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Formal Verification and Security Group at USI

Universita della Svizzera Italiana
(USI or University of Lugano)

is located in the southernmost (and
sunniest) part of Switzerland.

Members:
e Prof. Natasha Sharygina

e Postdoc: Roberto Bruttomesso

e PhD Students:
Aliaksei Tsitovich, Simone Rollini
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Synergy of precise and fast abstraction )
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Project motivation: existing approaches to abstraction in

CEGAR loop are not perfect

Precise abstraction

e Minimal number of abstract
transitions (no spurious
transitions)
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Many ways to approximate the
abstraction (Cartesian
abstraction, predicate
partitioning etc.)

Usually very fast computation
But...

e Introduces spurious transitions
(abstraction contains both
spurious transitions and
spurious paths)

e Requires many refinement
iterations to remove numerous
spurious transitions.
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Our solution: combine fast and precise predicate

abstraction in CEGAR loop

Start with fast abstraction

Program —|

Abstraction

Refinement

Model Checking

— No violations

Spurious

Refine as precise as possible

Simulation

Counterexample

Real bug
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Components of our algorithm

FastAbstraction: given a set of predicates 1 and a concrete
transition relation T computes program over-approximation for Tp.

PreciseAbstraction: given a set of predicates 1 and a concrete
transition relation T computes the minimal abstraction for Tp.

SpuriousTransition (7): given a path 7, maps every transition t in
7 to a set of predicates P, s.t. P C T and t [~ Tp.

SpuriousPath (7): given a path 7, maps every transition t in 7 to a
set of predicates P, s.t. 7 [~ Tgsp(t). Note that [1 C P, i.e.,
SpuriousPath introduces new predicates.
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The “synergy” algorithm

MixCegarLoop ( TransitionSystem M, Property F)
begin

« = FastAbstraction(T,M);
while not TIMEOUT do
7 = ModelCheck(c,F);

if 7 = (@ then return CORRECT;
else

M = InitialPredicates(F,T); [Let's proceed stepwise J

osT = SpuriousTransition(w);
if osT # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aANC
else
ogp = SpuriousPath(7);
if ogp # O then return INCORRECT;
else
foreach t € 7 do
N=nNuUosp(t);
C = PreciselAbstraction(T,o5p(t));
a=aAC

end
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The “synergy” algorithm

MixCegarLoop ( TransitionSystem M, Property F)
begin

[rl — InitialPredicates(F,T); ]

« = FastAbstraction(T,M);
while not TIMEOUT do
7 = ModelCheck(c,F);

if 7 = ( then return CORRECT;
else

05T = SpuriousTransition(rw);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aAC
else
osp = SpuriousPath(m);
if osp # 0 then return INCORRECT;
else
foreach t € 7 do
N=nNuUosp(t);
C = PreciseAbstraction(T,o5p(t));

a=aANC
end
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The “synergy” algorithm

MixCegarLoop ( TransitionSystem M, Property F)
begin

M = InitialPredicates(F,T);

« = FastAbstraction(T,M);

while not TIMEOUT do

7 = ModelCheck(a,F);
if ™ = () then return CORRECT;
else

osT = SpuriousTransition(m);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aANC
else
osp = SpuriousPath(m);
if osp # 0 then return INCORRECT;
else
foreach t € 7 do
N=nNuUogsp(t);
C = PreciseAbstraction(T,o5p(t));
a=aANC
end
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The “synergy” algorithm

MixCegarLoop ( TransitionSystem M, Property F)

begin Compute spurious tran-
M = InitialPredicates(F,T); .
a = FastAbstraction(T,M); sitions (O'ST o Vt eEm—
while not TIMEOUT do 2
7 = ModelCheck(c,F); P g I_I At bé TP)
if 7 = () then return CORRECT;
else
(0'57— = SpuriousTransition(m); )
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aANC
else
osp = SpuriousPath(m);
if osp # 0 then return INCORRECT;
else
foreach t € 7 do
N=NuUosp(t);
C = PreciseAbstraction(T,o5p(t));
a=aANC
end
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The “synergy” algorithm

MixCegarLoop ( TransitionSystem M, Property F)
begin
M = InitialPredicates(F,T);
a = FastAbstraction(T,M);
while not TIMEOUT do
7 = ModelCheck(a,F);
if 7 = ( then return CORRECT;
else
osT = SpuriousTransition(w);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,os7(t));
a=aAC

else
osp = SpuriousPath(m);
if osp # O then return INCORRECT;
else

foreach t € 7 do
N=nNuUosp(t):
C = PreciseAbstraction(T,o t); R ..
e aAC se(t) Note, all spurious transitions related

end to detected predicates are removed
at once!
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The “synergy” algorithm

MixCegarLoop ( TransitionSystem M, Property F)
begin
M = InitialPredicates(F,T);
o = FastAbstraction(T,M);
while not TIMEOUT do
7 = ModelCheck(a,F);
if © = ( then return CORRECT;
else
osT = SpuriousTransition(w);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aAC
else

(o'sp = SpuriousPath(); )

if osp # 0 then return INCORRECT;
else

foreach t € 7 do
N=nNuUosp(t);
C = PreciseAbstraction(T,o5p(t));

a=aAC
end
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The “synergy” algorithm

MixCegarLoop ( TransitionSystem M, Property F)
begin
[ = InitialPredicates(F,T);
« = FastAbstraction(T,I);
while not TIMEOUT do
7 = ModelCheck(c,F);
if 7 = ( then return CORRECT;
else
osT = SpuriousTransition(w);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aAC(
else
osp = SpuriousPath(m);
if osp # 0 then return INCORRECT;
else
foreach t € 7w do
N=nNuosp(t);
C = PreciseAbstraction(T,o5p(t));
a=aAC

end
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Advantages of our algorithm

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations
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Advantages of our algorithm

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations

e Expensive precise abstraction is limited to a small number of
predicates.

o Multiple spurious behaviors are removed at each refinement iteration
(reduces CEGAR iterations)

e Synergy can be localized to some parts of the program (for every
location of the control-flow graph)
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Experiments and ideas for future:

The “synergy” algorithm is implemented and evaluated in SATABS
software model checker — and it works.

More details: http://verify.inf.usi.ch/projects/synergy.
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Experiments and ideas for future:

The “synergy” algorithm is implemented and evaluated in SATABS
software model checker — and it works.

More details: http://verify.inf.usi.ch/projects/synergy.

Next:

@ Integrate synergy with interpolation-based approaches for predicate
discovery.

® Investigate trade-offs between precise and approximated approaches in
the context of purely interpolation-based model checking.
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OPENSMT OVERVIEW

o SMT-Solvers are efficient tools to solve quantifier-free formulae in
some decidable logic

(aV(x+y<0)A(-aV-b)A(x+y>10)
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o SMT-Solvers are efficient tools to solve quantifier-free formulae in
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o Relellgiaald is an open-source SMT-Solver with focus on

e extensibility: the SAT-to-theory interface is such that it is easy to
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e incrementality: suitable for incremental verification

o efficiency: it is the fastest open-source solver for linear arithmetic,
according to SMTCOMP’'09
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OPENSMT OVERVIEW

o SMT-Solvers are efficient tools to solve quantifier-free formulae in
some decidable logic

(aV(x+y<0)A(-aV-b)A(x+y>10)

o Relellgiaald is an open-source SMT-Solver with focus on

e extensibility: the SAT-to-theory interface is such that it is easy to
plug-in new decision procedures

e incrementality: suitable for incremental verification

o efficiency: it is the fastest open-source solver for linear arithmetic,
according to SMTCOMP’'09

e |t combines the famous MINISAT?2 SAT-Solver with state-of-the-art
decision procedures for uninterpreted functions and predicates,
linear arithmetic and bit-vector arithmetic
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Motivations

(other than doing research)

e to promote the use of SMT-Solvers in combination with other
verification tools
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Motivations

(other than doing research)

e to promote the use of SMT-Solvers in combination with other
verification tools

e to provide a level of detail for decision procedures that goes beyond
the scientific publication

e to promote the development of SMT-Solvers by providing a simple
infrastructure for the addition of new theories
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Some distinguishing features of OPENSMT

o Preprocessor for arithmetic SMT formulae
e Implements a combination of the Davis-Putnam procedure and the
Fourier-Motzkin elimination to simplify the formula at the
preprocessing level
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Some distinguishing features of OPENSMT

o Preprocessor for arithmetic SMT formulae

e Implements a combination of the Davis-Putnam procedure and the

Fourier-Motzkin elimination to simplify the formula at the
preprocessing level

o An efficient and complete decision procedure for bit-vector extraction
and concatenation

e Reduces formula over bit-vector extraction and concatenation to the

theory of equality, in order to avoid, when possible, a more expensive
reduction to SAT
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Other OPENSMT'’S FEATURES

o C-API for integration with other verification frameworks
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Other OPENSMT'’S FEATURES

o C-API for integration with other verification frameworks

e Returns evidence of satisfiability (model) or unsatisfiability (proof -
work in progress)
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Other OPENSMT'’S FEATURES

o C-API for integration with other verification frameworks

e Returns evidence of satisfiability (model) or unsatisfiability (proof -
work in progress)

e Highly configurable via configuration file

Project page http://verify.inf.unisi.ch/opensmt
Code Repository http://code.google.com/p/opensmt
Discussion Group http://groups.google.com/group/opensmt
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Program abstraction via loop summarization
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Project Motivation

Loops analysis — the Achilles’ heel of static analysis J
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Project Motivation

Loops analysis — the Achilles’ heel of static analysis J

e Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

e Loop over-approximation by computing its fixpoint is either too
expensive to compute or too imprecise.

e Loop over-approximation by discovering of sufficiently strong
invariants is an art.

Multiple nested loops makes analysis even more difficult. J
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Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.
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e Encode loop-free fragments into concrete summaries.

e Replace each loop by its abstract summary:

e proceed bottom-up from the deep-most loop;

e apply property-driven abstract domains to obtain localized invariant
candidates for each loop;

e use the concrete symbolic transformer of a loop body to check if it is a
loop invariant;

e construct a loop summary as a combination of loop variants and
discovered invariants.
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Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.

e Encode loop-free fragments into concrete summaries.

e Replace each loop by its abstract summary:
e proceed bottom-up from the deep-most loop;
e apply property-driven abstract domains to obtain localized invariant
candidates for each loop;
e use the concrete symbolic transformer of a loop body to check if it is a
loop invariant;
e construct a loop summary as a combination of loop variants and
discovered invariants.
e Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, expensive iterative computation is

avoided.
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Implementation

LooPFROG- static analysis tool for C programs

LOO P D

RO

e Works on models from ANSI-C programs that are created using
Goto-CC front-end?;

e Uses SAT-based symbolic engine of CBMC for invariant candidates
check and final assertion check;

e Performs sound and scalable loop summarization.

http:/ /www.cprover.org/goto-cc
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Current results and future work

e Loopfrog provides a library of abstract domains tailored to verification
of safety of string operations in C.

e |t was applied not just to crafted benchmarks but to real large-scale
open-source software like GNUPG, INN, and WU-FTPD.

Project page: http://verify.inf.unisi.ch/loopfrog
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Current results and future work

e Loopfrog provides a library of abstract domains tailored to verification
of safety of string operations in C.

e |t was applied not just to crafted benchmarks but to real large-scale
open-source software like GNUPG, INN, and WU-FTPD.

Project page: http://verify.inf.unisi.ch/loopfrog

Next:

e Combine loop summarization with various invariant discovery
methods;

e Employ SMT-Solver based decision back-end for more expressive
invariant candidates and faster checks.
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