Formal Verification and Security Group

Research Interests

Natasha Sharygina

www.verify.inf.usi.ch
Universita della Svizzera Italiana (USI)

October 30, 2009

FVS Group (USI) Research Interests October 30, 2009

www.verify.inf.usi.ch

e FVS group at USI

e Group projects
e Synergy of precise and fast abstraction

e SMT-based decision procedures opensmt

e Loop summarization LOI?F!:; 2

FVS Group (USI) Research Interests October 30, 2009

Formal Verification and Security Group at USI

Universita della Svizzera Italiana
(USI or University of Lugano)

is located in the southernmost (and
sunniest) part of Switzerland.

Members:
e Prof. Natasha Sharygina

e Postdoc: Roberto Bruttomesso

e PhD Students:
Aliaksei Tsitovich, Simone Rollini

FVS Group (USI) Research Interests October 30, 2009 3/21

Formal Verification and Security Group at USI

i ﬁm ‘:2/4;‘{ i
s (e

e ; A o .
FVS Group (USI) Research Interests October 30, 2009 3/21

Synergy of precise and fast abstraction)

FVS Group (USI) Research Interests October 30, 2009

Project motivation: existing approaches to abstraction in

CEGAR loop are not perfect

Precise abstraction

e Minimal number of abstract
transitions (no spurious
transitions)

FVS Group (USI) Research Interests October 30, 2009

Project motivation: existing approaches to abstraction in

CEGAR loop are not perfect

Precise abstraction

e Minimal number of abstract
transitions (no spurious
transitions)

e Adding new predicates is enough
to refine spurious path

October 30, 2009

FVS Group (USI) Research Interests

Project motivation: existing approaches to abstraction in

CEGAR loop are not perfect

Precise abstraction

e Minimal number of abstract
transitions (no spurious
transitions)

e Adding new predicates is enough
to refine spurious path

e But... Very slow computation
(exponential in the number of
predicates).

FVS Group (USI) Research Interests October 30, 2009

Project motivation: existing approaches to abstraction in

CEGAR loop are not perfect

Precise abstraction Fast abstraction
e Minimal number of abstract e Many ways to approximate the
transitions (no spurious abstraction (Cartesian
transitions) abstraction, predicate
e Adding new predicates is enough partitioning etc.)

to refine spurious path

e But... Very slow computation
(exponential in the number of
predicates).

FVS Group (USI) Research Interests October 30, 2009

Project motivation: existing approaches to abstraction in

CEGAR loop are not perfect

Precise abstraction Fast abstraction

e Minimal number of abstract .
transitions (no spurious
transitions)

e Adding new predicates is enough
to refine spurious path °

e But... Very slow computation
(exponential in the number of
predicates).

FVS Group (USI) Research Interests

Many ways to approximate the
abstraction (Cartesian
abstraction, predicate
partitioning etc.)

Usually very fast computation

October 30, 2009

Project motivation: existing approaches to abstraction in

CEGAR loop are not perfect

Precise abstraction Fast abstraction

e Minimal number of abstract o
transitions (no spurious
transitions)

e Adding new predicates is enough
to refine spurious path °

e But... Very slow computation °
(exponential in the number of
predicates).

FVS Group (USI) Research Interests

Many ways to approximate the
abstraction (Cartesian
abstraction, predicate
partitioning etc.)

Usually very fast computation
But...

e Introduces spurious transitions
(abstraction contains both
spurious transitions and
spurious paths)

e Requires many refinement
iterations to remove numerous
spurious transitions.

October 30, 2009

Our solution: combine fast and precise predicate

abstraction in CEGAR loop

Start with fast abstraction

Program —|

Abstraction

Refinement

Model Checking

— No violations

Spurious

Refine as precise as possible

Simulation

Counterexample

Real bug

FVS Group

(USl)

Research Interests

October 30, 2009

6/

21

Components of our algorithm

FastAbstraction: given a set of predicates 1 and a concrete
transition relation T computes program over-approximation for Tp.

PreciseAbstraction: given a set of predicates 1 and a concrete
transition relation T computes the minimal abstraction for Tp.

SpuriousTransition (7): given a path 7, maps every transition t in
7 to a set of predicates P, s.t. P C T and t [~ Tp.

SpuriousPath (7): given a path 7, maps every transition t in 7 to a
set of predicates P, s.t. 7 [~ Tgsp(t). Note that [1 C P, i.e.,
SpuriousPath introduces new predicates.

FVS Group (USI) Research Interests October 30, 2009

The “synergy” algorithm

MixCegarLoop (TransitionSystem M, Property F)
begin

« = FastAbstraction(T,M);
while not TIMEOUT do
7 = ModelCheck(c,F);

if 7 = (@ then return CORRECT;
else

M = InitialPredicates(F,T); [Let's proceed stepwise J

osT = SpuriousTransition(w);
if osT # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aANC
else
ogp = SpuriousPath(7);
if ogp # O then return INCORRECT;
else
foreach t € 7 do
N=nNuUosp(t);
C = PreciselAbstraction(T,o5p(t));
a=aAC

end

FVS Group (USI)

h Interests October 30, 2009

The “synergy” algorithm

MixCegarLoop (TransitionSystem M, Property F)
begin

[rl — InitialPredicates(F,T);]

« = FastAbstraction(T,M);
while not TIMEOUT do
7 = ModelCheck(c,F);

if 7 = (then return CORRECT;
else

05T = SpuriousTransition(rw);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aAC
else
osp = SpuriousPath(m);
if osp # 0 then return INCORRECT;
else
foreach t € 7 do
N=nNuUosp(t);
C = PreciseAbstraction(T,o5p(t));

a=aANC
end

FVS Group (USI) Research Interests

Choose initial predi-
cates 1 and use them
for fast abstraction

October 30, 2009

The “synergy” algorithm

MixCegarLoop (TransitionSystem M, Property F)
begin

M = InitialPredicates(F,T);

« = FastAbstraction(T,M);

while not TIMEOUT do

7 = ModelCheck(a,F);
if ™ = () then return CORRECT;
else

osT = SpuriousTransition(m);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aANC
else
osp = SpuriousPath(m);
if osp # 0 then return INCORRECT;
else
foreach t € 7 do
N=nNuUogsp(t);
C = PreciseAbstraction(T,o5p(t));
a=aANC
end

FVS Group (USI) Research Interests October 30, 2009 8/

The “synergy” algorithm

MixCegarLoop (TransitionSystem M, Property F)

begin Compute spurious tran-
M = InitialPredicates(F,T); .
a = FastAbstraction(T,M); sitions (O'ST o Vt eEm—
while not TIMEOUT do 2
7 = ModelCheck(c,F); P g I_I At bé TP)
if 7 = () then return CORRECT;
else
(0'57— = SpuriousTransition(m);)
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aANC
else
osp = SpuriousPath(m);
if osp # 0 then return INCORRECT;
else
foreach t € 7 do
N=NuUosp(t);
C = PreciseAbstraction(T,o5p(t));
a=aANC
end

FVS Group (USI) Research Interests October 30, 2009

The “synergy” algorithm

MixCegarLoop (TransitionSystem M, Property F)
begin
M = InitialPredicates(F,T);
a = FastAbstraction(T,M);
while not TIMEOUT do
7 = ModelCheck(a,F);
if 7 = (then return CORRECT;
else
osT = SpuriousTransition(w);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,os7(t));
a=aAC

else
osp = SpuriousPath(m);
if osp # O then return INCORRECT;
else

foreach t € 7 do
N=nNuUosp(t):
C = PreciseAbstraction(T,o t); R ..
e aAC se(t) Note, all spurious transitions related

end to detected predicates are removed
at once!

FVS Group (USI) Research Interests October 30, 2009

The “synergy” algorithm

MixCegarLoop (TransitionSystem M, Property F)
begin
M = InitialPredicates(F,T);
o = FastAbstraction(T,M);
while not TIMEOUT do
7 = ModelCheck(a,F);
if © = (then return CORRECT;
else
osT = SpuriousTransition(w);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aAC
else

(o'sp = SpuriousPath();)

if osp # 0 then return INCORRECT;
else

foreach t € 7 do
N=nNuUosp(t);
C = PreciseAbstraction(T,o5p(t));

a=aAC
end

FVS Group (USI) Research Interests

October 30, 2009 8/

The “synergy” algorithm

MixCegarLoop (TransitionSystem M, Property F)
begin
[= InitialPredicates(F,T);
« = FastAbstraction(T,I);
while not TIMEOUT do
7 = ModelCheck(c,F);
if 7 = (then return CORRECT;
else
osT = SpuriousTransition(w);
if os7 # 0 then
foreach t € 7 do
C = PreciseAbstraction(T,o57(t));
a=aAC(
else
osp = SpuriousPath(m);
if osp # 0 then return INCORRECT;
else
foreach t € 7w do
N=nNuosp(t);
C = PreciseAbstraction(T,o5p(t));
a=aAC

end

FVS Group (USI) Research Interests October 30, 2009

Advantages of our algorithm

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations

FVS Group (USI) Research Interests October 30, 2009 9/21

Advantages of our algorithm

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations

e Expensive precise abstraction is limited to a small number of
predicates.

FVS Group (USI) Research Interests October 30, 2009 9/21

Advantages of our algorithm

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations

e Expensive precise abstraction is limited to a small number of
predicates.

o Multiple spurious behaviors are removed at each refinement iteration
(reduces CEGAR iterations)

FVS Group (USI) Research Interests October 30, 2009 9/21

Advantages of our algorithm

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations

e Expensive precise abstraction is limited to a small number of
predicates.

o Multiple spurious behaviors are removed at each refinement iteration
(reduces CEGAR iterations)

e Synergy can be localized to some parts of the program (for every
location of the control-flow graph)

FVS Group (USI) Research Interests October 30, 2009 9/21

Experiments and ideas for future:

The “synergy” algorithm is implemented and evaluated in SATABS
software model checker — and it works.

More details: http://verify.inf.usi.ch/projects/synergy.

FVS Group (USI)

Research Interests October 30, 2009 10 / 21

http://verify.inf.usi.ch/projects/synergy

Experiments and ideas for future:

The “synergy” algorithm is implemented and evaluated in SATABS
software model checker — and it works.

More details: http://verify.inf.usi.ch/projects/synergy.

Next:

@ Integrate synergy with interpolation-based approaches for predicate
discovery.

® Investigate trade-offs between precise and approximated approaches in
the context of purely interpolation-based model checking.

FVS Group (USI) Research Interests October 30, 2009 10 /

http://verify.inf.usi.ch/projects/synergy

SMT-based decision procedures

FVS Group (USI)

Research Interests

October 30, 2009

1/

OPENSMT OVERVIEW

o SMT-Solvers are efficient tools to solve quantifier-free formulae in
some decidable logic

(aV(x+y<0)A(-aV-b)A(x+y>10)

FVS Group (USI) Research Interests October 30, 2009

OPENSMT OVERVIEW

o SMT-Solvers are efficient tools to solve quantifier-free formulae in
some decidable logic

(aV(x+y<0)A(-aV-b)A(x+y>10)

o Relellgiaald is an open-source SMT-Solver with focus on

e extensibility: the SAT-to-theory interface is such that it is easy to
plug-in new decision procedures
e incrementality: suitable for incremental verification

o efficiency: it is the fastest open-source solver for linear arithmetic,
according to SMTCOMP’'09

FVS Group (USI) Research Interests October 30, 2009

OPENSMT OVERVIEW

o SMT-Solvers are efficient tools to solve quantifier-free formulae in
some decidable logic

(aV(x+y<0)A(-aV-b)A(x+y>10)

o Relellgiaald is an open-source SMT-Solver with focus on

e extensibility: the SAT-to-theory interface is such that it is easy to
plug-in new decision procedures

e incrementality: suitable for incremental verification

o efficiency: it is the fastest open-source solver for linear arithmetic,
according to SMTCOMP’'09

e |t combines the famous MINISAT?2 SAT-Solver with state-of-the-art
decision procedures for uninterpreted functions and predicates,
linear arithmetic and bit-vector arithmetic

FVS Group (USI) Research Interests October 30, 2009

Motivations

(other than doing research)

e to promote the use of SMT-Solvers in combination with other
verification tools

FVS Group (USI) Research Interests October 30, 2009 13 /21

Motivations

(other than doing research)

e to promote the use of SMT-Solvers in combination with other
verification tools

e to provide a level of detail for decision procedures that goes beyond
the scientific publication

FVS Group (USI) Research Interests October 30, 2009 13 /21

Motivations

(other than doing research)

e to promote the use of SMT-Solvers in combination with other
verification tools

e to provide a level of detail for decision procedures that goes beyond
the scientific publication

e to promote the development of SMT-Solvers by providing a simple
infrastructure for the addition of new theories

FVS Group (USI) Research Interests October 30, 2009 13/

Some distinguishing features of OPENSMT

o Preprocessor for arithmetic SMT formulae
e Implements a combination of the Davis-Putnam procedure and the
Fourier-Motzkin elimination to simplify the formula at the
preprocessing level

FVS Group (USI) Research Interests October 30, 2009 14 /21

Some distinguishing features of OPENSMT

o Preprocessor for arithmetic SMT formulae

e Implements a combination of the Davis-Putnam procedure and the

Fourier-Motzkin elimination to simplify the formula at the
preprocessing level

o An efficient and complete decision procedure for bit-vector extraction
and concatenation

e Reduces formula over bit-vector extraction and concatenation to the

theory of equality, in order to avoid, when possible, a more expensive
reduction to SAT

FVS Group (USI)

Research Interests

October 30, 2009 14 / 21

Other OPENSMT'’S FEATURES

o C-API for integration with other verification frameworks

FVS Group (USI) Research Interests October 30, 2009

http://verify.inf.unisi.ch/opensmt
http://code.google.com/p/opensmt
http://groups.google.com/group/opensmt

Other OPENSMT'’S FEATURES

o C-API for integration with other verification frameworks

e Returns evidence of satisfiability (model) or unsatisfiability (proof -
work in progress)

FVS Group (USI) Research Interests October 30, 2009

http://verify.inf.unisi.ch/opensmt
http://code.google.com/p/opensmt
http://groups.google.com/group/opensmt

Other OPENSMT'’S FEATURES

o C-API for integration with other verification frameworks

e Returns evidence of satisfiability (model) or unsatisfiability (proof -
work in progress)

e Highly configurable via configuration file

FVS Group (USI) Research Interests October 30, 2009

http://verify.inf.unisi.ch/opensmt
http://code.google.com/p/opensmt
http://groups.google.com/group/opensmt

Other OPENSMT'’S FEATURES

o C-API for integration with other verification frameworks

e Returns evidence of satisfiability (model) or unsatisfiability (proof -
work in progress)

e Highly configurable via configuration file

Project page http://verify.inf.unisi.ch/opensmt
Code Repository http://code.google.com/p/opensmt
Discussion Group http://groups.google.com/group/opensmt

FVS Group (USI) Research Interests October 30, 2009

http://verify.inf.unisi.ch/opensmt
http://code.google.com/p/opensmt
http://groups.google.com/group/opensmt

Program abstraction via loop summarization

FVS Group (USI) Research Interests October 30, 2009

16 /

Project Motivation

Loops analysis — the Achilles’ heel of static analysis J

FVS Group (USI) Research Interests October 30, 2009 17 /21

Project Motivation

Loops analysis — the Achilles’ heel of static analysis J

e Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

FVS Group (USI) Research Interests October 30, 2009 17 /21

Project Motivation

Loops analysis — the Achilles’ heel of static analysis J

e Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

e Loop over-approximation by computing its fixpoint is either too
expensive to compute or too imprecise.

October 30, 2009 17 /21

FVS Group (USI) Research Interests

Project Motivation

Loops analysis — the Achilles’ heel of static analysis J

e Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

e Loop over-approximation by computing its fixpoint is either too
expensive to compute or too imprecise.

e Loop over-approximation by discovering of sufficiently strong
invariants is an art.

FVS Group (USI) Research Interests October 30, 2009 17 /21

Project Motivation

Loops analysis — the Achilles’ heel of static analysis J

e Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

e Loop over-approximation by computing its fixpoint is either too
expensive to compute or too imprecise.

e Loop over-approximation by discovering of sufficiently strong
invariants is an art.

Multiple nested loops makes analysis even more difficult. J

FVS Group (USI) Research Interests October 30, 2009 17 /21

Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.

FVS Group (USI) Research Interests October 30, 2009 18 / 21

Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.

e Encode loop-free fragments into concrete summaries.

FVS Group (USI) Research Interests October 30, 2009 18 / 21

Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.

e Encode loop-free fragments into concrete summaries.

e Replace each loop by its abstract summary:

e proceed bottom-up from the deep-most loop;

e apply property-driven abstract domains to obtain localized invariant
candidates for each loop;

e use the concrete symbolic transformer of a loop body to check if it is a
loop invariant;

e construct a loop summary as a combination of loop variants and
discovered invariants.

FVS Group (USI) Research Interests October 30, 2009 18 / 21

Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.

e Encode loop-free fragments into concrete summaries.

e Replace each loop by its abstract summary:
e proceed bottom-up from the deep-most loop;
e apply property-driven abstract domains to obtain localized invariant
candidates for each loop;
e use the concrete symbolic transformer of a loop body to check if it is a
loop invariant;
e construct a loop summary as a combination of loop variants and
discovered invariants.
e Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, expensive iterative computation is

avoided.

FVS Group (USI) Research Interests October 30, 2009 18 / 21

Implementation

LooPFROG- static analysis tool for C programs

LOO P D

RO

e Works on models from ANSI-C programs that are created using
Goto-CC front-end?;

e Uses SAT-based symbolic engine of CBMC for invariant candidates
check and final assertion check;

e Performs sound and scalable loop summarization.

http:/ /www.cprover.org/goto-cc

FVS Group (USI) Research Interests October 30, 2009 19 /21

Current results and future work

e Loopfrog provides a library of abstract domains tailored to verification
of safety of string operations in C.

e |t was applied not just to crafted benchmarks but to real large-scale
open-source software like GNUPG, INN, and WU-FTPD.

Project page: http://verify.inf.unisi.ch/loopfrog

FVS Group (USI) Research Interests October 30, 2009 20 / 21

http://verify.inf.unisi.ch/loopfrog

Current results and future work

e Loopfrog provides a library of abstract domains tailored to verification
of safety of string operations in C.

e |t was applied not just to crafted benchmarks but to real large-scale
open-source software like GNUPG, INN, and WU-FTPD.

Project page: http://verify.inf.unisi.ch/loopfrog

Next:

e Combine loop summarization with various invariant discovery
methods;

e Employ SMT-Solver based decision back-end for more expressive
invariant candidates and faster checks.

FVS Group (USI) Research Interests October 30, 2009 20 / 21

http://verify.inf.unisi.ch/loopfrog

Thank you!

LHe i % .
v e ~ i
FVS Group (USI) Research Interests October 30, 2009 21 /21

