory of Arrays

Angelo Brillout¹ Daniel Kroening² Jérôme Leroux³ Philipp Rümmer⁴ Thomas Wahl²

¹ETH Zurich

²University of Oxford

³Laboratoire Bordelais de Recherche en Informatique

⁴Uppsala University

SVARM, April 2nd, 2011

Motivation: inference of invariants

Generic verification problem ("safety")

{ pre } while (*) Body { post }

How to compute ϕ automatically?

From intermediate assertions to invariants

[McMillan, 2003]

From intermediate assertions to invariants

How to compute intermediate assertions?

How to compute intermediate assertions? VC generation { pre } pre (s_0) Body; \rightarrow Body (s_0, s_1) Body \rightarrow Body (s_1, s_2) { post } \rightarrow post (s_2)

Theorem (Craig, 1957)

Suppose $A \Rightarrow C$ is a valid implication. Then there is a formula I (an interpolant) such that

- $A \Rightarrow I$ and $I \Rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

Theorem (Craig, 1957)

Suppose $A \Rightarrow C$ is a valid implication. Then there is a formula I (an interpolant) such that

- $A \Rightarrow I$ and $I \Rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

Theorem (Craig, 1957)

Suppose $A \Rightarrow C$ is a valid implication. Then there is a formula I (an interpolant) such that

- $A \Rightarrow I$ and $I \Rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

Interpolant I can be computed from proofs of $A \Rightarrow C$

Interpolation + theories

Interpolation procedures need to support the program logic:

E.g., combined use of linear integer arithmetic and arrays

Theories investigated by us

• Quantifier-free Presburger Arithmetic (PA) (linear integer arithmetic)

[IJCAR, 2010] [LPAR, 2010]

• Quantifiers (Q)

+

- Uninterpreted predicates (UP)
- Uninterpreted functions (UF)
- Arrays (AR)

[VERIFY, 2010] [VMCAI, 2011]

Theories investigated by us

• Quantifier-free Presburger Arithmetic (PA) (linear integer arithmetic)

[IJCAR, 2010] [LPAR, 2010]

• Quantifiers (Q)

+

- Uninterpreted predicates (UP)
- Uninterpreted functions (UF)
- Arrays (AR)

[VERIFY, 2010] [VMCAI, 2011]

Interpolation outline

Interpolation outline

Underlying calculus for Presburger Arithmetic

• Gentzen-style sequent calculus for PA [LPAR, 2008]

	Calculus rules	Possible procedures
Equalities	Linear combination, fresh constants	Omega eq. elimination, Smith decomposition
Inequalities	Linear combination, rounding, ineq. splitting	Omega test, Simplex + Gomory cuts + branch-and-bound
Prop. logic	Standard Gentzen propositional rules	

Interpolation outline

Interpolation problem: $A \Rightarrow I \Rightarrow C$

annotation of formulae with labels

$$\frac{\Gamma_3 \vdash \Delta_3}{\Gamma_2 \vdash \Delta_2} \\
\frac{\Gamma_1 \vdash \Delta_1}{\vdots} \\
A \vdash C$$

Interpolation problem: $A \Rightarrow I \Rightarrow C$

annotation of formulae with labels $\uparrow \qquad \begin{array}{c} \vdots\\ \frac{\Gamma_{3} \vdash \Delta_{3}}{\Gamma_{2} \vdash \Delta_{2}}\\ \overline{\Gamma_{1} \vdash \Delta_{1}}\\ \vdots\\ \lfloor A \rfloor_{L} \vdash \lfloor C \rfloor_{R} \end{array}$

Interpolation problem: $A \Rightarrow I \Rightarrow C$

annotation of
formulae with labels
$$\uparrow \qquad \begin{array}{c} \frac{\Gamma_3 \vdash \Delta_3}{\Gamma_2 \vdash \Delta_2} \\ \Gamma_1^* \vdash \Delta_1^* \\ \vdots \\ [A]_L \vdash [C]_R \end{array}$$

10 / 25

Interpolation problem: $A \Rightarrow I \Rightarrow C$

. .

annotation of
formulae with labels
$$\uparrow \qquad \begin{array}{c} \frac{\Gamma_3 \vdash \Delta_3}{\Gamma_2^* \vdash \Delta_2^*} \\ \frac{\Gamma_1^* \vdash \Delta_1^*}{\vdots} \\ [A]_L \vdash [C]_R \end{array}$$

annotation of
formulae with labels
$$\uparrow \qquad \begin{array}{c} \frac{\Gamma_3^* \vdash \Delta_3^*}{\Gamma_2^* \vdash \Delta_2^*} \\ \frac{\Gamma_1^* \vdash \Delta_1^*}{\vdots} \\ [A]_L \vdash [C]_R \end{array}$$

Properties of the interpolating calculus

Lemma (Soundness)

The annotation at the root of a closed proof is a valid interpolant.

Lemma (Completeness)

Every proof can be lifted to an interpolating proof. This implies: completeness for PA.

Generality

Applicable to various procedures:

- Simplex + cuts (cf. [Griggio, Le, Sebastiani, 2011])
- Omega test

Properties of the interpolating calculus

Lemma (Soundness)

The annotation at the root of a closed proof is a valid interpolant.

Lemma (Completeness)

Every proof can be lifted to an interpolating proof. This implies: completeness for PA.

Generality

Applicable to various procedures:

- Simplex + cuts (cf. [Griggio, Le, Sebastiani, 2011])
- Omega test

Can be generalised to further theories

Beyond Presburger Arithmetic

• Quantifier-free Presburger Arithmetic (PA) (linear integer arithmetic)

[IJCAR, 2010] [LPAR, 2010]

• Quantifiers (Q)

+

- Uninterpreted predicates (UP)
- Uninterpreted functions (UF)
- Arrays (AR)

[VERIFY, 2010] [VMCAI, 2011]

Fragments of extensions of Presburger Arithmetic

Considered logics:

- PA+UP, PA+UF: PA + unint. predicates/functions
- QPA+UP, QPA+UF: PA + quantifiers + …
- PA+AR: PA + *select*, *store* functions

 $\phi ::= t = t \mid t \le t \mid \alpha \mid t \mid p(\overline{t}) \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \forall x.\phi \mid \exists x.\phi$ $t ::= \alpha \mid c \mid x \mid \alpha t + \dots + \alpha t \mid f(\overline{t})$

Interesting questions

- Closure under interpolation
- Practical interpolation procedures

Definition

Logic *L* is **closed under interpolation** if for all $A, B \in F$ such that $A \Rightarrow B$, there is an interpolant expressible in *L*.

[Kapur et al, 2006: "L is interpolating"]

Known results

- (Q)PA ⇒ closed under interpolation (as it allows quantifier elimination)
- $PA+AR \implies not closed$ (not even without PA, [Kapur et al, 2006])
- $QPA+AR \Rightarrow closed$ (add quantifiers for local variables)
- $\begin{array}{rcl} {\sf QPA+{\sf UP}} & \Rightarrow & {\sf not \ closed} \\ {\sf QPA+{\sf UF}} & & ({\sf since \ interpolation \ could \ simulate} \\ & {\sf second-order \ quantifier \ elimination}) \end{array}$

Known results

- (Q)PA ⇒ closed under interpolation (as it allows quantifier elimination)
- $PA+AR \implies not closed$ (not even without PA, [Kapur et al, 2006])
- $QPA+AR \Rightarrow closed$ (add quantifiers for local variables)
- $\begin{array}{rcl} {\sf QPA+{\sf UP}} & \Rightarrow & {\sf not \ closed} \\ {\sf QPA+{\sf UF}} & & ({\sf since \ interpolation \ could \ simulate} \\ & {\sf second-order \ quantifier \ elimination}) \end{array}$
- $PA+UP \Rightarrow ?$

 $PA+UF \Rightarrow ?$

New negative result

Theorem

PA+*UP* is **not** closed under interpolation.

(Similarly for PA+UF)

New negative result

Theorem

PA+UP is **not** closed under interpolation.

(Similarly for PA+UF)

Example

$$\phi :: (2c = \mathbf{y} \land \mathbf{p}(c)) \implies (2d = \mathbf{y} \Rightarrow \mathbf{p}(d))$$

Interpolants:

strongest:
$$I_1$$
: $\exists c. (2c = y \land p(c))$
weakest: I_2 : $\forall d. (2d = y \Rightarrow p(d))$

No quantifier-free interpolants exist!

Closure results

- (Q)PA ⇒ closed under interpolation (as it allows quantifier elimination)
- $PA+AR \implies not closed$ (not even without PA, [Kapur et al, 2006])
- $QPA+AR \Rightarrow closed$ (add quantifiers for local variables)
- $\begin{array}{rcl} {\rm QPA}{\rm + UP} & \Rightarrow & {\rm not\ closed} \\ {\rm QPA}{\rm + UF} & & ({\rm since\ interpolation\ could\ simulate} \\ & {\rm second\ order\ quantifier\ elimination}) \end{array}$
- $PA+UP \implies not closed$
- $PA+UF \Rightarrow not closed$

Positive results

Lemma (interpolants with quantifiers)

If $A \Rightarrow B$ is a valid PA+UP formula, then there is a QPA+UP interpolant $A \Rightarrow I \Rightarrow B$.

(Similarly for PA+UF, PA+AR.)

Theorem (extension of PA+UP)

There is a (natural) extension of PA+UP that is

- decidable, and
- closed under interpolation.

(Similarly for PA+UF.)

How to close PA+UP under interpolation

Consider example:

$$\phi :: (2c = \mathbf{y} \land \mathbf{p}(c)) \implies (2d = \mathbf{y} \Rightarrow \mathbf{p}(d))$$

"Feels-like interpolant": $p(\frac{y}{2})$

How to close PA+UP under interpolation

Consider example:

$$\phi :: (2c = \mathbf{y} \land \mathbf{p}(c)) \implies (2d = \mathbf{y} \Rightarrow \mathbf{p}(d))$$

"Feels-like interpolant": $p(\frac{y}{2})$

Definition

PAID+UP = PA+UP plus guarded quantification:

$$\exists x. (\alpha x = t \land \phi) \qquad \forall x. (\alpha x = t \Rightarrow \phi) \qquad (\alpha \neq 0, x \text{ not in } t)$$

How to close PA+UP under interpolation

Consider example:

$$\phi :: (2c = \mathbf{y} \land \mathbf{p}(c)) \implies (2d = \mathbf{y} \Rightarrow \mathbf{p}(d))$$

"Feels-like interpolant": $p(\frac{y}{2})$

Definition

PAID+UP = PA+UP plus guarded quantification:

$$\exists x. (\alpha x = t \land \phi) \qquad \forall x. (\alpha x = t \Rightarrow \phi) \qquad (\alpha \neq 0, \times \text{ not in } t)$$

Is this just to accommodate ϕ 's interpolant??

Interpolating in PAID+UP

Theorem

PAID+UP is closed under interpolation.

(Similarly for PAID+UF)

Proof:

- 1. Define a restricted version of our calculus that only generates $\ensuremath{\mathsf{PAID}}\xspace+\ensuremath{\mathsf{UP}}\xspace$ interpolants
 - Only unify atoms $p(\bar{s}), p(\bar{t})$ or terms $f(\bar{s}), f(\bar{t})$ if $\bar{s} = \bar{t}$ has been derived
- 2. Show that the restricted calculus is still complete for $\ensuremath{\mathsf{PAID}}\xspace+\ensuremath{\mathsf{UP}}\xspace$

Summary of logics

What do we have?

- Sound + complete interpolating calculus for PAID+UP, PAID+UF, PAID+AR
- Generated interpolants stay within PAID+UP, PAID+UF, QPA+AR
- Calculus is close to procedures used in SMT solvers
- Combinations UP+UF+AR are straightforward

Future directions:

- Extensions of PAID+AR closed under interpolation? (+ decidable)
- Implementations
- Integration in Yorsh + Musuvathi's combination framework?

Related work: integer arithmetic interpolation

Reduction to FOL

[Kapur, Majumdar, Zarba, 2006]

- Simplex-based [Lynch, Tang, 2008]
- Sequent calculus-based [Brillout, Kroening, Rümmer, Wahl, 2010]
- Again Simplex-based [Kroening, Leroux, Rümmer, 2010]
- Simplex-based, targetting SMT [Griggio, Le, Sebastiani, 2011]

Related work: interpolation beyond integer arithmetic

- Uninterpreted functions [McMillan, 2005], [Fuchs, Goel, Grundy, Krstić, Tinelli, 2009]
- Theory of arrays [Kapur, Majumdar, Zarba, 2006], [McMillan, 2008]
- First-order logic [Hoder, Kovács, Voronkov, 2010]
- Quantifiers [Christ, Hoenicke, 2010]
- Combination of interpolation procedures [Yorsh, Musuvathi, 2005]

End of Talk.