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Disclaimer

Talk more of survey type

Hardly any original results
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Numerical Constraints: Motivation I

By far most micro-processors nowadays do not occur in desktop
PC’s but embedded in technical systems (trains, cars, robots, your
washing machine etc.)

Models of technical systems usually in numerical domains.
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Numerical Constraints: Motivation II

Continuous is simpler then discrete!

integers reals

sat. of linear constraints NP-hard polynomial time
sat. of polynomial constraints undecidable decidable

So: to solve discrete problem,
exploit corresponding continuous problem (”relaxation”).

Prototypical example: MILP
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Numerical Constraints: Motivation III

Sometimes continuous reasoning can help
in analyzing discrete systems.

For example:
Verification of programs with integer variables based on

invariants and ranking functions with rational/real coefficients

5 / 21



Numerical Constraints: Motivation III

Sometimes continuous reasoning can help
in analyzing discrete systems.

For example:
Verification of programs with integer variables based on

invariants and ranking functions with rational/real coefficients

5 / 21



Example

x2 + y2 − 1 = 0 ∧ y − x2 = 0
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”Solving Numerical Constraints”

Given: conjunction of equalities and inequalities,
function symbols in {+,×, sin, exp, . . . } (constraint)

Find: ”Nice” over-approximation of set of real solutions

Note: Since sin can encode the integers,
we are in the land of the undecidable.

But: We head for quasi-decidability:
algorithm that can detect (un)satisfiability for all robust inputs

(does not change (un)satisfiability under perturbations)
[Franek et al., 2010, Ratschan, 2010]

From now on, we assume that we search for solutions
in an n-dimensional hyper-rectangle (box).
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Basic Operation: Pruning
For

I a constraint φ in n variables

I an n-dimensional box B.

prune(φ, B) is a box B ′, such that

I B ′ ⊆ B,

I B ′ contains all solutions of φ in B:

This already is an over-approximation of the solution set of φ in B.

But: Usually (by design) efficient, but crude.
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Branch and Prune Algorithm

Algorithm BP(φ,B):

S ← prune(φ,B)
if S good enough then S
else
let B1,B2 be s. t. S = B1 ∪ B2,

non-overlapping
return BP(φ,B1) ∪ BP(φ,B2)

”good enough” can be:

I = ∅: try to prove unsatisfiability at all costs,
algorithm may run forever, but terminates for robust inputs

I box small enough (size: volume, maximal side-length)

I time bound exceeded
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Usage

If over-approximation is empty,
we know that input is unsatisfiable, otherwise

it can be used for searching for

I real solutions

I integer solution.

This search can even be built into the branch-and-prune algorithm.
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Pruning Based on Interval Arithmetic

Special case: one single equality

Input: f = 0, box B
Example:

xy + 1 = 0, x ∈ [2, 3], y ∈ [4, 7]

Compute interval [f ] (B) such that {f (~x) | ~x ∈ B} ⊆ [f ] (B)

if 0 6∈ [f ] (I1, . . . , In) then ∅ else B
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Comparison with Symbolic Computation

I Interval based methods:
I Usually require a-priori bounds
I Often do not exploit (partial) linearity well

I Symbolic computation:
I Mostly polynomial case only
I Usually does not produce useful partial results under limited

time (no anytime algorithms)

Both: limited scalability

Now: Extension of interval approach [Lebbah et al., 2005],
applying ideas from global optimization

I more often can live without a-priori bounds

I efficient handling of linearity

I partial results under limited time

I more scalable
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Primitive Constraint Decomposition

sin xy + z = 1 ∧ x − y = 7

xy = t1 ∧ sin t1 = t2 ∧ t2 + z = t3 ∧ t3 = 1 ∧ x − y = t4 ∧ t4 = 7

Now: for each primitive constraint,
produce implied linear inequalities (linear relaxation)

Result: linear program whose
solution set over-approximates original solution set
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Linear Relaxations

z = x + y : already linear

z = f (x), where f convex:

I underestimate: tangent at any point,

I overestimate: secant at endpoints

if not convex: treat convex/concave segments separately
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Linear Relaxation of Multiplication

Theorem: [McCormick, 1976]
z = xy , x ∈ [x , x ], y ∈ [y , y ] implies

I yx + xy − xy ≤ z

I z ≤ yx + xy − xy

I yx + xy − xy ≤ z

I z ≤ yx + xy − xy

Moreover:

I optimal (in general, no further implied inequalities)
[Al-Khayyal and Falk, 1983]

I always at least as tight as interval arithmetic
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In practice

Attention! careless rounding might cut of solutions!

Now: Over-approximating LP can be used
for pruning within branch-and-prune algorithm

Here one can
just test whether the resulting LP is satisfiable,

or
try to infer new variable bounds from it by solving 2n LPs
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Implementation

We have a (very prototypical) implementation: RSolver

http://rsolver.sourceforge.net

Can handle quantifiers [Ratschan, 2006]
as long as this does not need

positive information about equalities

For example, it cannot (yet) prove

∃x . f (x) = 0

But, in theory [Franek et al., 2010] we can already do this, too.
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Conclusion

Constraint solvers for the real numbers,
can be useful for analyzing discrete problem.

If you want to try, contact us.
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