
Formal Verification and Security Group
Research Interests

Natasha Sharygina
www.verify.inf.usi.ch

Università della Svizzera Italiana (USI)

October 30, 2009

FVS Group (USI) Research Interests October 30, 2009 1 / 21

www.verify.inf.usi.ch


Outline

• FVS group at USI

• Group projects
• Synergy of precise and fast abstraction

• SMT-based decision procedures opensmt

• Loop summarization

FVS Group (USI) Research Interests October 30, 2009 2 / 21



Formal Verification and Security Group at USI

Università della Svizzera Italiana
(USI or University of Lugano)
is located in the southernmost (and
sunniest) part of Switzerland.

Members:

• Prof. Natasha Sharygina

• Postdoc: Roberto Bruttomesso

• PhD Students:
Aliaksei Tsitovich, Simone Rollini

FVS Group (USI) Research Interests October 30, 2009 3 / 21



Formal Verification and Security Group at USI

FVS Group (USI) Research Interests October 30, 2009 3 / 21



Synergy of precise and fast abstraction

FVS Group (USI) Research Interests October 30, 2009 4 / 21



Project motivation: existing approaches to abstraction in
CEGAR loop are not perfect

Precise abstraction

• Minimal number of abstract
transitions (no spurious
transitions)

• Adding new predicates is enough
to refine spurious path

• But... Very slow computation
(exponential in the number of
predicates).

Fast abstraction

• Many ways to approximate the
abstraction (Cartesian
abstraction, predicate
partitioning etc.)

• Usually very fast computation

• But...
• Introduces spurious transitions

(abstraction contains both
spurious transitions and
spurious paths)

• Requires many refinement
iterations to remove numerous
spurious transitions.

FVS Group (USI) Research Interests October 30, 2009 5 / 21



Project motivation: existing approaches to abstraction in
CEGAR loop are not perfect

Precise abstraction

• Minimal number of abstract
transitions (no spurious
transitions)

• Adding new predicates is enough
to refine spurious path

• But... Very slow computation
(exponential in the number of
predicates).

Fast abstraction

• Many ways to approximate the
abstraction (Cartesian
abstraction, predicate
partitioning etc.)

• Usually very fast computation

• But...
• Introduces spurious transitions

(abstraction contains both
spurious transitions and
spurious paths)

• Requires many refinement
iterations to remove numerous
spurious transitions.

FVS Group (USI) Research Interests October 30, 2009 5 / 21



Project motivation: existing approaches to abstraction in
CEGAR loop are not perfect

Precise abstraction

• Minimal number of abstract
transitions (no spurious
transitions)

• Adding new predicates is enough
to refine spurious path

• But... Very slow computation
(exponential in the number of
predicates).

Fast abstraction

• Many ways to approximate the
abstraction (Cartesian
abstraction, predicate
partitioning etc.)

• Usually very fast computation

• But...
• Introduces spurious transitions

(abstraction contains both
spurious transitions and
spurious paths)

• Requires many refinement
iterations to remove numerous
spurious transitions.

FVS Group (USI) Research Interests October 30, 2009 5 / 21



Project motivation: existing approaches to abstraction in
CEGAR loop are not perfect

Precise abstraction

• Minimal number of abstract
transitions (no spurious
transitions)

• Adding new predicates is enough
to refine spurious path

• But... Very slow computation
(exponential in the number of
predicates).

Fast abstraction

• Many ways to approximate the
abstraction (Cartesian
abstraction, predicate
partitioning etc.)

• Usually very fast computation

• But...
• Introduces spurious transitions

(abstraction contains both
spurious transitions and
spurious paths)

• Requires many refinement
iterations to remove numerous
spurious transitions.

FVS Group (USI) Research Interests October 30, 2009 5 / 21



Project motivation: existing approaches to abstraction in
CEGAR loop are not perfect

Precise abstraction

• Minimal number of abstract
transitions (no spurious
transitions)

• Adding new predicates is enough
to refine spurious path

• But... Very slow computation
(exponential in the number of
predicates).

Fast abstraction

• Many ways to approximate the
abstraction (Cartesian
abstraction, predicate
partitioning etc.)

• Usually very fast computation

• But...
• Introduces spurious transitions

(abstraction contains both
spurious transitions and
spurious paths)

• Requires many refinement
iterations to remove numerous
spurious transitions.

FVS Group (USI) Research Interests October 30, 2009 5 / 21



Project motivation: existing approaches to abstraction in
CEGAR loop are not perfect

Precise abstraction

• Minimal number of abstract
transitions (no spurious
transitions)

• Adding new predicates is enough
to refine spurious path

• But... Very slow computation
(exponential in the number of
predicates).

Fast abstraction

• Many ways to approximate the
abstraction (Cartesian
abstraction, predicate
partitioning etc.)

• Usually very fast computation

• But...
• Introduces spurious transitions

(abstraction contains both
spurious transitions and
spurious paths)

• Requires many refinement
iterations to remove numerous
spurious transitions.

FVS Group (USI) Research Interests October 30, 2009 5 / 21



Our solution: combine fast and precise predicate
abstraction in CEGAR loop

Program Abstraction

Start with fast abstraction

Model Checking No violations

Simulation Real bugRefinement

Refine as precise as possible

Counterexample π

Spurious

FVS Group (USI) Research Interests October 30, 2009 6 / 21



Components of our algorithm

• FastAbstraction: given a set of predicates Π and a concrete
transition relation T computes program over-approximation for T̂Π.

• PreciseAbstraction: given a set of predicates Π and a concrete
transition relation T computes the minimal abstraction for T̂Π.

• SpuriousTransition (π): given a path π, maps every transition t in
π to a set of predicates P, s.t. P ⊆ Π and t 6|= T̂P .

• SpuriousPath (π): given a path π, maps every transition t in π to a
set of predicates P, s.t. π 6|= T̂σSP(t). Note that Π ⊆ P, i.e.,
SpuriousPath introduces new predicates.

FVS Group (USI) Research Interests October 30, 2009 7 / 21



The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Let’s proceed stepwise

FVS Group (USI) Research Interests October 30, 2009 8 / 21



The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Choose initial predi-
cates Π and use them
for fast abstraction

FVS Group (USI) Research Interests October 30, 2009 8 / 21



The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do

π = ModelCheck(α,F);

if π = ∅ then return CORRECT;

else
σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Perform Model Check-
ing and obtain coun-
terexample π (if it ex-
ists)

FVS Group (USI) Research Interests October 30, 2009 8 / 21



The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Compute spurious tran-
sitions (σST : ∀t ∈ π →
P ⊆ Π ∧ t 6|= T̂P)

FVS Group (USI) Research Interests October 30, 2009 8 / 21



The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;

else
σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

1 Perform Precise-
Abstraction for
predicates P
related to spurious
transitions ∀t ∈ π.

2 Remove detected
spurious
transitions by
refining original
abstraction

Note, all spurious transitions related
to detected predicates are removed
at once!

FVS Group (USI) Research Interests October 30, 2009 8 / 21



The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Otherwise check if π
has any spurious path
(σSP : t ∈ π → Π ⊆
P ∧ π 6|= T̂σSP(t))

FVS Group (USI) Research Interests October 30, 2009 8 / 21



The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do

Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;

end

1 Add new
predicates to Π
from Spurious-
Path(π).

2 Perform Precise-
Abstraction for
predicates P
related to
transitions ∀t ∈ π.

3 Remove spurious
path by refining
the original
abstraction

FVS Group (USI) Research Interests October 30, 2009 8 / 21



Advantages of our algorithm

Summary:

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations

• Expensive precise abstraction is limited to a small number of
predicates.

• Multiple spurious behaviors are removed at each refinement iteration
(reduces CEGAR iterations)

• Synergy can be localized to some parts of the program (for every
location of the control-flow graph)

FVS Group (USI) Research Interests October 30, 2009 9 / 21



Advantages of our algorithm

Summary:

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations

• Expensive precise abstraction is limited to a small number of
predicates.

• Multiple spurious behaviors are removed at each refinement iteration
(reduces CEGAR iterations)

• Synergy can be localized to some parts of the program (for every
location of the control-flow graph)

FVS Group (USI) Research Interests October 30, 2009 9 / 21



Advantages of our algorithm

Summary:

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations

• Expensive precise abstraction is limited to a small number of
predicates.

• Multiple spurious behaviors are removed at each refinement iteration
(reduces CEGAR iterations)

• Synergy can be localized to some parts of the program (for every
location of the control-flow graph)

FVS Group (USI) Research Interests October 30, 2009 9 / 21



Advantages of our algorithm

Summary:

Computes abstraction quickly but keeps it precise enough to avoid too
many refinement iterations

• Expensive precise abstraction is limited to a small number of
predicates.

• Multiple spurious behaviors are removed at each refinement iteration
(reduces CEGAR iterations)

• Synergy can be localized to some parts of the program (for every
location of the control-flow graph)

FVS Group (USI) Research Interests October 30, 2009 9 / 21



Experiments and ideas for future:

The “synergy” algorithm is implemented and evaluated in SATABS
software model checker — and it works.

More details: http://verify.inf.usi.ch/projects/synergy.

Next:

1 Integrate synergy with interpolation-based approaches for predicate
discovery.

2 Investigate trade-offs between precise and approximated approaches in
the context of purely interpolation-based model checking.

FVS Group (USI) Research Interests October 30, 2009 10 / 21

http://verify.inf.usi.ch/projects/synergy


Experiments and ideas for future:

The “synergy” algorithm is implemented and evaluated in SATABS
software model checker — and it works.

More details: http://verify.inf.usi.ch/projects/synergy.

Next:

1 Integrate synergy with interpolation-based approaches for predicate
discovery.

2 Investigate trade-offs between precise and approximated approaches in
the context of purely interpolation-based model checking.

FVS Group (USI) Research Interests October 30, 2009 10 / 21

http://verify.inf.usi.ch/projects/synergy


SMT-based decision procedures

FVS Group (USI) Research Interests October 30, 2009 11 / 21



OpenSMT Overview

• SMT-Solvers are efficient tools to solve quantifier-free formulæ in
some decidable logic

(a ∨ (x + y ≤ 0)) ∧ (¬a ∨ ¬b) ∧ (x + y ≥ 10)

• opensmtis an open-source SMT-Solver with focus on

• extensibility: the SAT-to-theory interface is such that it is easy to
plug-in new decision procedures

• incrementality: suitable for incremental verification
• efficiency: it is the fastest open-source solver for linear arithmetic,

according to SMTCOMP’09

• It combines the famous MiniSAT2 SAT-Solver with state-of-the-art
decision procedures for uninterpreted functions and predicates,
linear arithmetic and bit-vector arithmetic

FVS Group (USI) Research Interests October 30, 2009 12 / 21



OpenSMT Overview

• SMT-Solvers are efficient tools to solve quantifier-free formulæ in
some decidable logic

(a ∨ (x + y ≤ 0)) ∧ (¬a ∨ ¬b) ∧ (x + y ≥ 10)

• opensmtis an open-source SMT-Solver with focus on

• extensibility: the SAT-to-theory interface is such that it is easy to
plug-in new decision procedures

• incrementality: suitable for incremental verification
• efficiency: it is the fastest open-source solver for linear arithmetic,

according to SMTCOMP’09

• It combines the famous MiniSAT2 SAT-Solver with state-of-the-art
decision procedures for uninterpreted functions and predicates,
linear arithmetic and bit-vector arithmetic

FVS Group (USI) Research Interests October 30, 2009 12 / 21



OpenSMT Overview

• SMT-Solvers are efficient tools to solve quantifier-free formulæ in
some decidable logic

(a ∨ (x + y ≤ 0)) ∧ (¬a ∨ ¬b) ∧ (x + y ≥ 10)

• opensmtis an open-source SMT-Solver with focus on

• extensibility: the SAT-to-theory interface is such that it is easy to
plug-in new decision procedures

• incrementality: suitable for incremental verification
• efficiency: it is the fastest open-source solver for linear arithmetic,

according to SMTCOMP’09

• It combines the famous MiniSAT2 SAT-Solver with state-of-the-art
decision procedures for uninterpreted functions and predicates,
linear arithmetic and bit-vector arithmetic

FVS Group (USI) Research Interests October 30, 2009 12 / 21



Motivations
(other than doing research)

• to promote the use of SMT-Solvers in combination with other
verification tools

• to provide a level of detail for decision procedures that goes beyond
the scientific publication

• to promote the development of SMT-Solvers by providing a simple
infrastructure for the addition of new theories

FVS Group (USI) Research Interests October 30, 2009 13 / 21



Motivations
(other than doing research)

• to promote the use of SMT-Solvers in combination with other
verification tools

• to provide a level of detail for decision procedures that goes beyond
the scientific publication

• to promote the development of SMT-Solvers by providing a simple
infrastructure for the addition of new theories

FVS Group (USI) Research Interests October 30, 2009 13 / 21



Motivations
(other than doing research)

• to promote the use of SMT-Solvers in combination with other
verification tools

• to provide a level of detail for decision procedures that goes beyond
the scientific publication

• to promote the development of SMT-Solvers by providing a simple
infrastructure for the addition of new theories

FVS Group (USI) Research Interests October 30, 2009 13 / 21



Some distinguishing features of OpenSMT

• Preprocessor for arithmetic SMT formulæ
• Implements a combination of the Davis-Putnam procedure and the

Fourier-Motzkin elimination to simplify the formula at the
preprocessing level

• An efficient and complete decision procedure for bit-vector extraction
and concatenation

• Reduces formulæ over bit-vector extraction and concatenation to the
theory of equality, in order to avoid, when possible, a more expensive
reduction to SAT

FVS Group (USI) Research Interests October 30, 2009 14 / 21



Some distinguishing features of OpenSMT

• Preprocessor for arithmetic SMT formulæ
• Implements a combination of the Davis-Putnam procedure and the

Fourier-Motzkin elimination to simplify the formula at the
preprocessing level

• An efficient and complete decision procedure for bit-vector extraction
and concatenation

• Reduces formulæ over bit-vector extraction and concatenation to the
theory of equality, in order to avoid, when possible, a more expensive
reduction to SAT

FVS Group (USI) Research Interests October 30, 2009 14 / 21



Other OpenSMT’s features

• C-API for integration with other verification frameworks

• Returns evidence of satisfiability (model) or unsatisfiability (proof -
work in progress)

• Highly configurable via configuration file

Project page http://verify.inf.unisi.ch/opensmt
Code Repository http://code.google.com/p/opensmt

Discussion Group http://groups.google.com/group/opensmt

FVS Group (USI) Research Interests October 30, 2009 15 / 21

http://verify.inf.unisi.ch/opensmt
http://code.google.com/p/opensmt
http://groups.google.com/group/opensmt


Other OpenSMT’s features

• C-API for integration with other verification frameworks

• Returns evidence of satisfiability (model) or unsatisfiability (proof -
work in progress)

• Highly configurable via configuration file

Project page http://verify.inf.unisi.ch/opensmt
Code Repository http://code.google.com/p/opensmt

Discussion Group http://groups.google.com/group/opensmt

FVS Group (USI) Research Interests October 30, 2009 15 / 21

http://verify.inf.unisi.ch/opensmt
http://code.google.com/p/opensmt
http://groups.google.com/group/opensmt


Other OpenSMT’s features

• C-API for integration with other verification frameworks

• Returns evidence of satisfiability (model) or unsatisfiability (proof -
work in progress)

• Highly configurable via configuration file

Project page http://verify.inf.unisi.ch/opensmt
Code Repository http://code.google.com/p/opensmt

Discussion Group http://groups.google.com/group/opensmt

FVS Group (USI) Research Interests October 30, 2009 15 / 21

http://verify.inf.unisi.ch/opensmt
http://code.google.com/p/opensmt
http://groups.google.com/group/opensmt


Other OpenSMT’s features

• C-API for integration with other verification frameworks

• Returns evidence of satisfiability (model) or unsatisfiability (proof -
work in progress)

• Highly configurable via configuration file

Project page http://verify.inf.unisi.ch/opensmt
Code Repository http://code.google.com/p/opensmt

Discussion Group http://groups.google.com/group/opensmt

FVS Group (USI) Research Interests October 30, 2009 15 / 21

http://verify.inf.unisi.ch/opensmt
http://code.google.com/p/opensmt
http://groups.google.com/group/opensmt


Program abstraction via loop summarization

FVS Group (USI) Research Interests October 30, 2009 16 / 21



Project Motivation

Loops analysis — the Achilles’ heel of static analysis

• Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

• Loop over-approximation by computing its fixpoint is either too
expensive to compute or too imprecise.

• Loop over-approximation by discovering of sufficiently strong
invariants is an art.

Multiple nested loops makes analysis even more difficult.

FVS Group (USI) Research Interests October 30, 2009 17 / 21



Project Motivation

Loops analysis — the Achilles’ heel of static analysis

• Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

• Loop over-approximation by computing its fixpoint is either too
expensive to compute or too imprecise.

• Loop over-approximation by discovering of sufficiently strong
invariants is an art.

Multiple nested loops makes analysis even more difficult.

FVS Group (USI) Research Interests October 30, 2009 17 / 21



Project Motivation

Loops analysis — the Achilles’ heel of static analysis

• Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

• Loop over-approximation by computing its fixpoint is either too
expensive to compute or too imprecise.

• Loop over-approximation by discovering of sufficiently strong
invariants is an art.

Multiple nested loops makes analysis even more difficult.

FVS Group (USI) Research Interests October 30, 2009 17 / 21



Project Motivation

Loops analysis — the Achilles’ heel of static analysis

• Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

• Loop over-approximation by computing its fixpoint is either too
expensive to compute or too imprecise.

• Loop over-approximation by discovering of sufficiently strong
invariants is an art.

Multiple nested loops makes analysis even more difficult.

FVS Group (USI) Research Interests October 30, 2009 17 / 21



Project Motivation

Loops analysis — the Achilles’ heel of static analysis

• Loop unwinding is computationally too expensive (or even impossible)
for many real programs.

• Loop over-approximation by computing its fixpoint is either too
expensive to compute or too imprecise.

• Loop over-approximation by discovering of sufficiently strong
invariants is an art.

Multiple nested loops makes analysis even more difficult.

FVS Group (USI) Research Interests October 30, 2009 17 / 21



Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.

• Encode loop-free fragments into concrete summaries.

• Replace each loop by its abstract summary:
• proceed bottom-up from the deep-most loop;
• apply property-driven abstract domains to obtain localized invariant

candidates for each loop;
• use the concrete symbolic transformer of a loop body to check if it is a

loop invariant;
• construct a loop summary as a combination of loop variants and

discovered invariants.

• Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, expensive iterative computation is
avoided.

FVS Group (USI) Research Interests October 30, 2009 18 / 21



Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.

• Encode loop-free fragments into concrete summaries.

• Replace each loop by its abstract summary:
• proceed bottom-up from the deep-most loop;
• apply property-driven abstract domains to obtain localized invariant

candidates for each loop;
• use the concrete symbolic transformer of a loop body to check if it is a

loop invariant;
• construct a loop summary as a combination of loop variants and

discovered invariants.

• Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, expensive iterative computation is
avoided.

FVS Group (USI) Research Interests October 30, 2009 18 / 21



Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.

• Encode loop-free fragments into concrete summaries.

• Replace each loop by its abstract summary:
• proceed bottom-up from the deep-most loop;
• apply property-driven abstract domains to obtain localized invariant

candidates for each loop;
• use the concrete symbolic transformer of a loop body to check if it is a

loop invariant;
• construct a loop summary as a combination of loop variants and

discovered invariants.

• Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, expensive iterative computation is
avoided.

FVS Group (USI) Research Interests October 30, 2009 18 / 21



Our Solution

Avoid iterative computation of a loop abstract fixpoint. Instead build loop
summaries. Make the summaries precise.

• Encode loop-free fragments into concrete summaries.

• Replace each loop by its abstract summary:
• proceed bottom-up from the deep-most loop;
• apply property-driven abstract domains to obtain localized invariant

candidates for each loop;
• use the concrete symbolic transformer of a loop body to check if it is a

loop invariant;
• construct a loop summary as a combination of loop variants and

discovered invariants.

• Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, expensive iterative computation is
avoided.

FVS Group (USI) Research Interests October 30, 2009 18 / 21



Implementation

LoopFrog- static analysis tool for C programs

• Works on models from ANSI-C programs that are created using
Goto-CC front-end1;

• Uses SAT-based symbolic engine of CBMC for invariant candidates
check and final assertion check;

• Performs sound and scalable loop summarization.

1http://www.cprover.org/goto-cc
FVS Group (USI) Research Interests October 30, 2009 19 / 21



Current results and future work

• Loopfrog provides a library of abstract domains tailored to verification
of safety of string operations in C.

• It was applied not just to crafted benchmarks but to real large-scale
open-source software like gnupg, inn, and wu-ftpd.

Project page: http://verify.inf.unisi.ch/loopfrog

Next:

• Combine loop summarization with various invariant discovery
methods;

• Employ SMT-Solver based decision back-end for more expressive
invariant candidates and faster checks.

FVS Group (USI) Research Interests October 30, 2009 20 / 21

http://verify.inf.unisi.ch/loopfrog


Current results and future work

• Loopfrog provides a library of abstract domains tailored to verification
of safety of string operations in C.

• It was applied not just to crafted benchmarks but to real large-scale
open-source software like gnupg, inn, and wu-ftpd.

Project page: http://verify.inf.unisi.ch/loopfrog

Next:

• Combine loop summarization with various invariant discovery
methods;

• Employ SMT-Solver based decision back-end for more expressive
invariant candidates and faster checks.

FVS Group (USI) Research Interests October 30, 2009 20 / 21

http://verify.inf.unisi.ch/loopfrog


Thank you!

FVS Group (USI) Research Interests October 30, 2009 21 / 21


