Craig Interpolation
for Integer Arithmetic,
Uninterpreted Functions,
and the Theory of Arrays

Angelo Brillout! Daniel Kroening® Jéréme Leroux®

Philipp Riimmer* Thomas Wahl?

'ETH Zurich
2University of Oxford
3Laboratoire Bordelais de Recherche en Informatique
4Uppsala University

SVARM, April 2nd, 2011

1/25

Motivation: inference of invariants

Generic verification problem (“safety”)
{ pre } while (%) Body { post }

Standard approach: loop rule using invariant
pre=¢ { ¢} Body { ¢ } ¢=post

{ pre } while (*) Body { post }

How to compute ¢ automatically?

2/25

From intermediate assertions to invariants

{pre} Body; Body {post}

Bounded model checking problem v

Compute intermediate assertion 1

{pre} Body {91} {t1} Body {post}

[McMillan, 2003]

25

From intermediate assertions to invariants

{pre} Body; Body {post}

Bounded model checking problem v

Compute intermediate assertion 1

{pre} Body {91} {t1} Body {post}

[¢1 = pre]

pre is invariant v
[McMillan, 2003]

25

From intermediate assertions to invariants

{pre} Body; Body {post}

Bounded model checking problem v

Compute intermediate assertion 1

{pre} Body {91} {t1} Body {post}

[y = pre] [otherwise]

pre is invariant v
[McMillan, 2003]

25

From intermediate assertions to invariants

{pre v 1} Body; Body {post}
Bounded model checking problem v

Compute intermediate assertion

{pre v i1} Body {2} {12} Body {post}

[y = pre] [otherwise]

pre is invariant v
[McMillan, 2003]

25

From intermediate assertions to invariants

{pre v 1} Body; Body {post}
Bounded model checking problem v

Compute intermediate assertion

{pre v 91} Body {tn} {12} Body {post}

[t)» = pre v 1] [otherwise]

pre VvV is invariant v
[McMillan, 2003]

25

From intermediate assertions to invariants

{pre v 1} Body; Body {post}
Bounded model checking problem v

Compute intermediate assertion

{pre v 91} Body {tn} {12} Body {post}

[th2 = pre v 4]

pre Vi is invariant v
[McMillan, 2003]

25

How to compute intermediate assertions?

{ pre } pre (so)
Body; — Body (0, 51)
Body — Body (s1,52)

{ post } — post ()

/25

How to compute intermediate assertions?

{ pre } pre ()
Body; — Body (sp, 51)
Body — Body (s1,52)

{ post } — post (s2)

Theorem (Craig, 1957)

Suppose A= C is a valid implication. Then there is a formula |
(an interpolant) such that

e A= | and | = C are valid,

e every non-logical symbol of | occurs in both A and C.

/25

How to compute intermediate assertions?

{ pre) pre (s) Also,51)
Body; — Body (0, 51) !
LA RRRRERRERERRNRERERRIERIERERDIERIENREDRND]]] I S
Body — Body (s1,52) (ll)
{ post } — post (s2) Cls1,9)

Theorem (Craig, 1957)

Suppose A= C is a valid implication. Then there is a formula |
(an interpolant) such that

e A= [and | = C are valid,

e every non-logical symbol of | occurs in both A and C.

/25

How to compute intermediate assertions?

{ pre) pre (s) Also,51)
Body; — Body (0, 51) !
LA RRRRERRERERRNRERERRIERIERERDIERIENREDRND]]] I S
Body — Body (s1,52) (ll)
{ post } — post (s2) Cls1,9)

Theorem (Craig, 1957)

Suppose A= C is a valid implication. Then there is a formula |
(an interpolant) such that

e A= [and | = C are valid,

e every non-logical symbol of | occurs in both A and C.

Interpolant / can be computed from proofs of A= C

4/25

Interpolation + theories

Interpolation procedures need to support the program logic:

int a[],i;

max = a[0];

for (i = 1; i < n; ++i)
if (a[i] > max)
max = a[i];

assert (max >= al[i/2]);

E.g., combined use of linear integer arithmetic and arrays

25

Theories investigated by us

Quantifier-free Presburger Arithmetic (PA)
(linear integer arithmetic)

l’

Quantifiers (Q)

Uninterpreted predicates (UP)
Uninterpreted functions (UF)
Arrays (AR)

[IJCAR, 2010]
[LPAR, 2010]

[VERIFY, 2010]
[VMCAI, 2011]

6

25

Theories investigated by us

Quantifier-free Presburger Arithmetic (PA)
(linear integer arithmetic)

l’

Quantifiers (Q)

Uninterpreted predicates (UP)
Uninterpreted functions (UF)
Arrays (AR)

[IJCAR, 2010]
[LPAR, 2010]

[VERIFY, 2010]
[VMCAI, 2011]

25

Interpolation outline

Implication A= C

[Theorem prover] Model

Proof of A= C

Proof lifting

Interpolating proof of A= C

Craig interpolant A= = C

25

Interpolation outline

Implication A= C

[Theorem prover] Model

Proof of A= C

Proof lifting

Interpolating proof of A= C

Craig interpolant A= = C

25

Underlying calculus for Presburger Arithmetic

o Gentzen-style sequent calculus for PA [LPAR, 2008]
Calculus rules Possible procedures
- Linear combination, Omega eq. elimination,
Equalities . o
fresh constants Smith decomposition
Omega test,

Linear combination,

rounding, ineq. splitting implex + Gomory cuts

+ branch-and-bound

Inequalities

Prop. logic Standard Gentzen propositional rules

25

Interpolation outline

QFPA implication A= C

[Theorem prover] Model

Proof of A= C

Proof lifting

Interpolating proof of A= C

Craig interpolant A= = C

25

Basic idea of proof lifting

Interpolation problem: A= /= C

M3~ As
r2 = Ag
Fl I— Al

Ar C

10/25

Basic idea of proof lifting

Interpolation problem: A= /= C

M~ As

annotation of o - A
formulae with labels M= A
Ar C

10/25

Basic idea of proof lifting

Interpolation problem: A== C

annotation of 2 - Ay
formulae with labels M '_ Ay
|A]L + [Clg

10/25

Basic idea of proof lifting

Interpolation problem: A== C

annotation of
formulae with labels

10/25

Basic idea of proof lifting

Interpolation problem:

I3

. r
annotation of =
formulae with labels 1
|AlL

A=[=C

10/25

Basic idea of proof lifting

Interpolation problem: A= /= C

rs

. r>
annotation of rr
formulae with labels 1
|AlL

10/25

Basic idea of proof lifting

Interpolation problem: A= /= C

*

3 - A}
> = A3

B ropagation of
- A propag

interpolants

annotation of
formulae with labels

AL+ (Clg

10/25

Basic idea of proof lifting

Interpolation problem: A= /= C

*

M3 - A3 »h

. > = A3 .
annotation of _- propagation of
= Aj .
i interpolants

formulae with labels
|Al, - [Clr

10/25

Basic idea of proof lifting

Interpolation problem:

annotation of
formulae with labels

*

M3 - A3 »h

I3 - A »h

VAN

AL+ (Clg

A== C

propagation of
interpolants

10/25

Basic idea of proof lifting

Interpolation problem: A= /= C

annotation of
formulae with labels

3 - A3 » b
M- A »h

M3 - A3 »h

propagation of
interpolants

AL+ (Clg

10/25

Basic idea of proof lifting

Interpolation problem: A= 1[= C

*
I3
. rs
annotation of 2

*
formulae with labels M

[A]L

= A; >/2
NEY

NS

propagation of
interpolants

= [CJR >/

10/25

Properties of the interpolating calculus

Lemma (Soundness)

The annotation at the root of a closed proof is a valid interpolant.

Lemma (Completeness)

Every proof can be lifted to an interpolating proof.
This implies: completeness for PA.

| A

Generality

Applicable to various procedures:
e Simplex + cuts (cf. [Griggio, Le, Sebastiani, 2011])
e Omega test

11/25

Properties of the interpolating calculus

Lemma (Soundness)
The annotation at the root of a closed proof is a valid interpolant.

Lemma (Completeness)

Every proof can be lifted to an interpolating proof.
This implies: completeness for PA.

| A

Generality
Applicable to various procedures:
e Simplex + cuts (cf. [Griggio, Le, Sebastiani, 2011])

e Omega test

Can be generalised to further theories . ..

11/25

Beyond Presburger Arithmetic

Quantifier-free Presburger Arithmetic (PA)
(linear integer arithmetic)

l’

Quantifiers (Q)

Uninterpreted predicates (UP)
Uninterpreted functions (UF)
Arrays (AR)

[IJCAR, 2010]
[LPAR, 2010]

[VERIFY, 2010]
[VMCAI, 2011]

12/25

Fragments of extensions of Presburger Arithmetic

Considered logics:
e PA+UP, PA+UF: PA + unint. predicates/functions

o QPA+UP, QPA+UF: PA 4 quantifiers + -

e PA+AR: PA + select, store functions

t=t|t<t|alt|p®|ord|ove|-o|vxs|Ixg

a | c‘x | ozt+~-+at|f(f)

°
if

13 /25

Interesting questions

e Closure under interpolation

e Practical interpolation procedures

Definition

Logic L is closed under interpolation if
for all A, B € F such that A= B, there is an interpolant

expressible in L.
[Kapur et al, 2006: “L is interpolating”|

14 /25

(Q)PA
PA-+AR
QPA+AR

QPA+UP
QPA-+UF

=

Known results

closed under interpolation
(as it allows quantifier elimination)

not closed
(not even without PA, [Kapur et al, 2006])

closed
(add quantifiers for local variables)

not closed
(since interpolation could simulate
second-order quantifier elimination)

15/25

(Q)PA
PA-+AR
QPA+AR

QPA+UP
QPA-+UF

PA-+UP

PA-+UF

=

Known results

closed under interpolation
(as it allows quantifier elimination)

not closed
(not even without PA, [Kapur et al, 2006])

closed
(add quantifiers for local variables)

not closed
(since interpolation could simulate
second-order quantifier elimination)

?

?

15/25

New negative result

PA+UP is not closed under interpolation.

(Similarly for PA+UF)

16/25

New negative result

PA+UP is not closed under interpolation.
(Similarly for PA+UF)

Example

¢ = (2c=ynap(c)) = (2d=y=p(d))

strongest: h: 3Jc.(2c=y A p(c))

Interpolants: weakest: h: Vd.(2d =y = p(d))

No quantifier-free interpolants exist!

16/25

(Q)PA
PA-+AR
QPA+AR

QPA+UP
QPA-+UF

PA-+UP

PA-+UF

=

Closure results

closed under interpolation
(as it allows quantifier elimination)

not closed
(not even without PA, [Kapur et al, 2006])

closed
(add quantifiers for local variables)

not closed
(since interpolation could simulate
second-order quantifier elimination)

not closed

not closed

17/25

Positive results

Lemma (interpolants with quantifiers)

If A= B is a valid PA+UP formula, then there is a
QPA+UP interpolant A= | = B.

(Similarly for PA+UF, PA+AR.)

Theorem (extension of PA+UP)
There is a (natural) extension of PA+UP that is
e decidable, and

e closed under interpolation.

(Similarly for PA+UF.)

18/25

How to close PA4+UP under interpolation

Consider example:

¢ = (2c=ynp(c)) = (2d=y=p(d))

“Feels-like interpolant”: p(%)

19/25

How to close PA4+UP under interpolation

Consider example:

¢ = (2c=ynp(c)) = (2d=y=p(d))

“Feels-like interpolant”: p(%)

Definition
PAID+UP = PA+UP plus guarded quantification:

Ix.(ax=tA @) Vx.(ax =t = ¢) (@ £0, x not in t)

19/25

How to close PA4+UP under interpolation

Consider example:

¢ = (2c=ynp(c)) = (2d=y=p(d))

“Feels-like interpolant”: p(%)

Definition
PAID+UP = PA+UP plus guarded quantification:

Ix.(ax=tA @) Vx.(ax =t = ¢) (@ £0, x not in t)

Is this just to accommodate ¢'s interpolant??

19/25

Interpolating in PAID+UP

PAID+UP is closed under interpolation.

(Similarly for PAID+UF)

Proof:

1. Define a restricted version of our calculus that only generates
PAID+UP interpolants
e Only unify atoms p(3), p(t) or terms f(3),f(t) if =1 has
been derived

2. Show that the restricted calculus is still complete for
PAID+UP

20/25

Z
QPA

Summary of logics

N
PA-+UP

l

U
QPA-+UP

Legend:

decidable
undecidable

[] = closed

under interpolation
| = subset

21/25

What do we have?

e Sound + complete interpolating calculus for
PAID+UP, PAID+UF, PAID+AR

e Generated interpolants stay within
PAID+UP, PAID+UF, QPA+AR

e Calculus is close to procedures used in SMT solvers
e Combinations UP+UF-+AR are straightforward

Future directions:

e Extensions of PAID+AR closed under interpolation?
(+ decidable)

e Implementations

e Integration in Yorsh 4+ Musuvathi’'s combination framework?

22 /25

Related work: integer arithmetic interpolation

Reduction to FOL
[Kapur, Majumdar, Zarba, 2006]

Simplex-based

[Lynch, Tang, 2008]

Sequent calculus-based

[Brillout, Kroening, Riimmer, Wahl, 2010]
Again Simplex-based

[Kroening, Leroux, Riimmer, 2010]
Simplex-based, targetting SMT

[Griggio, Le, Sebastiani, 2011]

23 /25

Related work: interpolation beyond integer arithmetic

Uninterpreted functions
[McMillan, 2005], [Fuchs, Goel, Grundy, Krsti¢, Tinelli, 2009]

Theory of arrays
[Kapur, Majumdar, Zarba, 2006], [McMillan, 2008]

First-order logic
[Hoder, Kovécs, Voronkov, 2010]

Quantifiers
[Christ, Hoenicke, 2010]

Combination of interpolation procedures
[Yorsh, Musuvathi, 2005]

24 /25

End of Talk.

25 /25

