
Craig Interpolation
for Integer Arithmetic,

Uninterpreted Functions,
and the Theory of Arrays

Angelo Brillout1 Daniel Kroening2 Jérôme Leroux3

Philipp Rümmer4 Thomas Wahl2

1ETH Zurich

2University of Oxford

3Laboratoire Bordelais de Recherche en Informatique

4Uppsala University

SVARM, April 2nd, 2011
1 / 25



Motivation: inference of invariants

Generic verification problem (“safety”)

{ pre } while (*) Body { post }

Standard approach: loop rule using invariant

pre⇒ φ { φ } Body { φ } φ⇒ post

{ pre } while (*) Body { post }

How to compute φ automatically?

2 / 25



From intermediate assertions to invariants

{pre} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ1

{pre} Body {ψ1} {ψ1} Body {post}

pre is invariant !

[ψ1 ⇒ pre] [otherwise]

[McMillan, 2003]
3 / 25



From intermediate assertions to invariants

{pre} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ1

{pre} Body {ψ1} {ψ1} Body {post}

pre is invariant !

[ψ1 ⇒ pre]

[otherwise]

[McMillan, 2003]
3 / 25



From intermediate assertions to invariants

{pre} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ1

{pre} Body {ψ1} {ψ1} Body {post}

pre is invariant !

[ψ1 ⇒ pre] [otherwise]

[McMillan, 2003]
3 / 25



From intermediate assertions to invariants

{pre ∨ ψ1} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ2

{pre ∨ ψ1} Body {ψ2} {ψ2} Body {post}

pre is invariant !

[ψ1 ⇒ pre] [otherwise]

[McMillan, 2003]
3 / 25



From intermediate assertions to invariants

{pre ∨ ψ1} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ2

{pre ∨ ψ1} Body {ψ2} {ψ2} Body {post}

pre ∨ ψ1 is invariant !

[ψ2 ⇒ pre ∨ ψ1] [otherwise]

[McMillan, 2003]
3 / 25



From intermediate assertions to invariants

{pre ∨ ψ1} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ2

{pre ∨ ψ1} Body {ψ2} {ψ2} Body {post}

pre ∨ ψ1 is invariant !

[ψ2 ⇒ pre ∨ ψ1] . . .

[McMillan, 2003]
3 / 25



How to compute intermediate assertions?

{ pre }

VC generation

pre (s0)
Body; → Body (s0, s1)

Body → Body (s1, s2)
{ post } → post (s2)

Theorem (Craig, 1957)

Suppose A⇒ C is a valid implication. Then there is a formula I
(an interpolant) such that

� A⇒ I and I ⇒ C are valid,

� every non-logical symbol of I occurs in both A and C.

Interpolant I can be computed from proofs of A⇒ C

4 / 25



How to compute intermediate assertions?

{ pre }

VC generation

pre (s0)
Body; → Body (s0, s1)

Body → Body (s1, s2)
{ post } → post (s2)

Theorem (Craig, 1957)

Suppose A⇒ C is a valid implication. Then there is a formula I
(an interpolant) such that

� A⇒ I and I ⇒ C are valid,

� every non-logical symbol of I occurs in both A and C.

Interpolant I can be computed from proofs of A⇒ C

4 / 25



How to compute intermediate assertions?

{ pre }

VC generation

pre (s0)
Body; → Body (s0, s1)

I (s1)

A(s0, s1)

C(s1, s2)

Body → Body (s1, s2)
{ post } → post (s2)

Theorem (Craig, 1957)

Suppose A⇒ C is a valid implication. Then there is a formula I
(an interpolant) such that

� A⇒ I and I ⇒ C are valid,

� every non-logical symbol of I occurs in both A and C.

Interpolant I can be computed from proofs of A⇒ C

4 / 25



How to compute intermediate assertions?

{ pre }

VC generation

pre (s0)
Body; → Body (s0, s1)

I (s1)

A(s0, s1)

C(s1, s2)

Body → Body (s1, s2)
{ post } → post (s2)

Theorem (Craig, 1957)

Suppose A⇒ C is a valid implication. Then there is a formula I
(an interpolant) such that

� A⇒ I and I ⇒ C are valid,

� every non-logical symbol of I occurs in both A and C.

Interpolant I can be computed from proofs of A⇒ C

4 / 25



Interpolation + theories

Interpolation procedures need to support the program logic:

i n t a [ ] , i ;
max = a [ 0 ] ;
f o r ( i = 1 ; i < n ; ++i )

i f ( a [ i ] > max)
max = a [ i ] ;

a s s e r t (max >= a [ i / 2 ] ) ;

E.g., combined use of linear integer arithmetic and arrays

5 / 25



Theories investigated by us

� Quantifier-free Presburger Arithmetic (PA) [IJCAR, 2010]
[LPAR, 2010](linear integer arithmetic)

+

� Quantifiers (Q) [VERIFY, 2010]
[VMCAI, 2011]

� Uninterpreted predicates (UP)

� Uninterpreted functions (UF)

� Arrays (AR)

6 / 25



Theories investigated by us

� Quantifier-free Presburger Arithmetic (PA) [IJCAR, 2010]
[LPAR, 2010](linear integer arithmetic)

+

� Quantifiers (Q) [VERIFY, 2010]
[VMCAI, 2011]

� Uninterpreted predicates (UP)

� Uninterpreted functions (UF)

� Arrays (AR)

6 / 25



Interpolation outline

Theorem prover

Implication A⇒ C

Proof of A⇒ C

Model

Proof lifting

Interpolating proof of A⇒ C

Craig interpolant A⇒ I ⇒ C

7 / 25



Interpolation outline

Theorem prover

Implication A⇒ C

Proof of A⇒ C

Model

Proof lifting

Interpolating proof of A⇒ C

Craig interpolant A⇒ I ⇒ C

7 / 25



Underlying calculus for Presburger Arithmetic

� Gentzen-style sequent calculus for PA [LPAR, 2008]

Calculus rules Possible procedures

Equalities
Linear combination,

fresh constants
Omega eq. elimination,
Smith decomposition

Inequalities
Linear combination,

rounding, ineq. splitting

Omega test,
Simplex + Gomory cuts

+ branch-and-bound

Prop. logic Standard Gentzen propositional rules

8 / 25



Interpolation outline

Theorem prover

QFPA implication A⇒ C

Proof of A⇒ C

Model

Proof lifting

Interpolating proof of A⇒ C

Craig interpolant A⇒ I ⇒ C

9 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ3 ⊢ ∆3

Γ2 ⊢ ∆2

Γ1 ⊢ ∆1....
A ⊢ C

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ3 ⊢ ∆3

Γ2 ⊢ ∆2

Γ1 ⊢ ∆1....
A ⊢ C

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ3 ⊢ ∆3

Γ2 ⊢ ∆2

Γ1 ⊢ ∆1....
⌊A⌋L ⊢ ⌊C ⌋R

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ3 ⊢ ∆3

Γ2 ⊢ ∆2

Γ∗1 ⊢ ∆∗1....
⌊A⌋L ⊢ ⌊C ⌋R

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ3 ⊢ ∆3

Γ∗2 ⊢ ∆∗2
Γ∗1 ⊢ ∆∗1....

⌊A⌋L ⊢ ⌊C ⌋R

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ∗3 ⊢ ∆∗3
Γ∗2 ⊢ ∆∗2
Γ∗1 ⊢ ∆∗1....

⌊A⌋L ⊢ ⌊C ⌋R

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ∗3 ⊢ ∆∗3
Γ∗2 ⊢ ∆∗2
Γ∗1 ⊢ ∆∗1....

⌊A⌋L ⊢ ⌊C ⌋R

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ∗3 ⊢ ∆∗3 ▸ I3

Γ∗2 ⊢ ∆∗2
Γ∗1 ⊢ ∆∗1....

⌊A⌋L ⊢ ⌊C ⌋R

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ∗3 ⊢ ∆∗3 ▸ I3

Γ∗2 ⊢ ∆∗2 ▸ I2

Γ∗1 ⊢ ∆∗1....
⌊A⌋L ⊢ ⌊C ⌋R

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ∗3 ⊢ ∆∗3 ▸ I3

Γ∗2 ⊢ ∆∗2 ▸ I2

Γ∗1 ⊢ ∆∗1 ▸ I1....
⌊A⌋L ⊢ ⌊C ⌋R

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Basic idea of proof lifting

Interpolation problem: A⇒ I ⇒ C

annotation of
formulae with labels

Õ
×
×
×
×

∗....
Γ∗3 ⊢ ∆∗3 ▸ I3

Γ∗2 ⊢ ∆∗2 ▸ I2

Γ∗1 ⊢ ∆∗1 ▸ I1....
⌊A⌋L ⊢ ⌊C ⌋R ▸ I

×
×
×
×
Ö

propagation of
interpolants

10 / 25



Properties of the interpolating calculus

Lemma (Soundness)

The annotation at the root of a closed proof is a valid interpolant.

Lemma (Completeness)

Every proof can be lifted to an interpolating proof.
This implies: completeness for PA.

Generality

Applicable to various procedures:

� Simplex + cuts (cf. [Griggio, Le, Sebastiani, 2011])

� Omega test

Can be generalised to further theories . . .

11 / 25



Properties of the interpolating calculus

Lemma (Soundness)

The annotation at the root of a closed proof is a valid interpolant.

Lemma (Completeness)

Every proof can be lifted to an interpolating proof.
This implies: completeness for PA.

Generality

Applicable to various procedures:

� Simplex + cuts (cf. [Griggio, Le, Sebastiani, 2011])

� Omega test

Can be generalised to further theories . . .

11 / 25



Beyond Presburger Arithmetic

� Quantifier-free Presburger Arithmetic (PA) [IJCAR, 2010]
[LPAR, 2010](linear integer arithmetic)

+

� Quantifiers (Q) [VERIFY, 2010]
[VMCAI, 2011]

� Uninterpreted predicates (UP)

� Uninterpreted functions (UF)

� Arrays (AR)

12 / 25



Fragments of extensions of Presburger Arithmetic

Considered logics:

� PA+UP, PA+UF: PA + unint. predicates/functions

� QPA+UP, QPA+UF: PA + quantifiers + ⋯

� PA+AR: PA + select, store functions

φ ∶∶= t = t ∣ t ≤ t ∣ α ∣ t ∣ p(t̄) ∣ φ ∧ φ ∣ φ ∨ φ ∣ ¬φ ∣ ∀x .φ ∣ ∃x .φ
t ∶∶= α ∣ c ∣ x ∣ αt +⋯ + αt ∣ f (t̄)

13 / 25



Interesting questions

� Closure under interpolation

� Practical interpolation procedures

Definition

Logic L is closed under interpolation if
for all A,B ∈ F such that A⇒ B, there is an interpolant
expressible in L.

[Kapur et al, 2006: “L is interpolating”]

14 / 25



Known results

(Q)PA ⇒ closed under interpolation
(as it allows quantifier elimination)

PA+AR ⇒ not closed
(not even without PA, [Kapur et al, 2006])

QPA+AR ⇒ closed
(add quantifiers for local variables)

QPA+UP
QPA+UF

⇒ not closed
(since interpolation could simulate
second-order quantifier elimination)

15 / 25



Known results

(Q)PA ⇒ closed under interpolation
(as it allows quantifier elimination)

PA+AR ⇒ not closed
(not even without PA, [Kapur et al, 2006])

QPA+AR ⇒ closed
(add quantifiers for local variables)

QPA+UP
QPA+UF

⇒ not closed
(since interpolation could simulate
second-order quantifier elimination)

PA+UP ⇒ ?

PA+UF ⇒ ?

15 / 25



New negative result

Theorem

PA+UP is not closed under interpolation.

(Similarly for PA+UF)

Example

φ ∶∶ (2c = y ∧ p(c)) ⇒ (2d = y ⇒ p(d))

Interpolants:
strongest: I1 ∶ ∃c . (2c = y ∧ p(c))

weakest: I2 ∶ ∀d . (2d = y ⇒ p(d))

No quantifier-free interpolants exist!

16 / 25



New negative result

Theorem

PA+UP is not closed under interpolation.

(Similarly for PA+UF)

Example

φ ∶∶ (2c = y ∧ p(c)) ⇒ (2d = y ⇒ p(d))

Interpolants:
strongest: I1 ∶ ∃c . (2c = y ∧ p(c))

weakest: I2 ∶ ∀d . (2d = y ⇒ p(d))

No quantifier-free interpolants exist!

16 / 25



Closure results

(Q)PA ⇒ closed under interpolation
(as it allows quantifier elimination)

PA+AR ⇒ not closed
(not even without PA, [Kapur et al, 2006])

QPA+AR ⇒ closed
(add quantifiers for local variables)

QPA+UP
QPA+UF

⇒ not closed
(since interpolation could simulate
second-order quantifier elimination)

PA+UP ⇒ not closed

PA+UF ⇒ not closed

17 / 25



Positive results

Lemma (interpolants with quantifiers)

If A⇒ B is a valid PA+UP formula, then there is a
QPA+UP interpolant A⇒ I ⇒ B.

(Similarly for PA+UF, PA+AR.)

Theorem (extension of PA+UP)

There is a (natural) extension of PA+UP that is

� decidable, and

� closed under interpolation.

(Similarly for PA+UF.)

18 / 25



How to close PA+UP under interpolation

Consider example:

φ ∶∶ (2c = y ∧ p(c)) ⇒ (2d = y ⇒ p(d))

“Feels-like interpolant”: p( y2 )

Definition

PAID+UP = PA+UP plus guarded quantification:

∃x .(αx = t ∧ φ) ∀x .(αx = t ⇒ φ) (α /= 0, x not in t)

Is this just to accommodate φ’s interpolant??

19 / 25



How to close PA+UP under interpolation

Consider example:

φ ∶∶ (2c = y ∧ p(c)) ⇒ (2d = y ⇒ p(d))

“Feels-like interpolant”: p( y2 )

Definition

PAID+UP = PA+UP plus guarded quantification:

∃x .(αx = t ∧ φ) ∀x .(αx = t ⇒ φ) (α /= 0, x not in t)

Is this just to accommodate φ’s interpolant??

19 / 25



How to close PA+UP under interpolation

Consider example:

φ ∶∶ (2c = y ∧ p(c)) ⇒ (2d = y ⇒ p(d))

“Feels-like interpolant”: p( y2 )

Definition

PAID+UP = PA+UP plus guarded quantification:

∃x .(αx = t ∧ φ) ∀x .(αx = t ⇒ φ) (α /= 0, x not in t)

Is this just to accommodate φ’s interpolant??

19 / 25



Interpolating in PAID+UP

Theorem

PAID+UP is closed under interpolation.

(Similarly for PAID+UF)

Proof:

1. Define a restricted version of our calculus that only generates
PAID+UP interpolants

� Only unify atoms p(s̄),p(t̄) or terms f (s̄), f (t̄) if s̄ = t̄ has
been derived

2. Show that the restricted calculus is still complete for
PAID+UP

20 / 25



Summary of logics

PA

� ⇘

QPA PA+UP

⇓

PAID+UP

⇓

QPA+UP

Legend:
decidable

undecidable
ABCD = closed

under interpolation
⇓ = subset

21 / 25



What do we have?

� Sound + complete interpolating calculus for
PAID+UP, PAID+UF, PAID+AR

� Generated interpolants stay within
PAID+UP, PAID+UF, QPA+AR

� Calculus is close to procedures used in SMT solvers

� Combinations UP+UF+AR are straightforward

Future directions:

� Extensions of PAID+AR closed under interpolation?
(+ decidable)

� Implementations

� Integration in Yorsh + Musuvathi’s combination framework?

22 / 25



Related work: integer arithmetic interpolation

� Reduction to FOL
[Kapur, Majumdar, Zarba, 2006]

� Simplex-based
[Lynch, Tang, 2008]

� Sequent calculus-based
[Brillout, Kroening, Rümmer, Wahl, 2010]

� Again Simplex-based
[Kroening, Leroux, Rümmer, 2010]

� Simplex-based, targetting SMT
[Griggio, Le, Sebastiani, 2011]

23 / 25



Related work: interpolation beyond integer arithmetic

� Uninterpreted functions
[McMillan, 2005], [Fuchs, Goel, Grundy, Krstić, Tinelli, 2009]

� Theory of arrays
[Kapur, Majumdar, Zarba, 2006], [McMillan, 2008]

� First-order logic
[Hoder, Kovács, Voronkov, 2010]

� Quantifiers
[Christ, Hoenicke, 2010]

� Combination of interpolation procedures
[Yorsh, Musuvathi, 2005]

24 / 25



End of Talk.

25 / 25


