Automated Analysis of Access Control Policies

Alessandro Armando

joint work with Silvio Ranise

Artificial Intelligence Laboratory (AI-Lab)

DIST, University of Genova

Genova

Security & Trust Research Unit FBK-IRST Trento

< 61 b

The 16

nan

Access Control

The process of

- mediating requests to resources maintained by a system and
- determining whether a request should be granted or denied
- Crucial role in system security
- Usually separation between
 - policies specified by a language with an underlying model
 - mechanisms enforcing policies
- Separation implies
 - protection requirements are independent of their implementation
 - analysis of policies can be done abstractly

Role-based Access Control

User	Permission
Alice	GrantTenure
Alice	AssignGrades
Alice	ReceiveHBenefits
Alice	UseGym
Bob	GrantTenure
Bob	AssignGrades
Bob	UseGym
Charlie	GrantTenure
Charlie	AssignGrades
Charlie	UseGym
David	AssignHWScores
David	Register4Courses
David	UseGym
Eve	ReceiveHBenefits
Eve	UseGym
Fred	Register4Courses
Fred	UseGym
Greg	UseGym

A. Armando (U. of Genova & FBK-IRST)

SV/ARM11 April 22 2011 3/

E

DQC

Role-based Access Control

Permission Assignment (PA)

User Assignment (UA)

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Greg	UMember

Role	Permission
PCMember	GrantTenure
PCMember	AssignGrades
PCMember	ReceiveHBenefits
PCMember	UseGym
Faculty	AssignGrades
Faculty	ReceiveHBenefits
Faculty	UseGym
TA	AssignHWScores
TA	Register4Courses
TA	UseGym
UEmployee	ReceiveHBenefits
UEmployee	UseGym
Student	Register4Courses
Student	UseGym
UMember	UseGym

A. Armando (U. of Genova & FBK-IRST)

してん 叫 ふぼうふぼう ふし

3 / 20

Role-based Access Control

Permission Assignment (PA)

Role	Permission
PCMember	GrantTenure
Faculty	AssignGrades
TA	AssignHWScores
UEmployee	ReceiveHBenefits
Student	Register4Courses
UMember	UseGym

User Assignment (UA)

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Greg	UMember

Э

DQC

- Changes to RBAC policies subject to administrative policy.
- Several administrative models for RBAC: ARBAC97, SARBAC, Oracle DBMS, UARBAC, ...
- Key issue: definition of administrative domains, e.g.
 - ARBAC: admin. domain = role-based
 - UARBAC: admin. domain = attribute-based

The section

 can_assign: UEmployee : {Student, TA} ⇒ ⊕PTEmployee

• can_revoke: UEmployee : {Student} ⇒ ⊖Student

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Greg	UMember

< 回 > < 三 > < 三 >

Sac

 can_assign: UEmployee : {Student, TA} ⇒ ⊕PTEmployee

 can_revoke: UEmployee : {Student} ⇒ ⊖Student

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Greg	UMember

 can_assign: UEmployee : {Student, TA} ⇒ ⊕PTEmployee

 can_revoke: UEmployee : {Student} ⇒ ⊖Student

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember

can_assign: UEmployee : {Student, TA} ⇒ ⊕PTEmployee

• can_revoke: UEmployee : {Student} ⇒ ⊖Student

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember

Sac

can_assign: UEmployee : {Student, TA} ⇒ ⊕PTEmployee

• can_revoke: UEmployee : {Student} ⇒ ⊖Student

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	Student
Fred	PTEmployee
Greg	UMember

Sac

• can_assign: $UEmployee : \{Student, \overline{TA}\} \implies \oplus PTEmployee$

• can_revoke: UEmployee : {Student} ⇒ ⊖Student

User	Role
Alice	PCMember
Bob	Faculty
Charlie	Faculty
David	TA
David	Student
Eve	UEmployee
Fred	PTEmployee
Greg	UMember

Sac

Administering Access Control Policies

- (A)RBAC model simplifies specification and administration of access control policies.
- Yet, in large systems (e.g., Dresdner bank: 40,000 users and 1,400 permissions), administration of RBAC policies can be very difficult.
- **Question:** Starting fron an initial RBAC policy and using the administrative actions in the ARBAC policy, is there a way to grant Alice access to salaries.xls?
- To predict the effects of changes on policies of real-world complexity by manual inspection is unfeasible: automated support needed!

イロト イポト イヨト イヨト

nan

URA97: security analysis problems

Let ψ be an administrative policy.

- (Bounded) user-role reachability problem: Given (an integer k ≥ 0, resp.) an initial RBAC policy, and a role r, does there exist a sequence of administrative actions in ψ (of length k, resp) assigning a user u to role r?
- **Oracle Containment:** Given an initial RBAC policy and two roles r_1 and r_2 , does every member of role r_1 also belong to role r_2 in all reachable policies by applying finite sequences of administrative actions in ψ ?
- Weakest precondition: Given a user *u* and a role *r*, compute the minimal set of RBAC policies from which a sequence of administrative actions in ψ can make *u* a member of role *r*.
- Inductive policy invariant: Check if a property remain unaffected under any (finite) sequence of administrative actions in ψ .

URA97: symbolic representation (I)

- Symbolic representation of RBAC policies and properties
- Fragment of many-sorted first-order logic
 - Sorts: User, Role
 - Predicate symbols: *ua* : *User* × *Role* (flexible)

$$\forall u, r.(ua(u, r) \Leftrightarrow \begin{pmatrix} (u = u_1 \land r = Role \ 1) \lor \\ (u = u_2 \land r = Role \ 2) \lor \\ (u = u_3 \land r = Role \ 3) \lor \\ \vdots \end{pmatrix})$$

There exists a user who is member of a certain role

$$\exists u, r.(ua(u, r) \land r \succeq Student)$$

• No user can be assigned both TA and PTEmployee

 $\forall u. \neg (ua(u, TA) \land ua(u, PTEmployee))$

く 伊 ト く ヨ ト く ヨ ト

URA97: symbolic representation (II)

- Symbolic representation of structure underlying RBAC
- Fragment of many-sorted first-order logic
 - Sorts: User, Role
 - Predicate symbols: <u>></u> : *Role* × *Role* (rigid partial order)

URA97: symbolic representation (III)

- Symbolic representation of structure underlying RBAC
- Fragment of many-sorted first-order logic
 - Predicate symbol: *ua* : *User* × *Role* (flexible)
 - ua and ua': before and after execution of action
- $UEmployee : \{Student, \overline{TA}\} \Longrightarrow \oplus PTEmployee$

$$\exists u_a, r_a.(ua(u_a, r_a) \land r_a \succeq UEmployee) \land \\ \exists u. \begin{pmatrix} ua(u, Student) \land \forall r_2.(r_2 \succeq TA \Rightarrow \neg ua(u, r_2)) \land \\ \forall x, y.(ua'(x, y) \Leftrightarrow ((x = u \land y = PTEmployee) \lor ua(x, y))) \end{pmatrix}$$

● UEmployee : {Student} ⇒ ⊖Student

$$\exists u_a, r_a.(ua(u_a, r_a) \land r_a \succeq UEmployee) \land \exists u. \begin{pmatrix} \exists r_1.(ua(u, r_1) \land r_1 \succeq Student) \land \\ \forall x, y.(ua'(x, y) \Leftrightarrow (\neg (x = u \land y = Student) \land ua(x, y))) \end{pmatrix}$$

Security analysis: bounded user-role reachability

Given an integer $k \ge 0$ and symbolic representation of

- T_{RBAC} = structure underlying RBAC policies
- *I*(*ua*) = initial RBAC policy
- G(ua) = user u is a member of role r
- $\tau(ua, ua')$ = administrative actions in ψ

Check the satisfiability of

```
T_{\mathsf{RBAC}} \wedge I(ua_0) \wedge \tau(ua_0, ua_1) \wedge \cdots \wedge \tau(ua_{k-1}, ua_k) \wedge G(ua_k)
```

Can be reduced to the satisfiability of Bernays-Shönfinkel-Ramsey formulae → Decidable!

2011 11/20

Security analysis: unbounded user-role reachability (I)

Given symbolic representation of

- T_{RBAC} = structure underlying RBAC policies
- *I*(*ua*) = initial RBAC policy
- G(ua) = user u is a member of role r
- $\tau(ua, ua')$ = administrative actions in ψ

Run a symbolic backward reachability procedure

- R₀(ua) := G(ua) (goal)
- *R*_{i+1}(*ua*) := ∃*ua*'.(*R*_i(*ua*') ∧ τ(*ua*, *ua*')) (pre-image) for *i* ≥ 0

Three requirements

- Effective computation of BSR formulae for pre-images
- **Output Decidability** of satisfiability of $(R_i \land I)$ (safety) and validity of $(R_{i+1} \Rightarrow R_i)$ (fix-point), both modulo T_{RBAC}
- Termination of backward reachability

3

くロ と く 戸 と く 三 と 一

Effective computation of pre-images

if pre-processing of negation in pre-conditions of administraitve actions to eliminate \forall

Satisfiability of $(R_i \land I)$ and validity of $(R_{i+1} \Rightarrow R_i)$ modulo T_{RBAC}

can be reduced to satisfiability of BSR formulae \implies Decidable!

Termination of backward reachability

by model-theoretic methods in combination with results on well-quasi-order

nan

Decidability of parameterized user-role reachability with respect to the number of users

- Role containment and weakest precondition can be reduced to unbounded user-role reachability
- Inductive policy invariant can be reduced to bounded user-role reachability

Extensions

- Parametric roles (limited use of negation in pre-conditions of administrative actions)
- Attributes (crucial for distributed and open environments)

Security analysis: practical results, overview (I)

joint work with Francesco Alberti

・ 同 ト ・ ヨ ト ・ ヨ ト

Tool ASASP: Automated Symbolic Analysis of Administrative Policies

- architecture: client-server
- client = pre-image computation + generation of logical problems
- server = state-of-the-art SMT solvers and theorem provers on satisfiability problems
 - Z3, incomplete over BSR but incremental
 - SPASS (refutation) complete but not incremental
 - hierarchical combination of Z3 and SPASS
- Benchmarks for unbounded user-role reachability problem by Stoller *et al*
 - Parameter: goal size
 - Better scalability wrt. tool by Stoller et al

Security analysis: practical results, overview (II)

A. Armando (U. of Genova & FBK-IRST) Automated Analysis of Access Cor

ARM11, April 22, 2011

6/20

Security analysis: practical results, overview (III)

With role hierarchy

A. Armando (U. of Genova & FBK-IRST)

Automated Analysis of Access Control

《曰》《聞》《臣》《臣》

Э

Security analysis: practical results, overview (IV)

With role hierarchy

. Armando (U. of Genova & FBK-IRST)

Automated Analysis of Access Control

□ > < @ > < E > < E > E

Contributions

Uniform and declarative specification/verification framework

Parameterized security analysis of ARBAC

Guaranteed termination of analysis

Better scalability than state-of-the-art tools

Future work

Workflow systems

Beyound BSR: policies with temporal/spatial constraints

< ロ ト < 同 ト < 三 ト < 三 ト

- A. Armando and S. Ranise. Automated Symbolic Analysis of ARBAC Policies. In Proc. of 6th Int. Workshop on Security and Trust Management (STM'10), Athens, September 23-24, 2010.
- F. Alberti, A. Armando, and S. Ranise. Efficient Symbolic Automated Analysis of Administrative Attribute-based RBAC-Policies. In Proc. of the 6th ACM Symposium on Information, Computer and Communications Security (ASIACCS 2011), March 22-24, 2011 (Hong Kong).

• Tool and benchmark problems publicly available at http://st.fbk.eu