
The Büchi Complementation Saga

Moshe Y. Vardi!

Rice University, Department of Computer Science, Rice University, Houston, TX
77251-1892, U.S.A., Email: vardi@cs.rice.edu, URL: http://www.cs.rice.edu/∼vardi

Abstract. The complementation problem for nondeterministic word au-
tomata has numerous applications in formal verification. In particular,
the language-containment problem, to which many verification problems
are reduced, involves complementation. For automata on finite words,
which correspond to safety properties, complementation involves deter-
minization. The 2n blow-up that is caused by the subset construction is
justified by a tight lower bound. For Büchi automata on infinite words,
which are required for the modeling of liveness properties, optimal com-
plementation constructions are quite complicated, as the subset construc-
tion is not sufficient. We review here progress on this problem, which
dates back to its introduction in Büchi’s seminal 1962 paper.

1 Introduction

The complementation problem for nondeterministic word automata has numer-
ous applications in formal verification. In order to check that the language of
an automaton A1 is contained in the language of a second automaton A2, one
checks that the intersection of A1 with an automaton that complements A2 is
empty. Many problems in verification and design are reduced to language con-
tainment. In model checking, the automaton A1 corresponds to the system, and
the automaton A2 corresponds to the property we wish to verify [21, 37]. While
it is easy to complement properties given in terms of formulas in temporal logic,
complementation of properties given in terms of automata is not simple. Indeed,
a word w is rejected by a nondeterministic automaton A if all runs of A on w re-
jects the word. Thus, the complementary automaton has to consider all possible
runs, and complementation has the flavor of determinization.

For automata on finite words, determinization, and hence also complemen-
tation, is done via the subset construction [28]. Accordingly, if we start with a
nondeterministic automaton with n states, the complementary automaton may
have 2n states. The exponential blow-up that is caused by the subset construc-
tion is justified by a tight lower bound: it is proved in [31] that for every n > 1,
there exists a language Ln that is recognized by a nondeterministic automaton
with n states, yet a nondeterministic automaton for the complement of Ln has
at least 2n states (see also [2]).
! Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and

ANI-0216467, by BSF grant 9800096, and by a grant from the Intel Corporation.
This paper is based on joint work with Orna Kupferman.



For Büchi automata on infinite words, which are required for the modeling
of liveness properties, optimal complementation constructions are quite compli-
cated, as the subset construction is not sufficient (but see erroneous claim in
[25]). Due to the lack of a simple complementation construction, the user is typ-
ically required to specify the property by a deterministic Büchi automaton [21]
(it is easy to complement a deterministic Büchi automaton), or to supply the au-
tomaton for the negation of the property [14]. Similarly, specification formalisms
like ETL [38], which have automata within the logic, involve complementation
of automata, and the difficulty of complementing Büchi automata is an obstacle
to practical use [1]. In fact, even when the properties are specified in LTL, com-
plementation is useful: the translators from LTL into automata have reached a
remarkable level of sophistication (c.f., [5, 33, 10, 11]). Even though complemen-
tation of the automata is not explicitly required, the translations are so involved
that it is useful to checks their correctness, which involves complementation1.
Complementation is interesting in practice also because it enables refinement
and optimization techniques that are based on language containment rather
than simulation [21]2. Thus, an effective algorithm for the complementation of
Büchi automata would be of significant practical value.

Efforts to develop complementation constructions for nondeterministic Büchi
automata started early in the 60s, motivated by decision problems of second-
order logics. Büchi introduced these automata in 1962 and described a comple-
mentation construction that involved a Ramsey-based combinatorial argument
and a doubly-exponential blow-up in the state space [3]. Thus, complementing an
automaton with n states resulted in an automaton with 22O(n)

states. In [32], an
improved implementation of Büchi’s construction is described, with only 2O(n2)

states (see also [27]). Finally, in [29], Safra described a determinization construc-
tion, which also enables an O(nO(n)) complementation construction, matching
a lower bound of n! described by Michel [23] (cf. [22]). Thus, from a theoretical
point of view, some considered the problem solved since 1988, since we seem to
have matching asymptotic upper and lower bounds.

Nevertheless, a careful analysis of the exact blow-up in Safra’s and Michel’s
bounds reveals an exponential gap in the constants hiding in the O() notations:
while the upper bound on the number of states in the complementary automaton
constructed by Safra is n2n, Michel’s lower bound involves only an n! blow up,
which is roughly (n/e)n. This is in contrast with the case of automata on finite
words, where, as mentioned above, the upper and lower bounds coincide. In the
rest of this paper we describe more recent efforts to narrow this gap.

1 For an LTL formula ψ, one typically checks that both the intersection of Aψ with
A¬ψ and the intersection of their complementary automata are empty.

2 Since complementation of Büchi automata is complicated, current research is focused
on ways in which fair simulation can approximate language containment [13], and
ways in which the complementation construction can be circumvented by manually
bridging the gap between fair simulation and language containment [15].



2 Background

Given an alphabet Σ, an infinite word over Σ is an infinite sequence w = σ0 ·σ1 ·
σ2 · · · of letters in Σ. An automaton on infinite words is A = 〈Σ, Q, Qin, ρ,α〉,
where Σ is the input alphabet, Q is a finite set of states, ρ : Q × Σ → 2Q is
a transition function, Qin ⊆ Q is a set of initial states, and α is an acceptance
condition (a condition that defines a subset of Qω). Intuitively, ρ(q,σ) is the set
of states that A can move into when it is in state q and it reads the letter σ.
Since the transition function of A may specify many possible transitions for each
state and letter, A is not deterministic.

A run of A on w is a function r : IN → Q where r(0) ∈ Qin (i.e., the run starts
in an initial state) and for every l ≥ 0, we have r(l + 1) ∈ ρ(r(l),σl) (i.e., the
run obeys the transition function). In automata over finite words, acceptance is
defined according to the last state visited by the run. When the words are infinite,
there is no such thing as a “last state”, and acceptance is defined according to
the set Inf (r) of states that r visits infinitely often, i.e., Inf (r) = {q ∈ Q :
for i.m. l ∈ IN, we have r(l) = q}. As Q is finite, it is guaranteed that Inf (r) (= ∅.
The way we refer to Inf (r) depends on the acceptance condition of A. In Büchi
automata, α ⊆ Q, and r is accepting iff Inf (r) ∩ α (= ∅. Dually, in co-Büchi
automata, α ⊆ Q, and r is accepting iff Inf (r) ∩ α = ∅.

Since A is not deterministic, it may have many runs on w. There are two,
dual, ways in which we can refer to the many runs. When A is an existential
automaton (or simply a nondeterministic automaton, as we shall call it in the
sequel), it accepts an input word w iff there exists an accepting run of A on w.
When A is a universal automaton, it accepts an input word w iff all the runs
of A on w are accepting. The language of A, denoted L(A) consists of all words
accepted by A.

We use three-letter acronyms to describe types of automata. The first letter
describes the transition structure and is one of “N” (nondeterministic), and “U”
(universal). The second letter describes the acceptance condition; in this paper
we only consider “B” (Büchi) and “C” (co-Büchi). The third letter describes the
objects on which the automata run; in this paper we are only concerned with “W”
(infinite words). Thus, for example, NBW designates a nondeterministic Büchi
word automaton and UCW designates a universal co-Büchi word automaton.

A lower bound for complementing NBW was established by Michel [23] (cf.
[22]). Consider the alphabet Σn = {1, . . . , n}. Let w = a0, a1, . . . be a word over
Σn. An infinite path in w is a an infinite subsequence ai0 , ai0+1, ai1 , ai1+1, . . .
such aij+1 = aij+1 for j ≥ 0; that is, an infinite path in w is an infinite subword
of matching pairs of leters. Let Ln be the language of infinite words over Σn

with infinite paths.

Theorem 1. [23]

– Ln can be defined using an n-state NBW.
– Σω

n − Ln cannot be defined using an NBW with fewer than n! states.



3 Complementation via Ranks

In [18]3, the following approach for NBW complementation is described: in or-
der to complement an NBW, first dualize the transition function and the accep-
tance condition, and then translate the resulting UCW automaton back to an
NBW. By [26], the dual automaton accepts the complementary language, and
so does the nondeterministic automaton we end up with. Thus, rather than de-
terminization, complementation is based on a translation of universal automata
to nondeterministic ones, which turns out to be simpler. (See also [35].)

Consider a UCW A = 〈Σ, Q, Qin, δ,α〉. The runs of A on a word w = σ0 ·
σ1 · · · can be arranged in an infinite dag (directed acyclic graph) Gw = 〈V, E〉,
where

– V ⊆ Q × IN is such that 〈q, l〉 ∈ V iff some run of A on w has r(l) = q. For
example, the first level of Gw contains the nodes Qin × {0}.

– E ⊆
⋃

l≥0(Q×{l})×(Q×{l+1}) is such that E(〈q, l〉, 〈q′, l+1〉) iff 〈q, l〉 ∈ V
and q′ ∈ δ(q,σl).

Thus, Gw embodies exactly all the runs of A on w. We call Gw the run dag of
A on w, and we say that Gw is accepting if all its paths satisfy the acceptance
condition α. Note that A accepts w iff Gw is accepting. We say that a node
〈q′, l′〉 is a successor of a node 〈q, l〉 iff E(〈q, l〉, 〈q′, l′〉). We say that 〈q′, l′〉
is reachable from 〈q, l〉 iff there exists a sequence 〈q0, l0〉, 〈q1, l1〉, 〈q2, l2〉, . . . of
successive nodes such that 〈q, l〉 = 〈q0, l0〉, and there exists i ≥ 0 such that
〈q′, l′〉 = 〈qi, li〉. For a set S ⊆ Q, we say that a node 〈q, l〉 of Gw is an S-node if
q ∈ S.

A short detour is now required. A fair transition system M = (W, W0, R, F )
consists of a state set W (not necessarily finite), an initial state set W0 ⊆ W , a
transition relation R ⊆ W 2, and a fair state set F ⊆ W . An infinite trace of M
is an infinite state sequence w0, w1, . . . such that w0 ∈ W0 and (wi, wi+1) ∈ R
for all i ≥ 0. This trace is fair if wi ∈ F for infinitely many i’s. We say that M
fairly terminates if it has no fair infinite trace. Fair termination is a fundamental
property of transition systems, as verification of linear temporal properties for
transition systems can be reduced to fair-termination checking [36].

Emerson and Clarke characterized fair termination in terms of a nested fix-
point computation [6]. Let X, Y ⊆ W . Define until(X, Y ) as the set of states in
X that can properly reach Y while staying in X . That is, until(X, Y ) consists
of states x such that there is a sequence x0, . . . , xk, k > 0, where xk ∈ Y and
xi ∈ X for 0 ≤ i < k. Clearly, until(X, Y ) can be defined in terms of a least fix-
point. Consider now the following greatest fixpoint “algorithm”, which we refer
to by EC:

Q ← W
while change do

Q ← Q ∩ until(Q, Q∩ F )

3 Preliminary version appeared in [17].



endwhile
return (W0 ∩ Q = ∅)

Emerson and Clarke showed that EC returns true precisely when M fairly
terminates. The intuition is that we can safely delete states that cannot be on
a fair infinite trace because they cannot properly reach F even once. Note that
the inner fixpoint, required to compute until(Q, Q ∩ F always converges in ω
stages, since it concerns only finite traces, while the outer fixpoint may require
transfinite stages to converge, when W is infinite. For finite transition systems,
EC is a real algorithm for fair-termination detection [7], which is used widely in
symbolic model checking [4].

A run dag can be viewed as a fair transition system. Consider a UCW A =
〈Σ, Q, Qin, δ,α〉, with a run dag Gw = 〈V, E〉. The corresponding fair transition
system is Mw = (V, Qin × {0}, E,α× IN). Clearly, Gw is accepting iff Mw fairly
terminates. EC can therefore be applied to Mw. Using this characterization of
acceptance, we can assign ranks to the nodes of V , as follows: a node is assigned
rank i if it is deleted at the i-th iteration of the loop in EC. Since all nodes of Gw

are reachable from Qin×{0}, all nodes will be assigned a rank if Gw is accepting.
Intuitively, ranks measure the “progress” made by a node towards acceptance
[16]. We can view these ranks as evidence that Gw is accepting. As we noted,
however, transfinite ranks are required in general, while we desire finite ranks
for the complementation construction.

To that end we refer to a heuristic improvement of EC, developed in [8], and
referred to by OWCTY. Let X ⊆ W be a set of states in a transition system
M = (W, W0, R, F ). By next(X) we refer to states who has successors in X ,
that is, all states x ∈ W such that there is a state y ∈ W where (x, y) ∈ R and
y ∈ X . OWCTY is obtained from EC by adding an inner loop4:

Q ← W
while change do

while change do
Q ← Q ∩ next(Q)

endwhile
Q ← Q ∩ until(Q, Q∩ F )

endwhile
return (W0 ∩ Q = ∅)

Note that the additional inner loop deletes states that have no successor. Such
states surely cannot lie on a fair infinite trace, which ensure that OWCTY is
a correct characterization of fair termination. Surprisingly, while EC requires,
in general, transfinitely many stages to converge, it is shown in [18] that when
OWCTY is applied to fair transition systems of the form Mw for a UCW A with
n states, the external loop always converges in at most n iterations. The crucial
fact here is that each level of Gw has at most n nodes. This enables us to assign
finite ranks to the nodes of Gw as follows (we count iterations from 0):
4 The additional loop here precedes the inner statement of EC, while in [8] it succeeds

it. This is not an essential change.



– Assign a node v rank 2i if it is deleted in the i-th iteration by the statement
Q ← Q ∩ next(Q).

– Assign a node v rank 2i+ if it is deleted in the i-th iteration by the statement
Q ← Q ∩ until(Q, Q∩ F ).

It is shown in [12, 18] that precisely the ranks 0, . . . , 2n− 2 are needed (see also
[16]).

We can now characterize accepting run dags in terms of ranks. Consider an
n-state UCW A = 〈Σ, Q, Qin, δ,α〉, with a run dag Gw = 〈V, E〉. A C-ranking
for Gw is a mapping f : V → {0, . . . , 2n − 2} such that

1. For all nodes 〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then q (∈ α.
2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, we have f(〈q′, l + 1〉) ≤ f(〈q, l〉).

Thus, a C-ranking associates with each node in Gw a rank so that the ranks
along paths do not increase, and α-nodes get only even ranks. We say that a
node 〈q, l〉 is an odd node if f(〈q, l〉) is odd. Note that each path in Gw eventually
gets trapped in some rank. We say that the C-ranking f is an odd C-ranking if
all the paths of Gw eventually get trapped in odd ranks. Formally, f is odd iff
for all paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in Gw, there is l ≥ 0 such that f(〈ql, l〉) is
odd, and for all l′ ≥ l, we have f(〈ql′ , l′〉) = f(〈ql, l〉). Note that, equivalently, f
is odd if every path of Gw has infinitely many odd nodes.

Lemma 1. [18] The following are equivalent.

1. All paths of Gw have only finitely many α-nodes.
2. There is an odd C-ranking for Gw.

The fact that the nodes of a run dag can be assigned finite ranks means
that we can characterize acceptance using a variation of the subset construction,
where each element of the subset also carries a rank. It is easy to check that the
two conditions of C-ranking hold, since these involve only local conditions. Here
is a first attempt to construct an NBW A′ that is equivalent to the UCW A.
When A′ reads a word w, it guesses a C-ranking for the run dag Gw of A on w.
At a given point of a run of A′, it keeps in its memory a whole level of Gw and
a guess for the ranks of the nodes at this level.

Before we define A′, we need some notation. A level ranking for A is a function
g : Q → {0, . . . , 2n− 2}, such that if g(q) is odd, then q (∈ α. Let R be the set of
all level rankings. For a subset S of Q and a letter σ, let δ(S,σ) =

⋃
s∈S δ(s,σ).

Note that if level l in Gw, for l ≥ 0, contains the states in S, and the (l + 1)-th
letter in w is σ, then level l + 1 of Gw contains the states in δ(S,σ). For two
level rankings g and g′ in R, a set S ⊆ Q, and a letter σ, we say that g′ covers
〈g, S,σ〉 if for all q ∈ S and q′ ∈ δ(q,σ), we have g′(q′) ≤ g(q). Thus, if the nodes
of level l contain exactly all the states in S, g describes the ranks of these nodes,
and the (l + 1)-th letter in w is σ, then g′ is a possible level ranking for level
l + 1. Finally, for g ∈ R, let odd(g) = {q : g(q) is odd}. Thus, a state of Q is in
odd(g) if has an odd rank.



We can now try to define A′ as follows. For the state set we take Q′ =
2S × R and Q′

in = Qin × R. Thus, a state of A′ is simply a ranked subset of
Q. Now we can define the transition function by δ′(〈S, g〉,σ) = {〈δ(S,σ), g′〉 :
g′ covers 〈g, S,σ〉}. This definition guarantees that A′ is guessing a C-ranking
of a run dag Gw. Unfortunately, this is not sufficient. To ensure that Gw is
accepting we need to find an odd C-ranking. It is not clear how A′ can check for
oddness, which seems to be a global condition. To overcome this difficulty we
use a technique due to [24], which uses a second subset construction to ensure
that no path of Gw get stuck in an odd rank.

Let A′ = 〈Σ, Q′, Q′
in, δ′,α′〉, where

– Q′ = 2Q × 2Q ×R, where a state 〈S, O, g〉 ∈ Q′ indicates that the current
level of the run dag contains the states in S, the set O ⊆ S contains states
along paths that have not visited an odd node since the last time O has been
empty, and g is the guessed level ranking for the current level.

– Q′
in = {Qin}× {∅}×R.

– δ′ is defined, for all 〈S, O, g〉 ∈ Q′ and σ ∈ Σ, as follows.
• If O (= ∅, then

δ′(〈S, O, g〉,σ) = {〈δ(S,σ), δ(O,σ) \ odd(g′), g′〉 : g′ covers 〈g, S,σ〉}.

• If O = ∅, then

δ′(〈S, O, g〉,σ) = {〈δ(S,σ), δ(S,σ) \ odd(g′), g′〉 : g′ covers 〈g, S,σ〉}.

– α′ = 2Q × {∅}×R.

An easy analysis show that A′ has at most (6n)n) states. This should be con-
trasted with the bound of n2n that results from determinization [29].

Theorem 2. [18] Let A be a UCW with n states. Then A′ has at most (6n)n

states and L(A′) = L(A).

A report on an implementation of this construction, which includes also many
optimizations, can be found in [12].

4 Tight Rankings

While the upper bound bound of (6n)n described above is exponentially better
than the bound of n2n obtained via determinization, is is still exponentially far
from the lower bound of n!. Recent results have improved both the upper and
lower bounds.

For the upper bound, it was shown in [9] that the rank-based construction
can be tightened. Consider a UCW A and a word w ∈ Σω accepted by A. For
the run dag Gw of A on w, let max rank(Gw) be the maximal rank that a node
in Gw gets. For a rank j ∈ {0, . . . , 2n − 2}, let [j]odd be all odd ranks less than
or equal to j.



Lemma 2. [9] There is a limit level l ≥ 0 such that for each level l′ > l, and for
all ranks j ∈ [max rank(Gw)]odd , there is a node 〈q, l′〉 such that rank(q, l′) = j.

Recall that a level ranking for A is a function g : Q → {0, . . . , 2n − 2}, such
that if g(q) is odd, then q (∈ α. Let max odd(g) be the maximal odd number in
the range of g.

Definition 1. We say that a level ranking g is tight if

1. the maximal rank in the range of g is odd, and
2. for all j ∈ [max odd(g)]odd , there is a state q ∈ Q with g(q) = j.

Lemma 3. [9] There is a level l ≥ 0 such that for each level l′ > l, the level
ranking that corresponds to l′ is tight.

It follows that we can improve the earlier complementation construction and
restrict the set R of possible level rankings to the set of tight level rankings.
Since, however, the tightness of the level ranking is guaranteed only beyond the
limit level l of Gw, we also need to guess this level, and proceed with the usual
subset construction until we reach it. Formally, we suggest the following modified
construction.

Let A = 〈Σ, Q, Qin, δ,α〉 be a UCW, and let Rtight be the set of tight level
rankings for A. Let A′ = 〈Σ, Q′, Q′

in, δ′,α′〉, where

– Q′ = 2Q∪(2Q×2Q×Rtight ), where a state S ∈ Q′ indicates that the current
level of the run dag contains the states in S, and a state 〈S, O, g〉 ∈ Q′ is
similar to the states in the earlier construction; in particular, O ⊆ S.

– Q′
in = {Qin}. Thus, the run starts in a “subset mode”, corresponding to a

guess that the limit level has not been reached yet.
– For all states in Q′ of the form S ∈ 2Q and σ ∈ Σ, we have that

δ′(S,σ) = {δ(S,σ)} ∪ {〈δ(S,σ), ∅, g〉 : and g ∈ Rtight}.

Thus, at each point in the subset mode, A′ may guess that the current level is
the limit level, and move to a “subset+ranks” mode, where it proceeds as the
NBW constructed earlier. Thus, for states of the form 〈S, O, g〉, the transition
function is as described earlier, except that level rankings are restricted to tight
ones.

Theorem 3. [9] Let A be a UCW. Then L(A′) = L(A).

It remains to analyze carefully the complexity of this construction. Let tight(n)
be the number of tight level rankings for automata with n states. Is is easy to
see that A′ needs at most 3n · tight(n) states. A careful analysis, based on an
asymptotic approximation of Stirling Numbers of The Second Kind [34], yields
that tight(n) is bounded by (0.76n)n. We also have a factor of 3n that results
from the two subset constructions; recall that a state has the form 〈S, O, g〉, in
which S and O are subsets of the state space of the original automaton, with



O ⊆ S, and g is a tight level ranking. This analysis ignores possible relations
between the pair 〈S, O〉 and the tight level ranking g associated with it.

Consider a state 〈S, O, g〉 of the NBW A′ constructed. Since we are interested
only in the ranks of states in S, we can assume without loss of generality that
g assigns the rank 0 to all states not in S. In addition, as O maintains the set
of states that have not been visited an odd vertex, g maps all the states in O to
an even rank. A careful combinatorial analysis now yields the following.

Theorem 4. [9] Let A be a UCW with n states. Then there is an NBW A′ with
at most (0.97n)n states such that L(A) = L(A′).

In particular, the upper bound is lower than nn, which would have been a “clean”
bound. Recent progress has also been made on the lower-bound front. It is shown
in [39] that the complementary automaton needs to maintain all tight level
rankings, resulting in a lower bound of (0.76n)n, which is exponentially stronger
than the previous bound of n! ≈ (n/e)n. An exponential bound remains between
the upper bound of (0.97n)n and the lower bound of (0.76n)n). Closing this gap
is a tantalizing open question.

5 Concluding Remarks

Our focus in this paper was on the theoretical aspect of Büchi complementation.
It is important to note that this is also an important practical problem. No
verification tool so far supports the unrestricted use of Büchi automata as a
specification formalism, due to the perceived difficulty of complementation. In
spite of some recent progress in implementing Büchi complementation [12], more
work needs to be done to make this practically viable.

It should also be noted that complementation is important for automata
on infinite words with stronger acceptance conditions, such as generalized Büchi
automata [20] and Streett automata [19]. In particular, Streett automata express
strong fairness in a natural way. A Streett acceptance condition consists of a
set of pairs (L, R) of sets of states. The requirement is that if a run visits L
infinitely often, it also visits R infinitely often. The best known upper bound for
complementing a Streett automaton with n states and k pairs is (kn)O(kn) [16,
19, 30]. The only known lower bound is of (kn)O(n) [39].

References

1. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The For-
Spec temporal logic: A new temporal property-specification logic. In Proc. 8th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems, volume 2280 of Lecture Notes in Computer Science, pages 296–211,
Grenoble, France, April 2002. Springer-Verlag.

2. J.C. Birget. Partial orders on words, minimal elements of regular languages, and
state complexity. Theoretical Computer Science, 119:267–291, 1993.



3. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
International Congress on Logic, Method, and Philosophy of Science. 1960, pages
1–12, Stanford, 1962. Stanford University Press.

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

5. N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for
linear temporal logic. In Computer Aided Verification, Proc. 11th International
Conference, volume 1633 of Lecture Notes in Computer Science, pages 249–260.
Springer-Verlag, 1999.

6. E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel
programs using fixpoints. In Proc. 7th InternationalColloq. on Automata, Lan-
guages and Programming, pages 169–181, 1980.

7. E.A. Emerson and C.-L. Lei. Temporal model checking under generalized fairness
constraints. In Proc. 18th Hawaii International Conference on System Sciences,
North Holywood, 1985. Western Periodicals Company.

8. K. Fisler, R. Fraer, G. Kamhi, M.Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In 7th International Conference on Tools and algorithms
for the construction and analysis of systems, number 2031 in Lecture Notes in
Computer Science, pages 420–434. Springer-Verlag, 2001.

9. E. Friedgut, O. Kupferman, and M.Y. Vardi. Büchi complementation made tighter.
Int’l J. of Foundations of Computer Science, 17(4):851–867, 2006.

10. P. Gastin and D. Oddoux. Fast LTL to büchi automata translation. In Computer
Aided Verification, Proc. 13th International Conference, volume 2102 of Lecture
Notes in Computer Science, pages 53–65. Springer-Verlag, 2001.

11. S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation minimization. In
Computer Aided Verification, Proc. 14th International Conference, volume 2404 of
Lecture Notes in Computer Science, pages 610–623. Springer-Verlag, 2002.

12. S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing
nondeterministic Büchi automata. In 12th Advanced Research Working Conference
on Correct Hardware Design and Verification Methods, volume 2860 of Lecture
Notes in Computer Science, pages 96–110. Springer-Verlag, 2003.

13. T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information
and Computation, 173(1):64–81, 2002.

14. G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

15. Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation
and trace containment. In Computer Aided Verification, Proc. 15th International
Conference, volume 2725 of Lecture Notes in Computer Science, pages 381–393.
Springer-Verlag, 2003.

16. N. Klarlund. Progress measures for complementation of ω-automata with applica-
tions to temporal logic. In Proc. 32nd IEEE Symp. on Foundations of Computer
Science, pages 358–367, San Juan, October 1991.

17. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.
In Proc. 5th Israeli Symp. on Theory of Computing and Systems, pages 147–158.
IEEE Computer Society Press, 1997.

18. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.
ACM Trans. on Computational Logic, 2(2):408–429, July 2001.

19. O. Kupferman and M.Y. Vardi. Complementation constructions for nondetermin-
istic automata on infinite words. In Proc. 11th International Conf. on Tools and



Algorithms for The Construction and Analysis of Systems, volume 3440 of Lecture
Notes in Computer Science, pages 206–221. Springer-Verlag, 2005.

20. O. Kupferman and M.Y. Vardi. From complementation to certification. Theoretical
Computer Science, 305:591–606, 2005.

21. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
Univ. Press, 1994.

22. C. Löding. Optimal bounds for the transformation of omega-automata. In Proc.
19th Conference on the Foundations of Software Technology and Theoretical Com-
puter Science, volume 1738 of Lecture Notes in Computer Science, pages 97–109,
December 1999.

23. M. Michel. Complementation is more difficult with automata on infinite words.
CNET, Paris, 1988.

24. S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32:321–330, 1984.

25. D.E. Muller. Infinite sequences and finite machines. In Proc. 4th IEEE Symp. on
Switching Circuit Theory and Logical design, pages 3–16, 1963.

26. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

27. J.P. Pécuchet. On the complementation of büchi automata. Theor. Comput. Sci.,
47(3):95–98, 1986.

28. M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3:115–125, 1959.

29. S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foun-
dations of Computer Science, pages 319–327, White Plains, October 1988.

30. S. Safra. Exponential determinization for ω-automata with strong-fairness accep-
tance condition. In Proc. 24th ACM Symp. on Theory of Computing, Victoria,
May 1992.

31. W. Sakoda and M. Sipser. Non-determinism and the size of two-way automata. In
Proc. 10th ACM Symp. on Theory of Computing, pages 275–286, 1978.

32. A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science,
49:217–237, 1987.

33. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In
Computer Aided Verification, Proc. 12th International Conference, volume 1855 of
Lecture Notes in Computer Science, pages 248–263. Springer-Verlag, 2000.

34. N.M. Temme. Asimptotic estimates of Stirling numbers. Stud. Appl. Math., 89:233–
243, 1993.

35. W. Thomas. Complementation of Büchi automata revised. In J. Karhumäki, H. A.
Maurer, G. Paun, and G. Rozenberg, editors, Jewels are Forever, pages 109–120.
Springer, 1999.

36. M.Y. Vardi. Verification of concurrent programs - the automata-theoretic frame-
work. Annals of Pure and Applied Logic, 51:79–98, 1991.

37. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, November 1994.

38. P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1–2):72–99, 1983.

39. Q. Yan. Lower bounds for complementation of ω-automata via the full automata
technique. In Proc. 33rd Intl. Colloq. on Automata, Languages and Pr ogram-
ming, volume 4052 of Lecture Notes in Computer Science, pages 589–600. Springer-
Verlag, 2006.


