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Motivation: inference of invariants

Generic verification problem (“safety”)

{ pre } while (*) Body { post }

Standard approach: loop rule using invariant

pre⇒ φ { φ } Body { φ } φ⇒ post

{ pre } while (*) Body { post }

How to compute φ automatically?
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From intermediate assertions to invariants

{pre} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ1

{pre} Body {ψ1} {ψ1} Body {post}

pre is invariant !

[ψ1 ⇒ pre] [otherwise]

[McMillan, 2003]
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From intermediate assertions to invariants

{pre ∨ ψ1} Body; Body {post} ?
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How to compute intermediate assertions?

{ pre }

VC generation

pre (s0)
Body; → Body (s0, s1)

Body → Body (s1, s2)
{ post } → post (s2)

Theorem (Craig, 1957)

Suppose A⇒ C is a valid implication. Then there is a formula I
(an interpolant) such that

� A⇒ I and I ⇒ C are valid,

� every non-logical symbol of I occurs in both A and C.

Interpolant I can be computed from proofs of A⇒ C
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Interpolation + theories

Interpolation procedures need to support the program logic:

i n t a [ ] , i ;
max = a [ 0 ] ;
f o r ( i = 1 ; i < n ; ++i )

i f ( a [ i ] > max)
max = a [ i ] ;

a s s e r t (max >= a [ i / 2 ] ) ;

E.g., combined use of linear integer arithmetic and arrays

5 / 25



Theories investigated by us

� Quantifier-free Presburger Arithmetic (PA) [IJCAR, 2010]
[LPAR, 2010](linear integer arithmetic)

+

� Quantifiers (Q) [VERIFY, 2010]
[VMCAI, 2011]

� Uninterpreted predicates (UP)

� Uninterpreted functions (UF)

� Arrays (AR)
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Interpolation outline

Theorem prover

Implication A⇒ C

Proof of A⇒ C

Model

Proof lifting

Interpolating proof of A⇒ C

Craig interpolant A⇒ I ⇒ C
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Underlying calculus for Presburger Arithmetic

� Gentzen-style sequent calculus for PA [LPAR, 2008]

Calculus rules Possible procedures

Equalities
Linear combination,

fresh constants
Omega eq. elimination,
Smith decomposition

Inequalities
Linear combination,

rounding, ineq. splitting

Omega test,
Simplex + Gomory cuts

+ branch-and-bound

Prop. logic Standard Gentzen propositional rules
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Interpolation outline

Theorem prover

QFPA implication A⇒ C

Proof of A⇒ C

Model

Proof lifting

Interpolating proof of A⇒ C

Craig interpolant A⇒ I ⇒ C
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Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ3 ⊢ ∆3

Γ2 ⊢ ∆2

Γ1 ⊢ ∆1....
A ⊢ C

×
×
×
×
Ö

propagation of
interpolants
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Properties of the interpolating calculus

Lemma (Soundness)

The annotation at the root of a closed proof is a valid interpolant.

Lemma (Completeness)

Every proof can be lifted to an interpolating proof.
This implies: completeness for PA.

Generality

Applicable to various procedures:

� Simplex + cuts (cf. [Griggio, Le, Sebastiani, 2011])

� Omega test

Can be generalised to further theories . . .
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Beyond Presburger Arithmetic

� Quantifier-free Presburger Arithmetic (PA) [IJCAR, 2010]
[LPAR, 2010](linear integer arithmetic)

+

� Quantifiers (Q) [VERIFY, 2010]
[VMCAI, 2011]

� Uninterpreted predicates (UP)

� Uninterpreted functions (UF)

� Arrays (AR)
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Fragments of extensions of Presburger Arithmetic

Considered logics:

� PA+UP, PA+UF: PA + unint. predicates/functions

� QPA+UP, QPA+UF: PA + quantifiers + ⋯

� PA+AR: PA + select, store functions

φ ∶∶= t = t ∣ t ≤ t ∣ α ∣ t ∣ p(t̄) ∣ φ ∧ φ ∣ φ ∨ φ ∣ ¬φ ∣ ∀x .φ ∣ ∃x .φ
t ∶∶= α ∣ c ∣ x ∣ αt +⋯ + αt ∣ f (t̄)
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Interesting questions

� Closure under interpolation

� Practical interpolation procedures

Definition

Logic L is closed under interpolation if
for all A,B ∈ F such that A⇒ B, there is an interpolant
expressible in L.

[Kapur et al, 2006: “L is interpolating”]
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Known results

(Q)PA ⇒ closed under interpolation
(as it allows quantifier elimination)

PA+AR ⇒ not closed
(not even without PA, [Kapur et al, 2006])

QPA+AR ⇒ closed
(add quantifiers for local variables)

QPA+UP
QPA+UF

⇒ not closed
(since interpolation could simulate
second-order quantifier elimination)
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New negative result

Theorem

PA+UP is not closed under interpolation.

(Similarly for PA+UF)

Example

φ ∶∶ (2c = y ∧ p(c)) ⇒ (2d = y ⇒ p(d))

Interpolants:
strongest: I1 ∶ ∃c . (2c = y ∧ p(c))

weakest: I2 ∶ ∀d . (2d = y ⇒ p(d))

No quantifier-free interpolants exist!
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Closure results

(Q)PA ⇒ closed under interpolation
(as it allows quantifier elimination)

PA+AR ⇒ not closed
(not even without PA, [Kapur et al, 2006])

QPA+AR ⇒ closed
(add quantifiers for local variables)

QPA+UP
QPA+UF

⇒ not closed
(since interpolation could simulate
second-order quantifier elimination)

PA+UP ⇒ not closed

PA+UF ⇒ not closed
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Positive results

Lemma (interpolants with quantifiers)

If A⇒ B is a valid PA+UP formula, then there is a
QPA+UP interpolant A⇒ I ⇒ B.

(Similarly for PA+UF, PA+AR.)

Theorem (extension of PA+UP)

There is a (natural) extension of PA+UP that is

� decidable, and

� closed under interpolation.

(Similarly for PA+UF.)
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How to close PA+UP under interpolation

Consider example:

φ ∶∶ (2c = y ∧ p(c)) ⇒ (2d = y ⇒ p(d))

“Feels-like interpolant”: p( y2 )

Definition

PAID+UP = PA+UP plus guarded quantification:

∃x .(αx = t ∧ φ) ∀x .(αx = t ⇒ φ) (α /= 0, x not in t)

Is this just to accommodate φ’s interpolant??
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Interpolating in PAID+UP

Theorem

PAID+UP is closed under interpolation.

(Similarly for PAID+UF)

Proof:

1. Define a restricted version of our calculus that only generates
PAID+UP interpolants

� Only unify atoms p(s̄),p(t̄) or terms f (s̄), f (t̄) if s̄ = t̄ has
been derived

2. Show that the restricted calculus is still complete for
PAID+UP
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Summary of logics

PA

� ⇘

QPA PA+UP

⇓

PAID+UP

⇓

QPA+UP

Legend:
decidable

undecidable
ABCD = closed

under interpolation
⇓ = subset
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What do we have?

� Sound + complete interpolating calculus for
PAID+UP, PAID+UF, PAID+AR

� Generated interpolants stay within
PAID+UP, PAID+UF, QPA+AR

� Calculus is close to procedures used in SMT solvers

� Combinations UP+UF+AR are straightforward

Future directions:

� Extensions of PAID+AR closed under interpolation?
(+ decidable)

� Implementations

� Integration in Yorsh + Musuvathi’s combination framework?
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Related work: integer arithmetic interpolation

� Reduction to FOL
[Kapur, Majumdar, Zarba, 2006]

� Simplex-based
[Lynch, Tang, 2008]

� Sequent calculus-based
[Brillout, Kroening, Rümmer, Wahl, 2010]

� Again Simplex-based
[Kroening, Leroux, Rümmer, 2010]

� Simplex-based, targetting SMT
[Griggio, Le, Sebastiani, 2011]
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Related work: interpolation beyond integer arithmetic

� Uninterpreted functions
[McMillan, 2005], [Fuchs, Goel, Grundy, Krstić, Tinelli, 2009]

� Theory of arrays
[Kapur, Majumdar, Zarba, 2006], [McMillan, 2008]

� First-order logic
[Hoder, Kovács, Voronkov, 2010]

� Quantifiers
[Christ, Hoenicke, 2010]

� Combination of interpolation procedures
[Yorsh, Musuvathi, 2005]
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End of Talk.
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