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Automata-theoretic 
approach

• Only requires reachability and fair 
termination verifiers

• A standard method for imperative 
programs
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Automata-theoretic approach applied to
temporal verification of Ocaml programs

 with high-order procedures
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Our work

• Monitoring for evaluation trees

• Product construction

• Evaluation
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A simple program
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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Evaluation judgement
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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Evaluation tree
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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Evaluation of 1+2
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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Evaluation of 1+2
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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Evaluation of 1+2
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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Evaluation of 1+2
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition
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let rec ack m m n ( c, b, m, n) =

let s’ =
if c then

c,
b && (m >= 0 && n >= 0
&& ( m > m ||
m = m && n > n)),

m,
n

else
true, b, m, n

in

if m <= 0 then
n + 1, s’

else if n <= 0 then begin
ack m (m - 1) 1 s’

end else
let n’, =

ack m m (n - 1) s’
in
ack m (m - 1) n’ s’

let harness m n =
ack m m n (false, true, 0, 0)

We verify our specification by using Dsolve to prove that ack
satisfies the value specification.

2.3 Termination by transition invariants
Consider the following program

let rec mccarthy91 n =
if n > 100 then

n - 10
else

mccarthy91 (mccarthy91 (n + 11))

9
>=

>;
emccarthy91

We are interested in proving termination of mccarthy91. For

the specification, consider the following monitor automaton.

function mtrans mc
( c, b, n)
expression
direction =

match expression, direction with
| <expr patt< emccarthy91 >>, Up ->

Some <expr term<
if $ c$ then begin

assert(n <= 111 && $ n$ < n);
$ c$, $ n$

end else if nondet () then
true, n

else
$ c$, $ n$

>>
| -> $ c$, $ b$, $ n$

The product of mccarthy and mtrans mc is the following

let rec mccarthy91 m n ( c, b, n) =

let s’ =
if c then

c, b && (n <= 111 && n < n), n
else if nondet () then

true, b, n
else

c, b, n
in

if n > 100 then n - 10
else mccarthy91 m (mccarthy91 m (n + 11) s’) s’

let harness n = mccarthy91 m n (false, true, 0)

We verify our specification by using Dsolve to prove that

mccarthy91 m satisfies the value specification.

3. Preliminaries
In this section we briefly describe the syntax and semantics of

Mini-Ocaml, the programming language that we use to represent

programs. We follow [19].

Let X be a set of variables, e.g., x, List.map, and myVar. Let

C be a set of constants, e.g., +, 1, 2.5, and "h". Let �C be a set of

constructors, e.g., ::, Some, [], and true. We assume s, x ∈ X ,

c ∈ C, and �c ∈ �C. Figure 1(a) presents the syntax of Mini-Ocaml.

We encode if-then-else expressions using match expressions.

The semantics of Mini-Ocaml is defined in Figures 1(b)

and 1(c). We assume that the application of evaluation rules is

represented using evaluation trees in a standard way. Each evalu-

ation tree is given by the set of its edges. Each edge is a sequence

of judgements j1, . . . , jn, j , where j1, . . . , jn are the predecessor

nodes and j is the successor node. If n = 0 then the edge repre-

sents a leaf node.

For example, we consider the evaluation tree t for 1 + 2 as

shown below.

∅ � 2⇒ 2 ∅ � 1⇒ 1 ∅ � +⇒ +

∅ � 1+2⇒ 3

Let j1 = (∅ � 1+2 ⇒ 3), j2 = (∅ � 2 ⇒ 2), j3 = (∅ � 1 ⇒ 1),

and j4 = (∅ � + ⇒ +). Then, t is given by the set of four edges

below.

{j2, j3, j4, (j2, j3, j4, j1)}

4. Monitors and monitored evaluation
In this section we present monitors and their application for in-

specting evaluation trees.

Monitors A monitor M = (Σ, σ0, ρ) over the set of states Σ
consists of the initial state σ0 ∈ Σ and the state transition function
ρ : Σ × J × {↑, ↓} → Σ. The set of monitor states can be

infinite, which is useful for dealing with counting properties. The

state transition function describes the process of monitoring. Given

a current state of the monitor together with a current evaluation

judgement and a monitoring direction, ρ determines the successor

state.

For example, we consider a program property that requires

counting the number of additions applied during the program eval-

uation, i.e., how many times the constant + is applied. We construct

a monitor M+ = (N, 0, ρ+) with the set of states given by natu-

ral numbers. M+ keeps track of additions using the state transition

Count additions
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0

Initial state: 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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Monitoring of 1+2

29

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 1

Current state

Tuesday, April 5, 2011



Addition counting 
monitor

30

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
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Monitor states

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
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Monitor states

Initial state

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
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Monitor states

Initial state

State transition 
function

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
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P � p ::= pattern

| x variable

| p,..., p tuple pattern

E � e ::= expression

| c constant

| x variable

| e,..., e tuple expression

| �c(e,...,e) construction expression

| e e function application

| fun x-> e abstraction

| let p = e in e let binding

| let rec f = fun x-> e in e let-rec binding

| match e with

| �c(x,...,x) -> e

. . .

| �c(x,...,x) -> e

match-with

(a) Mini-Ocaml syntax.

V � v ::= value

| c constant value

| v, . . . , v tuple value

| �c (v, . . . , v) construction value

| (xf , fun x-> e, E) recursive closure

| ( , fun x-> e, E) regular closure

J � j ::= E � e ⇒ r evaluation judgement

J+ � t evaluation tree

(b) Mini-Ocaml values, judgements, and evaluation trees.

(Cst) E � c ⇒ c

(Var)
x ∈ Dom E
E � x ⇒ E x

(Tuple)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � e1, ..., en ⇒ v1, . . . , vn

(Constr)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � �c(e1, . . . ,en)⇒ �c (v1, . . . , vn)

(App)

E � ep ⇒ vp E � ef ⇒ ( , fun xp -> eb, Efun )
Efun + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Rec)

E � ep ⇒ vp E � ef ⇒ (xf , fun xp -> eb, Efun )

Efun + xf �→ (xf , fun xp -> eb, Efun ) + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Fun Cst)
E � ep ⇒ vp E � ef ⇒ c c ∈ C c vp = r

E � ef ep ⇒ r

(Fun)
E � fun x-> e ⇒ ( , fun x-> e, E)

(Fun Rec)
E + xf �→ (xf , fun xp -> eb, E) � ein ⇒ r

E � let rec xf = fun xp-> eb in ein ⇒ r

(Let)
E � e1 ⇒ v1 E + Bindings p v1 � e2 ⇒ r2

E � let p = e1 in e2 ⇒ r2

(Match)

E � em ⇒ v
�ck(xk,1, . . . ,xk,jk

)is the first pattern to match v
E + Bindings (�ck (xk,1, . . ., xk,jk

)) v � ek ⇒ r

E �

0

B@

match em with
|�c1(x1,1, . . . ,x1,j1)->e1
. . .
|�ci(xi,1, . . . ,xi,ji)->ei

1

CA ⇒ r

(c) Mini-Ocaml evaluation rules. Rule premises are ordered from left to

right and from top to bottom. Patterns in (Match) are ordered from top to

bottom.

Figure 1: Mini-Ocaml syntax and semantics.

function ρ+ as follows.

ρ+(σ, j , δ) =

8
><

>:

σ + 1 if δ =↓ ∧
∃E, e1, e2, v : j = E � e1 + e2 ⇒ v

σ otherwise

We illustrate ρ+ on the judgement j = (∅ � 1+2 ⇒ 3) by consider-

ing the application ρ+(0, j , ↓). Its evaluation follows the first case

and produces a monitor state 1.

Monitoring evaluation We use monitors to inspect evaluation

trees. The inspection starts at the root of the evaluation tree and

with the initial monitor state. Then, the evaluation tree is traversed

judgement by judgement in the order of their construction, as de-

fined by the evaluation rules in Figure 1(c). When the monitor is in

a state σ and inspects the judgement j , then j is decorated by a pair

of monitor states σ↑
and σ↓

obtained as follows. σ↑
is the result of

applying ρ+(σ, j , ↑). Then, the monitor proceeds with inspecting

the evaluation tree rooted in j , and after this inspection is finished

in a state, say σ�
, then σ↓

is computed by applying ρ+(σ
�, j , ↓).

We extend judgements with pairs of monitors states to keep

track of inspection steps. The resulting monitored judgements Jm

are defined as follows (here, σ refers to monitor states).

Jm � jm ::= σ ↑ E � e ⇒ r ↓ σ

We also define monitored evaluation trees tm to be trees over

monitored evaluation judgements.

For example, the monitored judgement 0 ↑ ∅ � 1 ⇒ 1 ↓ 0
states that after reaching the judgement ∅ � 1 ⇒ 1 the monitor

state became 0 and when returning to this judgement after inspect-

ing its sub-tree, the monitor state remained 0.

We first illustrate the monitoring of evaluation trees and result-

ing monitored evaluation trees by example, and then present the

corresponding algorithm. We consider the evaluation tree for 1+2
presented in Section 3 and present its monitoring by M+ in Fig-

ure 2. The monitored evaluation tree in Figure 2(a) together with

the sequence of applications in Figure 2(c) show in which order the

evaluation tree is inspected and how the monitor states are deter-

mined. The monitored evaluation tree in Figure 2(b) is the result of

monitoring.

We present the function Monitoring that computed monitored

evaluation trees for a given monitor in Figure 3. Monitoring per-

forms a combination of pre-ordered and post-ordered tree traver-

sal, where the root node of a sub-tree is considered before and after

taking its subtrees into account.

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)

P � p ::= pattern

| x variable

| p,..., p tuple pattern

E � e ::= expression

| c constant

| x variable

| e,..., e tuple expression

| �c(e,...,e) construction expression

| e e function application

| fun x-> e abstraction

| let p = e in e let binding

| let rec f = fun x-> e in e let-rec binding

| match e with

| �c(x,...,x) -> e

. . .

| �c(x,...,x) -> e

match-with

(a) Mini-Ocaml syntax.

V � v ::= value

| c constant value

| v, . . . , v tuple value

| �c (v, . . . , v) construction value

| (xf , fun x-> e, E) recursive closure

| ( , fun x-> e, E) regular closure

J � j ::= E � e ⇒ r evaluation judgement

J+ � t evaluation tree

(b) Mini-Ocaml values, judgements, and evaluation trees.

(Cst) E � c ⇒ c

(Var)
x ∈ Dom E
E � x ⇒ E x

(Tuple)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � e1, ..., en ⇒ v1, . . . , vn

(Constr)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � �c(e1, . . . ,en)⇒ �c (v1, . . . , vn)

(App)

E � ep ⇒ vp E � ef ⇒ ( , fun xp -> eb, Efun )
Efun + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Rec)

E � ep ⇒ vp E � ef ⇒ (xf , fun xp -> eb, Efun )

Efun + xf �→ (xf , fun xp -> eb, Efun ) + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Fun Cst)
E � ep ⇒ vp E � ef ⇒ c c ∈ C c vp = r

E � ef ep ⇒ r

(Fun)
E � fun x-> e ⇒ ( , fun x-> e, E)

(Fun Rec)
E + xf �→ (xf , fun xp -> eb, E) � ein ⇒ r

E � let rec xf = fun xp-> eb in ein ⇒ r

(Let)
E � e1 ⇒ v1 E + Bindings p v1 � e2 ⇒ r2

E � let p = e1 in e2 ⇒ r2

(Match)

E � em ⇒ v
�ck(xk,1, . . . ,xk,jk

)is the first pattern to match v
E + Bindings (�ck (xk,1, . . ., xk,jk

)) v � ek ⇒ r

E �

0

B@

match em with
|�c1(x1,1, . . . ,x1,j1)->e1
. . .
|�ci(xi,1, . . . ,xi,ji)->ei

1

CA ⇒ r

(c) Mini-Ocaml evaluation rules. Rule premises are ordered from left to

right and from top to bottom. Patterns in (Match) are ordered from top to

bottom.

Figure 1: Mini-Ocaml syntax and semantics.

function ρ+ as follows.

ρ+(σ, j , δ) =

8
><

>:

σ + 1 if δ =↓ ∧
∃E, e1, e2, v : j = E � e1 + e2 ⇒ v

σ otherwise

We illustrate ρ+ on the judgement j = (∅ � 1+2 ⇒ 3) by consider-

ing the application ρ+(0, j , ↓). Its evaluation follows the first case

and produces a monitor state 1.

Monitoring evaluation We use monitors to inspect evaluation

trees. The inspection starts at the root of the evaluation tree and

with the initial monitor state. Then, the evaluation tree is traversed

judgement by judgement in the order of their construction, as de-

fined by the evaluation rules in Figure 1(c). When the monitor is in

a state σ and inspects the judgement j , then j is decorated by a pair

of monitor states σ↑
and σ↓

obtained as follows. σ↑
is the result of

applying ρ+(σ, j , ↑). Then, the monitor proceeds with inspecting

the evaluation tree rooted in j , and after this inspection is finished

in a state, say σ�
, then σ↓

is computed by applying ρ+(σ
�, j , ↓).

We extend judgements with pairs of monitors states to keep

track of inspection steps. The resulting monitored judgements Jm

are defined as follows (here, σ refers to monitor states).

Jm � jm ::= σ ↑ E � e ⇒ r ↓ σ

We also define monitored evaluation trees tm to be trees over

monitored evaluation judgements.

For example, the monitored judgement 0 ↑ ∅ � 1 ⇒ 1 ↓ 0
states that after reaching the judgement ∅ � 1 ⇒ 1 the monitor

state became 0 and when returning to this judgement after inspect-

ing its sub-tree, the monitor state remained 0.

We first illustrate the monitoring of evaluation trees and result-

ing monitored evaluation trees by example, and then present the

corresponding algorithm. We consider the evaluation tree for 1+2
presented in Section 3 and present its monitoring by M+ in Fig-

ure 2. The monitored evaluation tree in Figure 2(a) together with

the sequence of applications in Figure 2(c) show in which order the

evaluation tree is inspected and how the monitor states are deter-

mined. The monitored evaluation tree in Figure 2(b) is the result of

monitoring.

We present the function Monitoring that computed monitored

evaluation trees for a given monitor in Figure 3. Monitoring per-

forms a combination of pre-ordered and post-ordered tree traver-

sal, where the root node of a sub-tree is considered before and after

taking its subtrees into account.

(State X Judgement X Direction) State
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)

P � p ::= pattern

| x variable

| p,..., p tuple pattern

E � e ::= expression

| c constant

| x variable

| e,..., e tuple expression

| �c(e,...,e) construction expression

| e e function application

| fun x-> e abstraction

| let p = e in e let binding

| let rec f = fun x-> e in e let-rec binding

| match e with

| �c(x,...,x) -> e

. . .

| �c(x,...,x) -> e

match-with

(a) Mini-Ocaml syntax.

V � v ::= value

| c constant value

| v, . . . , v tuple value

| �c (v, . . . , v) construction value

| (xf , fun x-> e, E) recursive closure

| ( , fun x-> e, E) regular closure

J � j ::= E � e ⇒ r evaluation judgement

J+ � t evaluation tree

(b) Mini-Ocaml values, judgements, and evaluation trees.

(Cst) E � c ⇒ c

(Var)
x ∈ Dom E
E � x ⇒ E x

(Tuple)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � e1, ..., en ⇒ v1, . . . , vn

(Constr)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � �c(e1, . . . ,en)⇒ �c (v1, . . . , vn)

(App)

E � ep ⇒ vp E � ef ⇒ ( , fun xp -> eb, Efun )
Efun + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Rec)

E � ep ⇒ vp E � ef ⇒ (xf , fun xp -> eb, Efun )

Efun + xf �→ (xf , fun xp -> eb, Efun ) + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Fun Cst)
E � ep ⇒ vp E � ef ⇒ c c ∈ C c vp = r

E � ef ep ⇒ r

(Fun)
E � fun x-> e ⇒ ( , fun x-> e, E)

(Fun Rec)
E + xf �→ (xf , fun xp -> eb, E) � ein ⇒ r

E � let rec xf = fun xp-> eb in ein ⇒ r

(Let)
E � e1 ⇒ v1 E + Bindings p v1 � e2 ⇒ r2

E � let p = e1 in e2 ⇒ r2

(Match)

E � em ⇒ v
�ck(xk,1, . . . ,xk,jk

)is the first pattern to match v
E + Bindings (�ck (xk,1, . . ., xk,jk

)) v � ek ⇒ r

E �

0

B@

match em with
|�c1(x1,1, . . . ,x1,j1)->e1
. . .
|�ci(xi,1, . . . ,xi,ji)->ei

1

CA ⇒ r

(c) Mini-Ocaml evaluation rules. Rule premises are ordered from left to

right and from top to bottom. Patterns in (Match) are ordered from top to

bottom.

Figure 1: Mini-Ocaml syntax and semantics.

function ρ+ as follows.

ρ+(σ, j , δ) =

8
><

>:

σ + 1 if δ =↓ ∧
∃E, e1, e2, v : j = E � e1 + e2 ⇒ v

σ otherwise

We illustrate ρ+ on the judgement j = (∅ � 1+2 ⇒ 3) by consider-

ing the application ρ+(0, j , ↓). Its evaluation follows the first case

and produces a monitor state 1.

Monitoring evaluation We use monitors to inspect evaluation

trees. The inspection starts at the root of the evaluation tree and

with the initial monitor state. Then, the evaluation tree is traversed

judgement by judgement in the order of their construction, as de-

fined by the evaluation rules in Figure 1(c). When the monitor is in

a state σ and inspects the judgement j , then j is decorated by a pair

of monitor states σ↑
and σ↓

obtained as follows. σ↑
is the result of

applying ρ+(σ, j , ↑). Then, the monitor proceeds with inspecting

the evaluation tree rooted in j , and after this inspection is finished

in a state, say σ�
, then σ↓

is computed by applying ρ+(σ
�, j , ↓).

We extend judgements with pairs of monitors states to keep

track of inspection steps. The resulting monitored judgements Jm

are defined as follows (here, σ refers to monitor states).

Jm � jm ::= σ ↑ E � e ⇒ r ↓ σ

We also define monitored evaluation trees tm to be trees over

monitored evaluation judgements.

For example, the monitored judgement 0 ↑ ∅ � 1 ⇒ 1 ↓ 0
states that after reaching the judgement ∅ � 1 ⇒ 1 the monitor

state became 0 and when returning to this judgement after inspect-

ing its sub-tree, the monitor state remained 0.

We first illustrate the monitoring of evaluation trees and result-

ing monitored evaluation trees by example, and then present the

corresponding algorithm. We consider the evaluation tree for 1+2
presented in Section 3 and present its monitoring by M+ in Fig-

ure 2. The monitored evaluation tree in Figure 2(a) together with

the sequence of applications in Figure 2(c) show in which order the

evaluation tree is inspected and how the monitor states are deter-

mined. The monitored evaluation tree in Figure 2(b) is the result of

monitoring.

We present the function Monitoring that computed monitored

evaluation trees for a given monitor in Figure 3. Monitoring per-

forms a combination of pre-ordered and post-ordered tree traver-

sal, where the root node of a sub-tree is considered before and after

taking its subtrees into account.

(State X Judgement X Direction) State
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)

P � p ::= pattern

| x variable

| p,..., p tuple pattern

E � e ::= expression

| c constant

| x variable

| e,..., e tuple expression

| �c(e,...,e) construction expression

| e e function application

| fun x-> e abstraction

| let p = e in e let binding

| let rec f = fun x-> e in e let-rec binding

| match e with

| �c(x,...,x) -> e

. . .

| �c(x,...,x) -> e

match-with

(a) Mini-Ocaml syntax.

V � v ::= value

| c constant value

| v, . . . , v tuple value

| �c (v, . . . , v) construction value

| (xf , fun x-> e, E) recursive closure

| ( , fun x-> e, E) regular closure

J � j ::= E � e ⇒ r evaluation judgement

J+ � t evaluation tree

(b) Mini-Ocaml values, judgements, and evaluation trees.

(Cst) E � c ⇒ c

(Var)
x ∈ Dom E
E � x ⇒ E x

(Tuple)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � e1, ..., en ⇒ v1, . . . , vn

(Constr)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � �c(e1, . . . ,en)⇒ �c (v1, . . . , vn)

(App)

E � ep ⇒ vp E � ef ⇒ ( , fun xp -> eb, Efun )
Efun + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Rec)

E � ep ⇒ vp E � ef ⇒ (xf , fun xp -> eb, Efun )

Efun + xf �→ (xf , fun xp -> eb, Efun ) + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Fun Cst)
E � ep ⇒ vp E � ef ⇒ c c ∈ C c vp = r

E � ef ep ⇒ r

(Fun)
E � fun x-> e ⇒ ( , fun x-> e, E)

(Fun Rec)
E + xf �→ (xf , fun xp -> eb, E) � ein ⇒ r

E � let rec xf = fun xp-> eb in ein ⇒ r

(Let)
E � e1 ⇒ v1 E + Bindings p v1 � e2 ⇒ r2

E � let p = e1 in e2 ⇒ r2

(Match)

E � em ⇒ v
�ck(xk,1, . . . ,xk,jk

)is the first pattern to match v
E + Bindings (�ck (xk,1, . . ., xk,jk

)) v � ek ⇒ r

E �

0

B@

match em with
|�c1(x1,1, . . . ,x1,j1)->e1
. . .
|�ci(xi,1, . . . ,xi,ji)->ei

1

CA ⇒ r

(c) Mini-Ocaml evaluation rules. Rule premises are ordered from left to

right and from top to bottom. Patterns in (Match) are ordered from top to

bottom.

Figure 1: Mini-Ocaml syntax and semantics.

function ρ+ as follows.

ρ+(σ, j , δ) =

8
><

>:

σ + 1 if δ =↓ ∧
∃E, e1, e2, v : j = E � e1 + e2 ⇒ v

σ otherwise

We illustrate ρ+ on the judgement j = (∅ � 1+2 ⇒ 3) by consider-

ing the application ρ+(0, j , ↓). Its evaluation follows the first case

and produces a monitor state 1.

Monitoring evaluation We use monitors to inspect evaluation

trees. The inspection starts at the root of the evaluation tree and

with the initial monitor state. Then, the evaluation tree is traversed

judgement by judgement in the order of their construction, as de-

fined by the evaluation rules in Figure 1(c). When the monitor is in

a state σ and inspects the judgement j , then j is decorated by a pair

of monitor states σ↑
and σ↓

obtained as follows. σ↑
is the result of

applying ρ+(σ, j , ↑). Then, the monitor proceeds with inspecting

the evaluation tree rooted in j , and after this inspection is finished

in a state, say σ�
, then σ↓

is computed by applying ρ+(σ
�, j , ↓).

We extend judgements with pairs of monitors states to keep

track of inspection steps. The resulting monitored judgements Jm

are defined as follows (here, σ refers to monitor states).

Jm � jm ::= σ ↑ E � e ⇒ r ↓ σ

We also define monitored evaluation trees tm to be trees over

monitored evaluation judgements.

For example, the monitored judgement 0 ↑ ∅ � 1 ⇒ 1 ↓ 0
states that after reaching the judgement ∅ � 1 ⇒ 1 the monitor

state became 0 and when returning to this judgement after inspect-

ing its sub-tree, the monitor state remained 0.

We first illustrate the monitoring of evaluation trees and result-

ing monitored evaluation trees by example, and then present the

corresponding algorithm. We consider the evaluation tree for 1+2
presented in Section 3 and present its monitoring by M+ in Fig-

ure 2. The monitored evaluation tree in Figure 2(a) together with

the sequence of applications in Figure 2(c) show in which order the

evaluation tree is inspected and how the monitor states are deter-

mined. The monitored evaluation tree in Figure 2(b) is the result of

monitoring.

We present the function Monitoring that computed monitored

evaluation trees for a given monitor in Figure 3. Monitoring per-

forms a combination of pre-ordered and post-ordered tree traver-

sal, where the root node of a sub-tree is considered before and after

taking its subtrees into account.

(State X Judgement X Direction) State
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)

P � p ::= pattern

| x variable

| p,..., p tuple pattern

E � e ::= expression

| c constant

| x variable

| e,..., e tuple expression

| �c(e,...,e) construction expression

| e e function application

| fun x-> e abstraction

| let p = e in e let binding

| let rec f = fun x-> e in e let-rec binding

| match e with

| �c(x,...,x) -> e

. . .

| �c(x,...,x) -> e

match-with

(a) Mini-Ocaml syntax.

V � v ::= value

| c constant value

| v, . . . , v tuple value

| �c (v, . . . , v) construction value

| (xf , fun x-> e, E) recursive closure

| ( , fun x-> e, E) regular closure

J � j ::= E � e ⇒ r evaluation judgement

J+ � t evaluation tree

(b) Mini-Ocaml values, judgements, and evaluation trees.

(Cst) E � c ⇒ c

(Var)
x ∈ Dom E
E � x ⇒ E x

(Tuple)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � e1, ..., en ⇒ v1, . . . , vn

(Constr)
E � en ⇒ vn . . . E � e1 ⇒ v1

E � �c(e1, . . . ,en)⇒ �c (v1, . . . , vn)

(App)

E � ep ⇒ vp E � ef ⇒ ( , fun xp -> eb, Efun )
Efun + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Rec)

E � ep ⇒ vp E � ef ⇒ (xf , fun xp -> eb, Efun )

Efun + xf �→ (xf , fun xp -> eb, Efun ) + xp �→ vp � eb ⇒ r

E � ef ep ⇒ r

(App Fun Cst)
E � ep ⇒ vp E � ef ⇒ c c ∈ C c vp = r

E � ef ep ⇒ r

(Fun)
E � fun x-> e ⇒ ( , fun x-> e, E)

(Fun Rec)
E + xf �→ (xf , fun xp -> eb, E) � ein ⇒ r

E � let rec xf = fun xp-> eb in ein ⇒ r

(Let)
E � e1 ⇒ v1 E + Bindings p v1 � e2 ⇒ r2

E � let p = e1 in e2 ⇒ r2

(Match)

E � em ⇒ v
�ck(xk,1, . . . ,xk,jk

)is the first pattern to match v
E + Bindings (�ck (xk,1, . . ., xk,jk

)) v � ek ⇒ r

E �

0

B@

match em with
|�c1(x1,1, . . . ,x1,j1)->e1
. . .
|�ci(xi,1, . . . ,xi,ji)->ei

1

CA ⇒ r

(c) Mini-Ocaml evaluation rules. Rule premises are ordered from left to

right and from top to bottom. Patterns in (Match) are ordered from top to

bottom.

Figure 1: Mini-Ocaml syntax and semantics.

function ρ+ as follows.

ρ+(σ, j , δ) =

8
><

>:

σ + 1 if δ =↓ ∧
∃E, e1, e2, v : j = E � e1 + e2 ⇒ v

σ otherwise

We illustrate ρ+ on the judgement j = (∅ � 1+2 ⇒ 3) by consider-

ing the application ρ+(0, j , ↓). Its evaluation follows the first case

and produces a monitor state 1.

Monitoring evaluation We use monitors to inspect evaluation

trees. The inspection starts at the root of the evaluation tree and

with the initial monitor state. Then, the evaluation tree is traversed

judgement by judgement in the order of their construction, as de-

fined by the evaluation rules in Figure 1(c). When the monitor is in

a state σ and inspects the judgement j , then j is decorated by a pair

of monitor states σ↑
and σ↓

obtained as follows. σ↑
is the result of

applying ρ+(σ, j , ↑). Then, the monitor proceeds with inspecting

the evaluation tree rooted in j , and after this inspection is finished

in a state, say σ�
, then σ↓

is computed by applying ρ+(σ
�, j , ↓).

We extend judgements with pairs of monitors states to keep

track of inspection steps. The resulting monitored judgements Jm

are defined as follows (here, σ refers to monitor states).

Jm � jm ::= σ ↑ E � e ⇒ r ↓ σ

We also define monitored evaluation trees tm to be trees over

monitored evaluation judgements.

For example, the monitored judgement 0 ↑ ∅ � 1 ⇒ 1 ↓ 0
states that after reaching the judgement ∅ � 1 ⇒ 1 the monitor

state became 0 and when returning to this judgement after inspect-

ing its sub-tree, the monitor state remained 0.

We first illustrate the monitoring of evaluation trees and result-

ing monitored evaluation trees by example, and then present the

corresponding algorithm. We consider the evaluation tree for 1+2
presented in Section 3 and present its monitoring by M+ in Fig-

ure 2. The monitored evaluation tree in Figure 2(a) together with

the sequence of applications in Figure 2(c) show in which order the

evaluation tree is inspected and how the monitor states are deter-

mined. The monitored evaluation tree in Figure 2(b) is the result of

monitoring.

We present the function Monitoring that computed monitored

evaluation trees for a given monitor in Figure 3. Monitoring per-

forms a combination of pre-ordered and post-ordered tree traver-

sal, where the root node of a sub-tree is considered before and after

taking its subtrees into account.

(State X Judgement X Direction) State
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
ζ+ = (0, mtrans sum)

M+ = (N, 0, ρ+ )

ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0

40

Monitoring with    e

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
ζ+ = (0, mtrans sum)

M+ = (N, 0, ρ+ )

ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
ζ+ = (0, mtrans sum)

M+ = (N, 0, ρ+ )

ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
ζ+ = (0, mtrans sum)

M+ = (N, 0, ρ+ )

ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
ζ+ = (0, mtrans sum)

M+ = (N, 0, ρ+ )

ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)
ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)

ρ+(0, (∅ � 2⇒ 2) , ↑)
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 0
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
ζ+ = (0, mtrans sum)

M+ = (N, 0, ρ+ )

ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)
ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)

ρ+(0, (∅ � 2⇒ 2) , ↑)

ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)

ρ+(0, (∅ � 2⇒ 2) , ↑)

ρ+(0, (∅ � 2⇒ 2) , ↓)
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σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

σ↑
1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓

1

σ↑
2 ↑ ∅ � 2⇒ 2 ↓ σ↓

2 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ σ↓
2 σ↑

3 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 σ↑
3 ↑ ∅ � 1⇒ 1 ↓ σ↓

3 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ σ↓
3 σ↑

4 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 σ↑
4 ↑ ∅ � +⇒ + ↓ σ↓

4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ σ↓
4

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓
1

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1 + 2⇒ 3 ↓ 1

Monitoring with    e

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
ζ+ = (0, mtrans sum)

M+ = (N, 0, ρ+ )ρ+(0, (∅ � 1 + 2⇒ 3) , ↑)

ρ+(0, (∅ � 2⇒ 2) , ↑)

ρ+(0, (∅ � 2⇒ 2) , ↓)

ρ+(0, (∅ � 1 + 2⇒ 3) , ↓)

Tuesday, April 5, 2011



Our work

• Monitoring for evaluation trees

• Product construction

• Evaluation

46

Tuesday, April 5, 2011



Our work

• Monitoring for evaluation trees

• Product construction

• Evaluation

47

Tuesday, April 5, 2011



Product construction

48

User program Monitor

let f x =
if x < 0 then 0 else f (x - 1) M
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User program Monitoring code

let f x =
if x < 0 then 0 else f (x - 1) assert(x > 0)
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User program Monitoring code

let f x =
if x < 0 then 0 else f (x - 1) assert(x > 0)

let f x = if x < 0 then 0 else assert(x > 0); f (x - 1)
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
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Initial state expression

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
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State transformer 
procedure

Initial state expression

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
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σ↑2 ↑ ∅ � 2⇒ 2 ↓ σ↓2 σ↑3 ↑ ∅ � 1⇒ 1 ↓ σ↓3 σ↑4 ↑ ∅ � +⇒ + ↓ σ↓4

σ↑1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓1

(a) Order of monitor states in the monitored evaluation tree.

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1+2⇒ 3 ↓ 1

(b) Monitor states in the monitored evaluation tree.

σ↑1 = ρ+(σ0, j1, ↑)
σ↑2 = ρ+(σ

↑
1 , j2, ↑)

σ↓2 = ρ+(σ
↑
2 , j2, ↓)

σ↑3 = ρ+(σ
↓
2 , j3, ↑)

σ↓3 = ρ+(σ
↑
3 , j3, ↓)

σ↑4 = ρ+(σ
↓
3 , j4, ↑)

σ↓4 = ρ+(σ
↑
4 , j4, ↓)

σ↑1 = ρ+(σ
↓
4 , j1, ↓)

(c) Computation of monitor states.

Figure 2: Monitoring evaluation tree of 1+2 by the monitor M+ from the initial state σ0 = 0.

1 let Monitoring σ t =

2 let j = root(t) in
3 let t1, . . . , tn = immediate subtrees of t in
4 let σ↑ = ρ(σ, j , ↑) in
5 if n = 0 then
6 let σ↓ = ρ(σ↑, j , ↓) in
7 {σ↑ ↑ j ↓ σ↓}, σ↓

8 else

9 let tm1 , σ↓1 = Monitoring σ↑ t1 in

10 let tm2 , σ↓2 = Monitoring σ↓1 t2 in
11 . . .

12 let tmn , σ↓n = Monitoring σ↓n−1 tn in

13 let σ↓ = ρ(σ↓n, j , ↓) in
14

`
{

`
root(tm1 ), . . . , root(tmn ), σ↑ ↑ j ↓ σ↓

´
} ∪

15 tm1 ∪ . . . ∪ tmn
´
, σ↓

Figure 3: Evaluation tree monitoring. The input consists of a mon-

itor state σ and an evaluation tree t. The output is the monitored

evaluation tree corresponding to t together with the current moni-

tor state.

5. Monitor specifications
In this section, we present a symbolic representation of monitors

using monitor specifications. We express monitor specifications

using Mini-Ocaml.

A monitor specification ζ = (e0, mtrans) consists of an initial
state expression e0 of type E and a state transformer procedure
mtrans of type X → E → {↑, ↓} → E. The expression e0

represents the state in which the monitoring starts. We assume

that there exists a unique v such that ∅ � e0 ⇒ v. mtrans
represents the transition relation used for monitoring. The result of

the application mtrans s e δ is called a transition expression. We

assume that each resulting transition expression, say eti, is a first-

order expression wrt. e. That is, each free variable that occurs in

eti is used as a variable of nullary arity in e. The above assumption

is not a proper limitation in practice, since there are many useful

monitor specifications producing first-order transition expressions.

In fact, our collection of benchmark programs and properties from

the literature does not have any violating monitor expression (see

Section 8 for further discussion).

Example non first-order monitor specification The following

monitor specification is non first-order because the program vari-

able f is used as a function in the monitored expression.

function mtrans nonFO state expression direction =

match expression, direction with

| <expr patt< f $ $ >>, Down ->

<expr term< f $state$ >>

| -> state

Example monitor specification ζ+ For example, we consider the

monitor specification ζ+ for the monitor M+ defined in Section 4.

This monitor specification has initial state expression 0, and state

transformer procedure

function mtrans plus counter expression direction =

match expression, direction with

| <expr patt< + $ $ >>, Down ->

<expr term< $counter$ + 1 >>

| -> counter

This monitor specification results in the increment of the monitor

state when the program applies the constant +. We illustrate the us-

age of ζ+ when given an evaluation judgement j = (∅ � 1+2⇒ 3).

In the course of monitoring we apply the state transformer proce-

dure mtrans plus on a variable keeping track of the monitor state,

say s, and some direction, say ↓ , which results in the application

mtrans plus s 1+2 ↓. The evaluation of the matching expression

in mtrans plus follows the first case and computes a transition

expression s+1.

Then, we evaluate the obtained transition expression in the

context of j that we extend with a binding for the monitor state

variable s, say to a value 0, and obtain the successor monitor

value 1, i.e., ∅ + s �→ 0 � s+1 ⇒ 1. In summary, ζ+ computes

the monitored evaluation judgement 0 ↑ ∅ � 1+2 ⇒ 3 ↓ 1 for the

given evaluation judgement j .

Example monitor specification for termination Consider the

monitor specification ζack that has initial state expression (false,

true, 0, 0), and the state transformer procedure mtrans ack

from Section 2. This monitor specification results in a monitor state

matching ( , false, , ) when the termination check is vi-

olated. We illustrate the usage of ζack when given an evaluation

judgement j = (E � eack ⇒ 3) where E = {m �→ 1; n �→ 1}. In

the course of monitoring we apply the state transformer procedure

mtrans ack on a state variable s, the expression eack , and ↑. The

application mtrans ack s (eack) ↑ matches s against ( c, b,

m, n). The evaluation of the match expression in mtrans ack

follows the first case and computes a transition expression

Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)

(State X Expression X Direction) Monitoring code

σ↑2 ↑ ∅ � 2⇒ 2 ↓ σ↓2 σ↑3 ↑ ∅ � 1⇒ 1 ↓ σ↓3 σ↑4 ↑ ∅ � +⇒ + ↓ σ↓4

σ↑1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓1

(a) Order of monitor states in the monitored evaluation tree.

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1+2⇒ 3 ↓ 1

(b) Monitor states in the monitored evaluation tree.

σ↑1 = ρ+(σ0, j1, ↑)
σ↑2 = ρ+(σ

↑
1 , j2, ↑)

σ↓2 = ρ+(σ
↑
2 , j2, ↓)

σ↑3 = ρ+(σ
↓
2 , j3, ↑)

σ↓3 = ρ+(σ
↑
3 , j3, ↓)

σ↑4 = ρ+(σ
↓
3 , j4, ↑)

σ↓4 = ρ+(σ
↑
4 , j4, ↓)

σ↑1 = ρ+(σ
↓
4 , j1, ↓)

(c) Computation of monitor states.

Figure 2: Monitoring evaluation tree of 1+2 by the monitor M+ from the initial state σ0 = 0.

1 let Monitoring σ t =

2 let j = root(t) in
3 let t1, . . . , tn = immediate subtrees of t in
4 let σ↑ = ρ(σ, j , ↑) in
5 if n = 0 then
6 let σ↓ = ρ(σ↑, j , ↓) in
7 {σ↑ ↑ j ↓ σ↓}, σ↓

8 else

9 let tm1 , σ↓1 = Monitoring σ↑ t1 in

10 let tm2 , σ↓2 = Monitoring σ↓1 t2 in
11 . . .

12 let tmn , σ↓n = Monitoring σ↓n−1 tn in

13 let σ↓ = ρ(σ↓n, j , ↓) in
14

`
{

`
root(tm1 ), . . . , root(tmn ), σ↑ ↑ j ↓ σ↓

´
} ∪

15 tm1 ∪ . . . ∪ tmn
´
, σ↓

Figure 3: Evaluation tree monitoring. The input consists of a mon-

itor state σ and an evaluation tree t. The output is the monitored

evaluation tree corresponding to t together with the current moni-

tor state.

5. Monitor specifications
In this section, we present a symbolic representation of monitors

using monitor specifications. We express monitor specifications

using Mini-Ocaml.

A monitor specification ζ = (e0, mtrans) consists of an initial
state expression e0 of type E and a state transformer procedure
mtrans of type X → E → {↑, ↓} → E. The expression e0

represents the state in which the monitoring starts. We assume

that there exists a unique v such that ∅ � e0 ⇒ v. mtrans
represents the transition relation used for monitoring. The result of

the application mtrans s e δ is called a transition expression. We

assume that each resulting transition expression, say eti, is a first-

order expression wrt. e. That is, each free variable that occurs in

eti is used as a variable of nullary arity in e. The above assumption

is not a proper limitation in practice, since there are many useful

monitor specifications producing first-order transition expressions.

In fact, our collection of benchmark programs and properties from

the literature does not have any violating monitor expression (see

Section 8 for further discussion).

Example non first-order monitor specification The following

monitor specification is non first-order because the program vari-

able f is used as a function in the monitored expression.

function mtrans nonFO state expression direction =

match expression, direction with

| <expr patt< f $ $ >>, Down ->

<expr term< f $state$ >>

| -> state

Example monitor specification ζ+ For example, we consider the

monitor specification ζ+ for the monitor M+ defined in Section 4.

This monitor specification has initial state expression 0, and state

transformer procedure

function mtrans plus counter expression direction =

match expression, direction with

| <expr patt< + $ $ >>, Down ->

<expr term< $counter$ + 1 >>

| -> counter

This monitor specification results in the increment of the monitor

state when the program applies the constant +. We illustrate the us-

age of ζ+ when given an evaluation judgement j = (∅ � 1+2⇒ 3).

In the course of monitoring we apply the state transformer proce-

dure mtrans plus on a variable keeping track of the monitor state,

say s, and some direction, say ↓ , which results in the application

mtrans plus s 1+2 ↓. The evaluation of the matching expression

in mtrans plus follows the first case and computes a transition

expression s+1.

Then, we evaluate the obtained transition expression in the

context of j that we extend with a binding for the monitor state

variable s, say to a value 0, and obtain the successor monitor

value 1, i.e., ∅ + s �→ 0 � s+1 ⇒ 1. In summary, ζ+ computes

the monitored evaluation judgement 0 ↑ ∅ � 1+2 ⇒ 3 ↓ 1 for the

given evaluation judgement j .

Example monitor specification for termination Consider the

monitor specification ζack that has initial state expression (false,

true, 0, 0), and the state transformer procedure mtrans ack

from Section 2. This monitor specification results in a monitor state

matching ( , false, , ) when the termination check is vi-

olated. We illustrate the usage of ζack when given an evaluation

judgement j = (E � eack ⇒ 3) where E = {m �→ 1; n �→ 1}. In

the course of monitoring we apply the state transformer procedure

mtrans ack on a state variable s, the expression eack , and ↑. The

application mtrans ack s (eack) ↑ matches s against ( c, b,

m, n). The evaluation of the match expression in mtrans ack

follows the first case and computes a transition expression
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)

(State X Expression X Direction) Monitoring code

σ↑2 ↑ ∅ � 2⇒ 2 ↓ σ↓2 σ↑3 ↑ ∅ � 1⇒ 1 ↓ σ↓3 σ↑4 ↑ ∅ � +⇒ + ↓ σ↓4

σ↑1 ↑ ∅ � 1 + 2⇒ 3 ↓ σ↓1

(a) Order of monitor states in the monitored evaluation tree.

0 ↑ ∅ � 2⇒ 2 ↓ 0 0 ↑ ∅ � 1⇒ 1 ↓ 0 0 ↑ ∅ � +⇒ + ↓ 0

0 ↑ ∅ � 1+2⇒ 3 ↓ 1

(b) Monitor states in the monitored evaluation tree.

σ↑1 = ρ+(σ0, j1, ↑)
σ↑2 = ρ+(σ

↑
1 , j2, ↑)

σ↓2 = ρ+(σ
↑
2 , j2, ↓)

σ↑3 = ρ+(σ
↓
2 , j3, ↑)

σ↓3 = ρ+(σ
↑
3 , j3, ↓)

σ↑4 = ρ+(σ
↓
3 , j4, ↑)

σ↓4 = ρ+(σ
↑
4 , j4, ↓)

σ↑1 = ρ+(σ
↓
4 , j1, ↓)

(c) Computation of monitor states.

Figure 2: Monitoring evaluation tree of 1+2 by the monitor M+ from the initial state σ0 = 0.

1 let Monitoring σ t =

2 let j = root(t) in
3 let t1, . . . , tn = immediate subtrees of t in
4 let σ↑ = ρ(σ, j , ↑) in
5 if n = 0 then
6 let σ↓ = ρ(σ↑, j , ↓) in
7 {σ↑ ↑ j ↓ σ↓}, σ↓

8 else

9 let tm1 , σ↓1 = Monitoring σ↑ t1 in

10 let tm2 , σ↓2 = Monitoring σ↓1 t2 in
11 . . .

12 let tmn , σ↓n = Monitoring σ↓n−1 tn in

13 let σ↓ = ρ(σ↓n, j , ↓) in
14

`
{

`
root(tm1 ), . . . , root(tmn ), σ↑ ↑ j ↓ σ↓

´
} ∪

15 tm1 ∪ . . . ∪ tmn
´
, σ↓

Figure 3: Evaluation tree monitoring. The input consists of a mon-

itor state σ and an evaluation tree t. The output is the monitored

evaluation tree corresponding to t together with the current moni-

tor state.

5. Monitor specifications
In this section, we present a symbolic representation of monitors

using monitor specifications. We express monitor specifications

using Mini-Ocaml.

A monitor specification ζ = (e0, mtrans) consists of an initial
state expression e0 of type E and a state transformer procedure
mtrans of type X → E → {↑, ↓} → E. The expression e0

represents the state in which the monitoring starts. We assume

that there exists a unique v such that ∅ � e0 ⇒ v. mtrans
represents the transition relation used for monitoring. The result of

the application mtrans s e δ is called a transition expression. We

assume that each resulting transition expression, say eti, is a first-

order expression wrt. e. That is, each free variable that occurs in

eti is used as a variable of nullary arity in e. The above assumption

is not a proper limitation in practice, since there are many useful

monitor specifications producing first-order transition expressions.

In fact, our collection of benchmark programs and properties from

the literature does not have any violating monitor expression (see

Section 8 for further discussion).

Example non first-order monitor specification The following

monitor specification is non first-order because the program vari-

able f is used as a function in the monitored expression.

function mtrans nonFO state expression direction =

match expression, direction with

| <expr patt< f $ $ >>, Down ->

<expr term< f $state$ >>

| -> state

Example monitor specification ζ+ For example, we consider the

monitor specification ζ+ for the monitor M+ defined in Section 4.

This monitor specification has initial state expression 0, and state

transformer procedure

function mtrans plus counter expression direction =

match expression, direction with

| <expr patt< + $ $ >>, Down ->

<expr term< $counter$ + 1 >>

| -> counter

This monitor specification results in the increment of the monitor

state when the program applies the constant +. We illustrate the us-

age of ζ+ when given an evaluation judgement j = (∅ � 1+2⇒ 3).

In the course of monitoring we apply the state transformer proce-

dure mtrans plus on a variable keeping track of the monitor state,

say s, and some direction, say ↓ , which results in the application

mtrans plus s 1+2 ↓. The evaluation of the matching expression

in mtrans plus follows the first case and computes a transition

expression s+1.

Then, we evaluate the obtained transition expression in the

context of j that we extend with a binding for the monitor state

variable s, say to a value 0, and obtain the successor monitor

value 1, i.e., ∅ + s �→ 0 � s+1 ⇒ 1. In summary, ζ+ computes

the monitored evaluation judgement 0 ↑ ∅ � 1+2 ⇒ 3 ↓ 1 for the

given evaluation judgement j .

Example monitor specification for termination Consider the

monitor specification ζack that has initial state expression (false,

true, 0, 0), and the state transformer procedure mtrans ack

from Section 2. This monitor specification results in a monitor state

matching ( , false, , ) when the termination check is vi-

olated. We illustrate the usage of ζack when given an evaluation

judgement j = (E � eack ⇒ 3) where E = {m �→ 1; n �→ 1}. In

the course of monitoring we apply the state transformer procedure

mtrans ack on a state variable s, the expression eack , and ↑. The

application mtrans ack s (eack) ↑ matches s against ( c, b,

m, n). The evaluation of the match expression in mtrans ack

follows the first case and computes a transition expression
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)

1 + 2

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)
1 + 2

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1
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Theorem A.2 (Completeness). Let e be monitorable. For each

evaluation tree t of a product expression of e, peel tree (t) is a

monitored evaluation tree of e. Formally:

• Let monitor M = (Σ, σ0, ρ), and ζ = (e0, mtrans) be such

that [|ζ |] = M.

• Let expression e be monitorable with respect to E.

• Let t be an evaluation tree with root

E � � Prod mtrans s e ⇒ (v�, σ↓)

Then there exists σ↑
such that:

(peel env(E �) = E ∧ E � s = σ) →
(peel tree (t) is a monitored evaluation tree wrt. M and σ) ∧
peel val(v�) = v ∧
root(peel tree (t)) =

`
σ↑ ↑ E � e ⇒ v ↓ σ↓´

�
Proof. We proceed by structural induction on t. We argue by case

analysis on the root subtree of t that matches some case in the

definition of peel tree. Here we only prove Theorem A.2 for the

cases shown in Figure 9.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c = 0.
Figure 10a shows the tree t for this case. We conclude that v� must

be c. By definition, peel val(c) = c. Let tm be

(Cst)

σ↑ ↑ peel env(E �) � c ⇒ c ↓ σ↓

We have that

(Cst) E � c ⇒ c
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Finally, tm is such that peel tree (t) = tm.

Case E � � Prod mtrans s c ⇒ v�, σ↓ and Arity c > 0. Same

argument as in the previous case, using the tree shown in Figure

10b as t.

Case E � � Prod mtrans s x ⇒ v�, σ↓ . Figure 10c shows the

tree t for this case. Let v = E x and tm be

(Var)

σ↑ ↑ E � x ⇒ v ↓ σ↓

We have that

(Var) E � x ⇒ v
is an evaluation step, and given the validity of the transition

premises of t, tm is a monitored evaluation tree wrt. M and σ.

Tree tm is such that peel tree (t) = tm. By peel env(E �) = E we

conclude that peel val(v�) = v.

Case E � � Prod mtrans s (fun x1 ... xn -> eb ) ⇒
v�, σ↓ . Similar reasoning as in the first case.

Case E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓ .
Judgement E � � Prod mtrans s (ef e1 ... en ) ⇒ v�, σ↓

must be the root of a root subtree of t matching the right hand side

of either the (App), (App Rec), or (App Fun Cst) case of the defini-

tion of peel tree. We show the case of (App Fun Cst) and omit the

others as they follow from similar arguments. Let σ↑
be the state

such that t is the tree shown in Figure 10d. Let σ↑
n+1 = σ↑

; by in-

duction hypothesis, let σ↑
n, . . . , σ↑

1 , σ↑
f , and vn, . . . v1, vf be such

that the i-th monitored judgement in the sequence

σ↑
f ↑ E � ef ⇒ vf ↓ σ↓

f ,

σ↑
1 ↑ E � e1 ⇒ v1 ↓ σ↓

1 ,

.

.

.

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n,

is the root of an evaluation tree monitored with respect to M and

σi+1, and

peel val(v�n) = vn,

.

.

.

peel val(v�1) = v1, and

peel val(v�f ) = vf ,

hold. We know that vf is some constant c by definition of peel val,
thus for some v = c v1 . . . vn the tree

(App Fun Cst)
E � en ⇒ vn . . . E � ef ⇒ c

E � ef e1 ... en ⇒ v

is an evaluation step. Given the validity of the transition premises

of t, we have that

(App Fun Cst)

σ↑
n ↑ E � en ⇒ vn ↓ σ↓

n . . . σ↑
f ↑ E � ef ⇒ c ↓ σ↓

f

σ↑ ↑ E � ef e1 ... en ⇒ v ↓ σ↓

is the last evaluation step of tm, a monitored evaluation tree wrt.M
and σ. By induction hypothesis, tree tm is such that peel tree (t) =
tm. By a similar reasoning on the types of c, v1, . . . , vn as in the

corresponding case in the proof of Theorem A.1, we conclude that

peel val(v�) = v.

Case else. We use a similar argument as in the previous case.

First we construct a tm from t, proving that the evaluation steps

in a candidate for t are valid from the induction hypothesis. Then

we prove that peel val(v�) = v, and by the induction hypothesis

that peel tree (t) = tm. Finally we verify that the root of t has the

expected form. �
Corollary A.3 (Monitor and specification emulation). Consider

an arbitrarily fixed monitor specification ζ that denotes monitor

M. There exists an evaluation of a product expression with initial

monitor state σ0 and final state σf if and only if there exists a

monitored evaluation with initial state σ0 and final state σf . �
Proof. Immediate consequence of Theorems A.1 and A.2. �

B. Misc Latex
S+ = (0, mtrans sum)

M+ = (N, 0, ρ+)

1 + 2

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1
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1 + 2

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1

let rec fold left m f accu l c =
match l with

| [] -> accu, c
| a::t ->

let accu’, c’ = f accu a (c + 1) in
fold left m f accu’ t c’

let rec fold left m f accu l c =
match l with

| [] -> accu, c
| a::t ->

let accu’, c’ = f accu a (c + 1) in
fold left m f accu’ t c’Tuesday, April 5, 2011
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1 + 2

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1

let rec fold left m f accu l c =
match l with

| [] -> accu, c
| a::t ->

let accu’, c’ = f accu a (c + 1) in
fold left m f accu’ t c’

let rec fold left m f accu l c =
match l with

| [] -> accu, c
| a::t ->

let accu’, c’ = f accu a (c + 1) in
fold left m f accu’ t c’
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1 + 2

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1

let rec fold left m f accu l c =
match l with

| [] -> accu, c
| a::t ->

let accu’, c’ = f accu a (c + 1) in
fold left m f accu’ t c’

let rec fold left m f accu l c =
match l with

| [] -> accu, c
| a::t ->

let accu’, c’ = f accu a (c + 1) in
fold left m f accu’ t c’
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1 + 2

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1

let x plus =
(fun x 11 x 12 s 1 pre -> x 11 + x 12, s 1 pre)

in
let x 1 plus 2, s 1 plus 2 = x plus 1 2 s in
x 1 plus 2, s 1 plus 2 + 1

let rec fold left m f accu l c =
match l with

| [] -> accu, c
| a::t ->

let accu’, c’ = f accu a (c + 1) in
fold left m f accu’ t c’

let rec fold left m f accu l c =
match l with

| [] -> accu, c
| a::t ->

let accu’, c’ = f accu a (c + 1) in
fold left m f accu’ t c’
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Abstract
The automata-theoretic approach to program verification is an ef-

fective and uniform way of dealing with complex temporal prop-

erties. The crux of the approach is to represent the property by a

monitor that inspects program computations. The monitor keeps

record of the (intermediate) inspection results, and if the property

violation is detected then an appropriate note is recorded. Then, the

monitor is composed with the program, which produces a product

program that monitors its own computation. The product program

is analyzed using off-the-shelf tools for proving reachability and

(fair) termination.

The automata-theoretic approach is a standard method for deal-

ing with complex temporal properties of imperative programs and

only requires program verifiers that deal reachability and (fair) ter-

mination properties. The automata-theoretic semantics of impera-

tive programs directly supports monitoring and product construc-

tion. Until now, the temporal reasoning about functional programs

does not rely on monitoring and reduction to reachability and (fair)

termination. Instead, the reasoning is executed using type systems

and type inference algorithms that are developed/customized for

the specific property at hand.

In this paper, we present an application of the automata-

theoretic approach to the temporal verification, i.e., safety and live-

ness, of Mini-Ocaml programs with higher-order procedures. First,

we present the notion of monitoring for Mini-Ocaml computations

given as evaluation trees, and define monitor specifications that can

be composed with Mini-Ocaml programs. Second, we present a

product construction algorithm that composes an Mini-Ocaml pro-

gram with a monitor specification in the presence of higher order

procedures. Third, we present an implementation of the proposed

approach that uses the Dsolve reachability checker, together with

its experimental evaluation on examples from the literature. The ex-

amples include resource analysis and termination checking tasks.
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Evaluation

• 600+ LOC

• 62 benchmarks

# Name Description Class
1 rev_aux List reversal helper function. LinIneq
2 reverse List reversal function. LinIneq
3 ins Ordered insert function LinIneq
4 clone Create a pair of copies of a list. LinIneq
5 tpo Insert an element in every third position of a list. LinIneq
6 sec Remove every third element from a list. LinIneq
7 tos Replace each third element of a list. LinIneq
8 append List append. LinIneq
9 split_by Split list. LinIneq
10 append List append. LinIneq
11 breadth_aux♣ Breadth first tree fold auxiliary function. LinIneq
12 breadth♣ Breadth first tree fold function. LinIneq
13 app_tail♥ Apply function to tail of list. LinIneq
14 compose_list♥ Martin Hofmann’s composing (or folding) all functions in a list LinIneq
15 processfile♠ Open, read, and close one file. Set
16 processfile♠ Open, read, and close one file. Set
17 processtwofiles♠ Manipulate two files at the same time. Set
18 processtwofiles2♠ Manipulate two files at the same time, version 2. Set
19 mem Function mem from list.ml. LinIneq
20 exists♥ Function exists from list.ml. LinIneq
21 for_all♥ Function for_all from list.ml. LinIneq
22 rev_map♥ Function rev_map from list.ml. LinIneq
23 iter♥ Function iter from list.ml. LinIneq
24 fold_right♥ Function fold_right from list.ml. LinIneq
25 fold_left♥ Function fold_left from list.ml. LinIneq
26 map♥ Function map from list.ml. LinIneq
27 memq Function memq from list.ml. LinIneq
28 mem_assoc Function mem_assoc from list.ml. LinIneq
29 mem_assq Function mem_assq from list.ml. LinIneq
30 remove_assoc Function remove_assoc from list.ml. LinIneq
31 find_all♥ Function find_all from list.ml. LinIneq
32 partition♥ Function partition from list.ml. LinIneq
33 split Function split from list.ml. LinIneq
34 remove_assq Function remove_assq from list.ml. LinIneq
35 list_of_tree_aux♣ Auxiliary function for depth first tree fold to list. LinIneq
36 list_of_tree♣ Function for depth first tree fold to list. LinIneq
37 list_of_tree2♣ Function for depth first tree fold to list, version 2. LinIneq
38 tree_of_list♣ Function for constructing a tree from a list. LinIneq
39 tree_of_list2♣ Function for folding a tree into a list, version 2. LinIneq
40 tree_flip♣ Function for folding a tree into a list. LinIneq
41 qsort Quicksort. LinIneq
42 ins_sort Insertion sort. LinIneq
43 processfile2♠ Open, read, and close one file, version 2. Set
44 processfile2♠ Open, read, and close one file, version 2. Set
45 compose_list Martin Hofmann’s composing (or folding) all functions in a list LinIneq
46 list_of_leaves♣ Left to right list of leaves of a tree. LinIneq
47 left_path♣ Given a tree, the path from the leftmost leave to the root. LinIneq,
48 twice Duplicate every element of a list. LinIneq
49 add_if_pos Add a number if it is a positive integer. LinIneq
50 add_if_pos Add a number if it is a positive integer. LinIneq
51 fold_tree♥♣ Pre-order list fold. LinIneq
52 write_byte♠ Write byte to file. Set
53 ack The Ackermann function. Term
54 chop Chop the first n elements of a list. Term
55 dictionary An algebraic data type recursive manipulation. Term
56 fold2 Fold a pair of lists. Term
57 mccarthy91 The McCarthy 91 function. Term
58 mult Recursive definition of multiplication. Term
59 rev append Append a list reversed. Term
60 rev merge Merge two lists. Term
61 simple-rec A simple recursive function. Term
62 sum The sum of the first n naturals. Term

♥Higher order benchmark.
♣Benchmark on trees.
♠Benchmark on file descriptors.

Figure 8: Experiments.

8.3 Experimental evaluation
8.3.1 Experiments
We applied FunV to the set of benchmarks summa-
rized in Figure 8. The set of benchmarks is available at
http://www7.in.tum.de/~ruslan/funv/. Our benchmarks
feature recursion, higher order functions, algebraic data types (lists
and trees), and abstract data types (input and output channels). We
summarize our benchmarks in Table 8. We divide our temporal
specifications in the following classes.

LinIneq. Specifications in this class are linear inequalities over
values and measures.

Set. Specifications in this class keep track of sets of program
values.

Term. Specifications in this class are transition invariant checks
for proving termination of recursive programs.

8.3.2 Evaluation
Our set of benchmarks includes a variety of temporal specifications
from the literature on resource analysis of first-order and higher-
order functional programs [12–14, 18], as well as Ocaml standard
library functions.

In particular, the benchmarks show that FunV can verify pro-
grams with higher order functions. For example, in benchmark 13

we verify that app tail constructs lists as many times as it pattern
matches lists.

FunV can verify temporal specifications over complex states.
For example, in benchmark 43 we verify using a monitor whose
states are sets of open input channels that processfile2 closes
any files it opens, and never reads closed files.

FunV can verify complex temporal specifications. For example,
in benchmark 41 we verify that qsort realizes at most |l|2 list
constructions for a list l. Measure mlistcost computes the length
squared of a given list, thus we can substitute |l|2 for mlistcost
l in our specification and obtain pos <= pre + |l|2.

In the case of the McCarthy 91 function, we prove that any
call with n > 100 immediately terminates, and any call with
n <= 100 eventually terminates using a transition invariant check.

9. Related work
In this section we describe existing techniques for the analysis and
verification of functional programs.

Resource bounds analysis. Hofmann et. al. [11, 14] present type
systems and corresponding type inference algorithms for the analy-
sis of quantitative resource bounds. The computed bounds are rep-
resented by linear or polynomial expressions obtained by solving
a linear program based encoding of the type constraints. The type
system keeps track of the resource consumption using an augmen-
tation of type judgements by resource counters. These counters can
be viewed as monitor states that are embedded into type judge-
ments. In contrast, our monitor states are embedded into the pro-
gram.

The type inference algorithm of [11] can be used in combination
with our product construction to infer quantitative properties of
monitored programs. On the other hand, extending [11] to keep
track of other properties requires a redesign of the type system and
the invention of the corresponding inference algorithm.

Resource usage verification. Kobayashi [18] applied HORS as
an abstract model of higher order functional programs. Kobayashi
presented a type based algorithm for checking that HORS sat-
isfy finite state machine-based specifications. There are two main
differences to our work. First, we target Ocaml programs, while
Kobayashi’s considers a prototype functional language. Second, we
deal with properties represented by infinite state monitors.

Contract checking. Contracts are pre- and post-condition specifi-
cations for functions. Xu created a verification tool [25] for Haskell
that is based on contracts and symbolic execution. Pre- and post-
conditions can only refer to the program execution before and af-
ter procedure calls. In contrast, our monitor specifications have the
ability of observing program executions at all times.

Liquid typing. Dsolve [17] is a reachability checker based on re-
finement type inference. The type inference algorithm consists of
two parts. First, a set of constraints over refinement predicates is
generated from program code. Second, a iterative algorithm tests
candidate solutions constructed from a set of predicate schemes in
the theory of linear arithmetic and uninterpreted functions. While
Dsolve is effective for the verification of assertion validity, our
product construction allows Dsolve to verify arbitrary safety prop-
erties.

10. Conclusion
We created a product construction for Ocaml that transforms pro-
grams by threading in them monitoring code corresponding to mon-
itor specifications. We proved the soundness and completeness of
our product construction under realistic assumptions. We imple-
mented our product construction and combined it with Dsolve to
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Abstract
The automata-theoretic approach to program verification is an ef-
fective and uniform way of dealing with complex temporal prop-
erties. The crux of the approach is to represent the property by a
monitor that inspects program computations. The monitor keeps
record of the (intermediate) inspection results, and if the property
violation is detected then an appropriate note is recorded. Then, the
monitor is composed with the program, which produces a product
program that monitors its own computation. The product program
is analyzed using off-the-shelf tools for proving reachability and
(fair) termination.

The automata-theoretic approach is a standard method for deal-
ing with complex temporal properties of imperative programs and
only requires program verifiers that deal reachability and (fair) ter-
mination properties. The automata-theoretic semantics of impera-
tive programs directly supports monitoring and product construc-
tion. Until now, the temporal reasoning about functional programs
does not rely on monitoring and reduction to reachability and (fair)
termination. Instead, the reasoning is executed using type systems
and type inference algorithms that are developed/customized for
the specific property at hand.

In this paper, we present an application of the automata-
theoretic approach to the temporal verification, i.e., safety and live-
ness, of Mini-Ocaml programs with higher-order procedures. First,
we present the notion of monitoring for Mini-Ocaml computations
given as evaluation trees, and define monitor specifications that can
be composed with Mini-Ocaml programs. Second, we present a
product construction algorithm that composes an Mini-Ocaml pro-
gram with a monitor specification in the presence of higher order
procedures. Third, we present an implementation of the proposed
approach that uses the Dsolve reachability checker, together with
its experimental evaluation on examples from the literature. The ex-
amples include resource analysis and termination checking tasks.
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Evaluation

• 600+ LOC

• 62 benchmarks

# Name Description Class
1 rev_aux List reversal helper function. LinIneq
2 reverse List reversal function. LinIneq
3 ins Ordered insert function LinIneq
4 clone Create a pair of copies of a list. LinIneq
5 tpo Insert an element in every third position of a list. LinIneq
6 sec Remove every third element from a list. LinIneq
7 tos Replace each third element of a list. LinIneq
8 append List append. LinIneq
9 split_by Split list. LinIneq
10 append List append. LinIneq
11 breadth_aux♣ Breadth first tree fold auxiliary function. LinIneq
12 breadth♣ Breadth first tree fold function. LinIneq
13 app_tail♥ Apply function to tail of list. LinIneq
14 compose_list♥ Martin Hofmann’s composing (or folding) all functions in a list LinIneq
15 processfile♠ Open, read, and close one file. Set
16 processfile♠ Open, read, and close one file. Set
17 processtwofiles♠ Manipulate two files at the same time. Set
18 processtwofiles2♠ Manipulate two files at the same time, version 2. Set
19 mem Function mem from list.ml. LinIneq
20 exists♥ Function exists from list.ml. LinIneq
21 for_all♥ Function for_all from list.ml. LinIneq
22 rev_map♥ Function rev_map from list.ml. LinIneq
23 iter♥ Function iter from list.ml. LinIneq
24 fold_right♥ Function fold_right from list.ml. LinIneq
25 fold_left♥ Function fold_left from list.ml. LinIneq
26 map♥ Function map from list.ml. LinIneq
27 memq Function memq from list.ml. LinIneq
28 mem_assoc Function mem_assoc from list.ml. LinIneq
29 mem_assq Function mem_assq from list.ml. LinIneq
30 remove_assoc Function remove_assoc from list.ml. LinIneq
31 find_all♥ Function find_all from list.ml. LinIneq
32 partition♥ Function partition from list.ml. LinIneq
33 split Function split from list.ml. LinIneq
34 remove_assq Function remove_assq from list.ml. LinIneq
35 list_of_tree_aux♣ Auxiliary function for depth first tree fold to list. LinIneq
36 list_of_tree♣ Function for depth first tree fold to list. LinIneq
37 list_of_tree2♣ Function for depth first tree fold to list, version 2. LinIneq
38 tree_of_list♣ Function for constructing a tree from a list. LinIneq
39 tree_of_list2♣ Function for folding a tree into a list, version 2. LinIneq
40 tree_flip♣ Function for folding a tree into a list. LinIneq
41 qsort Quicksort. LinIneq
42 ins_sort Insertion sort. LinIneq
43 processfile2♠ Open, read, and close one file, version 2. Set
44 processfile2♠ Open, read, and close one file, version 2. Set
45 compose_list Martin Hofmann’s composing (or folding) all functions in a list LinIneq
46 list_of_leaves♣ Left to right list of leaves of a tree. LinIneq
47 left_path♣ Given a tree, the path from the leftmost leave to the root. LinIneq,
48 twice Duplicate every element of a list. LinIneq
49 add_if_pos Add a number if it is a positive integer. LinIneq
50 add_if_pos Add a number if it is a positive integer. LinIneq
51 fold_tree♥♣ Pre-order list fold. LinIneq
52 write_byte♠ Write byte to file. Set
53 ack The Ackermann function. Term
54 chop Chop the first n elements of a list. Term
55 dictionary An algebraic data type recursive manipulation. Term
56 fold2 Fold a pair of lists. Term
57 mccarthy91 The McCarthy 91 function. Term
58 mult Recursive definition of multiplication. Term
59 rev append Append a list reversed. Term
60 rev merge Merge two lists. Term
61 simple-rec A simple recursive function. Term
62 sum The sum of the first n naturals. Term

♥Higher order benchmark.
♣Benchmark on trees.
♠Benchmark on file descriptors.

Figure 8: Experiments.

8.3 Experimental evaluation
8.3.1 Experiments
We applied FunV to the set of benchmarks summa-
rized in Figure 8. The set of benchmarks is available at
http://www7.in.tum.de/~ruslan/funv/. Our benchmarks
feature recursion, higher order functions, algebraic data types (lists
and trees), and abstract data types (input and output channels). We
summarize our benchmarks in Table 8. We divide our temporal
specifications in the following classes.

LinIneq. Specifications in this class are linear inequalities over
values and measures.

Set. Specifications in this class keep track of sets of program
values.

Term. Specifications in this class are transition invariant checks
for proving termination of recursive programs.

8.3.2 Evaluation
Our set of benchmarks includes a variety of temporal specifications
from the literature on resource analysis of first-order and higher-
order functional programs [12–14, 18], as well as Ocaml standard
library functions.

In particular, the benchmarks show that FunV can verify pro-
grams with higher order functions. For example, in benchmark 13

we verify that app tail constructs lists as many times as it pattern
matches lists.

FunV can verify temporal specifications over complex states.
For example, in benchmark 43 we verify using a monitor whose
states are sets of open input channels that processfile2 closes
any files it opens, and never reads closed files.

FunV can verify complex temporal specifications. For example,
in benchmark 41 we verify that qsort realizes at most |l|2 list
constructions for a list l. Measure mlistcost computes the length
squared of a given list, thus we can substitute |l|2 for mlistcost
l in our specification and obtain pos <= pre + |l|2.

In the case of the McCarthy 91 function, we prove that any
call with n > 100 immediately terminates, and any call with
n <= 100 eventually terminates using a transition invariant check.

9. Related work
In this section we describe existing techniques for the analysis and
verification of functional programs.

Resource bounds analysis. Hofmann et. al. [11, 14] present type
systems and corresponding type inference algorithms for the analy-
sis of quantitative resource bounds. The computed bounds are rep-
resented by linear or polynomial expressions obtained by solving
a linear program based encoding of the type constraints. The type
system keeps track of the resource consumption using an augmen-
tation of type judgements by resource counters. These counters can
be viewed as monitor states that are embedded into type judge-
ments. In contrast, our monitor states are embedded into the pro-
gram.

The type inference algorithm of [11] can be used in combination
with our product construction to infer quantitative properties of
monitored programs. On the other hand, extending [11] to keep
track of other properties requires a redesign of the type system and
the invention of the corresponding inference algorithm.

Resource usage verification. Kobayashi [18] applied HORS as
an abstract model of higher order functional programs. Kobayashi
presented a type based algorithm for checking that HORS sat-
isfy finite state machine-based specifications. There are two main
differences to our work. First, we target Ocaml programs, while
Kobayashi’s considers a prototype functional language. Second, we
deal with properties represented by infinite state monitors.

Contract checking. Contracts are pre- and post-condition specifi-
cations for functions. Xu created a verification tool [25] for Haskell
that is based on contracts and symbolic execution. Pre- and post-
conditions can only refer to the program execution before and af-
ter procedure calls. In contrast, our monitor specifications have the
ability of observing program executions at all times.

Liquid typing. Dsolve [17] is a reachability checker based on re-
finement type inference. The type inference algorithm consists of
two parts. First, a set of constraints over refinement predicates is
generated from program code. Second, a iterative algorithm tests
candidate solutions constructed from a set of predicate schemes in
the theory of linear arithmetic and uninterpreted functions. While
Dsolve is effective for the verification of assertion validity, our
product construction allows Dsolve to verify arbitrary safety prop-
erties.

10. Conclusion
We created a product construction for Ocaml that transforms pro-
grams by threading in them monitoring code corresponding to mon-
itor specifications. We proved the soundness and completeness of
our product construction under realistic assumptions. We imple-
mented our product construction and combined it with Dsolve to
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Abstract
The automata-theoretic approach to program verification is an ef-
fective and uniform way of dealing with complex temporal prop-
erties. The crux of the approach is to represent the property by a
monitor that inspects program computations. The monitor keeps
record of the (intermediate) inspection results, and if the property
violation is detected then an appropriate note is recorded. Then, the
monitor is composed with the program, which produces a product
program that monitors its own computation. The product program
is analyzed using off-the-shelf tools for proving reachability and
(fair) termination.

The automata-theoretic approach is a standard method for deal-
ing with complex temporal properties of imperative programs and
only requires program verifiers that deal reachability and (fair) ter-
mination properties. The automata-theoretic semantics of impera-
tive programs directly supports monitoring and product construc-
tion. Until now, the temporal reasoning about functional programs
does not rely on monitoring and reduction to reachability and (fair)
termination. Instead, the reasoning is executed using type systems
and type inference algorithms that are developed/customized for
the specific property at hand.

In this paper, we present an application of the automata-
theoretic approach to the temporal verification, i.e., safety and live-
ness, of Mini-Ocaml programs with higher-order procedures. First,
we present the notion of monitoring for Mini-Ocaml computations
given as evaluation trees, and define monitor specifications that can
be composed with Mini-Ocaml programs. Second, we present a
product construction algorithm that composes an Mini-Ocaml pro-
gram with a monitor specification in the presence of higher order
procedures. Third, we present an implementation of the proposed
approach that uses the Dsolve reachability checker, together with
its experimental evaluation on examples from the literature. The ex-
amples include resource analysis and termination checking tasks.
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Evaluation: benchmarks

• Recursion

• Higher-order functions

• Algebraic data types

• Abstract data types
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# Name Description Class
1 rev_aux List reversal helper function. LinIneq
2 reverse List reversal function. LinIneq
3 ins Ordered insert function LinIneq
4 clone Create a pair of copies of a list. LinIneq
5 tpo Insert an element in every third position of a list. LinIneq
6 sec Remove every third element from a list. LinIneq
7 tos Replace each third element of a list. LinIneq
8 append List append. LinIneq
9 split_by Split list. LinIneq
10 append List append. LinIneq
11 breadth_aux♣ Breadth first tree fold auxiliary function. LinIneq
12 breadth♣ Breadth first tree fold function. LinIneq
13 app_tail♥ Apply function to tail of list. LinIneq
14 compose_list♥ Martin Hofmann’s composing (or folding) all functions in a list LinIneq
15 processfile♠ Open, read, and close one file. Set
16 processfile♠ Open, read, and close one file. Set
17 processtwofiles♠ Manipulate two files at the same time. Set
18 processtwofiles2♠ Manipulate two files at the same time, version 2. Set
19 mem Function mem from list.ml. LinIneq
20 exists♥ Function exists from list.ml. LinIneq
21 for_all♥ Function for_all from list.ml. LinIneq
22 rev_map♥ Function rev_map from list.ml. LinIneq
23 iter♥ Function iter from list.ml. LinIneq
24 fold_right♥ Function fold_right from list.ml. LinIneq
25 fold_left♥ Function fold_left from list.ml. LinIneq
26 map♥ Function map from list.ml. LinIneq
27 memq Function memq from list.ml. LinIneq
28 mem_assoc Function mem_assoc from list.ml. LinIneq
29 mem_assq Function mem_assq from list.ml. LinIneq
30 remove_assoc Function remove_assoc from list.ml. LinIneq
31 find_all♥ Function find_all from list.ml. LinIneq
32 partition♥ Function partition from list.ml. LinIneq
33 split Function split from list.ml. LinIneq
34 remove_assq Function remove_assq from list.ml. LinIneq
35 list_of_tree_aux♣ Auxiliary function for depth first tree fold to list. LinIneq
36 list_of_tree♣ Function for depth first tree fold to list. LinIneq
37 list_of_tree2♣ Function for depth first tree fold to list, version 2. LinIneq
38 tree_of_list♣ Function for constructing a tree from a list. LinIneq
39 tree_of_list2♣ Function for folding a tree into a list, version 2. LinIneq
40 tree_flip♣ Function for folding a tree into a list. LinIneq
41 qsort Quicksort. LinIneq
42 ins_sort Insertion sort. LinIneq
43 processfile2♠ Open, read, and close one file, version 2. Set
44 processfile2♠ Open, read, and close one file, version 2. Set
45 compose_list Martin Hofmann’s composing (or folding) all functions in a list LinIneq
46 list_of_leaves♣ Left to right list of leaves of a tree. LinIneq
47 left_path♣ Given a tree, the path from the leftmost leave to the root. LinIneq,
48 twice Duplicate every element of a list. LinIneq
49 add_if_pos Add a number if it is a positive integer. LinIneq
50 add_if_pos Add a number if it is a positive integer. LinIneq
51 fold_tree♥♣ Pre-order list fold. LinIneq
52 write_byte♠ Write byte to file. Set
53 ack The Ackermann function. Term
54 chop Chop the first n elements of a list. Term
55 dictionary An algebraic data type recursive manipulation. Term
56 fold2 Fold a pair of lists. Term
57 mccarthy91 The McCarthy 91 function. Term
58 mult Recursive definition of multiplication. Term
59 rev append Append a list reversed. Term
60 rev merge Merge two lists. Term
61 simple-rec A simple recursive function. Term
62 sum The sum of the first n naturals. Term

♥Higher order benchmark.
♣Benchmark on trees.
♠Benchmark on file descriptors.

Figure 8: Experiments.

8.3 Experimental evaluation
8.3.1 Experiments
We applied FunV to the set of benchmarks summa-
rized in Figure 8. The set of benchmarks is available at
http://www7.in.tum.de/~ruslan/funv/. Our benchmarks
feature recursion, higher order functions, algebraic data types (lists
and trees), and abstract data types (input and output channels). We
summarize our benchmarks in Table 8. We divide our temporal
specifications in the following classes.

LinIneq. Specifications in this class are linear inequalities over
values and measures.

Set. Specifications in this class keep track of sets of program
values.

Term. Specifications in this class are transition invariant checks
for proving termination of recursive programs.

8.3.2 Evaluation
Our set of benchmarks includes a variety of temporal specifications
from the literature on resource analysis of first-order and higher-
order functional programs [12–14, 18], as well as Ocaml standard
library functions.

In particular, the benchmarks show that FunV can verify pro-
grams with higher order functions. For example, in benchmark 13

we verify that app tail constructs lists as many times as it pattern
matches lists.

FunV can verify temporal specifications over complex states.
For example, in benchmark 43 we verify using a monitor whose
states are sets of open input channels that processfile2 closes
any files it opens, and never reads closed files.

FunV can verify complex temporal specifications. For example,
in benchmark 41 we verify that qsort realizes at most |l|2 list
constructions for a list l. Measure mlistcost computes the length
squared of a given list, thus we can substitute |l|2 for mlistcost
l in our specification and obtain pos <= pre + |l|2.

In the case of the McCarthy 91 function, we prove that any
call with n > 100 immediately terminates, and any call with
n <= 100 eventually terminates using a transition invariant check.

9. Related work
In this section we describe existing techniques for the analysis and
verification of functional programs.

Resource bounds analysis. Hofmann et. al. [11, 14] present type
systems and corresponding type inference algorithms for the analy-
sis of quantitative resource bounds. The computed bounds are rep-
resented by linear or polynomial expressions obtained by solving
a linear program based encoding of the type constraints. The type
system keeps track of the resource consumption using an augmen-
tation of type judgements by resource counters. These counters can
be viewed as monitor states that are embedded into type judge-
ments. In contrast, our monitor states are embedded into the pro-
gram.

The type inference algorithm of [11] can be used in combination
with our product construction to infer quantitative properties of
monitored programs. On the other hand, extending [11] to keep
track of other properties requires a redesign of the type system and
the invention of the corresponding inference algorithm.

Resource usage verification. Kobayashi [18] applied HORS as
an abstract model of higher order functional programs. Kobayashi
presented a type based algorithm for checking that HORS sat-
isfy finite state machine-based specifications. There are two main
differences to our work. First, we target Ocaml programs, while
Kobayashi’s considers a prototype functional language. Second, we
deal with properties represented by infinite state monitors.

Contract checking. Contracts are pre- and post-condition specifi-
cations for functions. Xu created a verification tool [25] for Haskell
that is based on contracts and symbolic execution. Pre- and post-
conditions can only refer to the program execution before and af-
ter procedure calls. In contrast, our monitor specifications have the
ability of observing program executions at all times.

Liquid typing. Dsolve [17] is a reachability checker based on re-
finement type inference. The type inference algorithm consists of
two parts. First, a set of constraints over refinement predicates is
generated from program code. Second, a iterative algorithm tests
candidate solutions constructed from a set of predicate schemes in
the theory of linear arithmetic and uninterpreted functions. While
Dsolve is effective for the verification of assertion validity, our
product construction allows Dsolve to verify arbitrary safety prop-
erties.

10. Conclusion
We created a product construction for Ocaml that transforms pro-
grams by threading in them monitoring code corresponding to mon-
itor specifications. We proved the soundness and completeness of
our product construction under realistic assumptions. We imple-
mented our product construction and combined it with Dsolve to
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Evaluation: properties

• Safety and termination

• Linear inequalities over 
values and measures

• Inclusion checks over sets 
of program values

• Ranking function/transition 
invariant checks
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# Name Description Class
1 rev_aux List reversal helper function. LinIneq
2 reverse List reversal function. LinIneq
3 ins Ordered insert function LinIneq
4 clone Create a pair of copies of a list. LinIneq
5 tpo Insert an element in every third position of a list. LinIneq
6 sec Remove every third element from a list. LinIneq
7 tos Replace each third element of a list. LinIneq
8 append List append. LinIneq
9 split_by Split list. LinIneq
10 append List append. LinIneq
11 breadth_aux♣ Breadth first tree fold auxiliary function. LinIneq
12 breadth♣ Breadth first tree fold function. LinIneq
13 app_tail♥ Apply function to tail of list. LinIneq
14 compose_list♥ Martin Hofmann’s composing (or folding) all functions in a list LinIneq
15 processfile♠ Open, read, and close one file. Set
16 processfile♠ Open, read, and close one file. Set
17 processtwofiles♠ Manipulate two files at the same time. Set
18 processtwofiles2♠ Manipulate two files at the same time, version 2. Set
19 mem Function mem from list.ml. LinIneq
20 exists♥ Function exists from list.ml. LinIneq
21 for_all♥ Function for_all from list.ml. LinIneq
22 rev_map♥ Function rev_map from list.ml. LinIneq
23 iter♥ Function iter from list.ml. LinIneq
24 fold_right♥ Function fold_right from list.ml. LinIneq
25 fold_left♥ Function fold_left from list.ml. LinIneq
26 map♥ Function map from list.ml. LinIneq
27 memq Function memq from list.ml. LinIneq
28 mem_assoc Function mem_assoc from list.ml. LinIneq
29 mem_assq Function mem_assq from list.ml. LinIneq
30 remove_assoc Function remove_assoc from list.ml. LinIneq
31 find_all♥ Function find_all from list.ml. LinIneq
32 partition♥ Function partition from list.ml. LinIneq
33 split Function split from list.ml. LinIneq
34 remove_assq Function remove_assq from list.ml. LinIneq
35 list_of_tree_aux♣ Auxiliary function for depth first tree fold to list. LinIneq
36 list_of_tree♣ Function for depth first tree fold to list. LinIneq
37 list_of_tree2♣ Function for depth first tree fold to list, version 2. LinIneq
38 tree_of_list♣ Function for constructing a tree from a list. LinIneq
39 tree_of_list2♣ Function for folding a tree into a list, version 2. LinIneq
40 tree_flip♣ Function for folding a tree into a list. LinIneq
41 qsort Quicksort. LinIneq
42 ins_sort Insertion sort. LinIneq
43 processfile2♠ Open, read, and close one file, version 2. Set
44 processfile2♠ Open, read, and close one file, version 2. Set
45 compose_list Martin Hofmann’s composing (or folding) all functions in a list LinIneq
46 list_of_leaves♣ Left to right list of leaves of a tree. LinIneq
47 left_path♣ Given a tree, the path from the leftmost leave to the root. LinIneq,
48 twice Duplicate every element of a list. LinIneq
49 add_if_pos Add a number if it is a positive integer. LinIneq
50 add_if_pos Add a number if it is a positive integer. LinIneq
51 fold_tree♥♣ Pre-order list fold. LinIneq
52 write_byte♠ Write byte to file. Set
53 ack The Ackermann function. Term
54 chop Chop the first n elements of a list. Term
55 dictionary An algebraic data type recursive manipulation. Term
56 fold2 Fold a pair of lists. Term
57 mccarthy91 The McCarthy 91 function. Term
58 mult Recursive definition of multiplication. Term
59 rev append Append a list reversed. Term
60 rev merge Merge two lists. Term
61 simple-rec A simple recursive function. Term
62 sum The sum of the first n naturals. Term

♥Higher order benchmark.
♣Benchmark on trees.
♠Benchmark on file descriptors.

Figure 8: Experiments.

8.3 Experimental evaluation
8.3.1 Experiments
We applied FunV to the set of benchmarks summa-
rized in Figure 8. The set of benchmarks is available at
http://www7.in.tum.de/~ruslan/funv/. Our benchmarks
feature recursion, higher order functions, algebraic data types (lists
and trees), and abstract data types (input and output channels). We
summarize our benchmarks in Table 8. We divide our temporal
specifications in the following classes.

LinIneq. Specifications in this class are linear inequalities over
values and measures.

Set. Specifications in this class keep track of sets of program
values.

Term. Specifications in this class are transition invariant checks
for proving termination of recursive programs.

8.3.2 Evaluation
Our set of benchmarks includes a variety of temporal specifications
from the literature on resource analysis of first-order and higher-
order functional programs [12–14, 18], as well as Ocaml standard
library functions.

In particular, the benchmarks show that FunV can verify pro-
grams with higher order functions. For example, in benchmark 13

we verify that app tail constructs lists as many times as it pattern
matches lists.

FunV can verify temporal specifications over complex states.
For example, in benchmark 43 we verify using a monitor whose
states are sets of open input channels that processfile2 closes
any files it opens, and never reads closed files.

FunV can verify complex temporal specifications. For example,
in benchmark 41 we verify that qsort realizes at most |l|2 list
constructions for a list l. Measure mlistcost computes the length
squared of a given list, thus we can substitute |l|2 for mlistcost
l in our specification and obtain pos <= pre + |l|2.

In the case of the McCarthy 91 function, we prove that any
call with n > 100 immediately terminates, and any call with
n <= 100 eventually terminates using a transition invariant check.

9. Related work
In this section we describe existing techniques for the analysis and
verification of functional programs.

Resource bounds analysis. Hofmann et. al. [11, 14] present type
systems and corresponding type inference algorithms for the analy-
sis of quantitative resource bounds. The computed bounds are rep-
resented by linear or polynomial expressions obtained by solving
a linear program based encoding of the type constraints. The type
system keeps track of the resource consumption using an augmen-
tation of type judgements by resource counters. These counters can
be viewed as monitor states that are embedded into type judge-
ments. In contrast, our monitor states are embedded into the pro-
gram.

The type inference algorithm of [11] can be used in combination
with our product construction to infer quantitative properties of
monitored programs. On the other hand, extending [11] to keep
track of other properties requires a redesign of the type system and
the invention of the corresponding inference algorithm.

Resource usage verification. Kobayashi [18] applied HORS as
an abstract model of higher order functional programs. Kobayashi
presented a type based algorithm for checking that HORS sat-
isfy finite state machine-based specifications. There are two main
differences to our work. First, we target Ocaml programs, while
Kobayashi’s considers a prototype functional language. Second, we
deal with properties represented by infinite state monitors.

Contract checking. Contracts are pre- and post-condition specifi-
cations for functions. Xu created a verification tool [25] for Haskell
that is based on contracts and symbolic execution. Pre- and post-
conditions can only refer to the program execution before and af-
ter procedure calls. In contrast, our monitor specifications have the
ability of observing program executions at all times.

Liquid typing. Dsolve [17] is a reachability checker based on re-
finement type inference. The type inference algorithm consists of
two parts. First, a set of constraints over refinement predicates is
generated from program code. Second, a iterative algorithm tests
candidate solutions constructed from a set of predicate schemes in
the theory of linear arithmetic and uninterpreted functions. While
Dsolve is effective for the verification of assertion validity, our
product construction allows Dsolve to verify arbitrary safety prop-
erties.

10. Conclusion
We created a product construction for Ocaml that transforms pro-
grams by threading in them monitoring code corresponding to mon-
itor specifications. We proved the soundness and completeness of
our product construction under realistic assumptions. We imple-
mented our product construction and combined it with Dsolve to
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