Infinite Games

Barbara Jobstmann Verimag/CNRS (Grenoble, France)

November 6, 2009

Motivation: Build Correct HW/SW Systems

- ▶ Use logic to specify correctness properties, e.g.:
 - every job sent to the printer is eventually printed
 - ▶ two jobs do not overlap (only one job is printed at a time)
 - ▶ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can be specified by automata and logical formulas.

Motivation: Build Correct HW/SW Systems

- ▶ Use logic to specify correctness properties, e.g.:
 - every job sent to the printer is eventually printed
 - ▶ two jobs do not overlap (only one job is printed at a time)
 - ▶ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can be specified by automata and logical formulas.

- Given a logical specification, we can do either:
 - VERIFICATION: prove that a given system satisfies the specification
 - ▶ SYNTHESIS: build a system that satisfies the specification

Intuition of Infinite Games

Two players:

- 1. Printer controller is Player 0
- 2. Users are Player 1

A play of a game is an infinite sequence of states of printer transition system, where the two players choose moves alternatively.

Player 0 (printer controller) wins the play if all conditions are satisfied independent of the choices Player 1 (user) makes. This corresponds to finding a winning strategy for Player 0 in an infinite game.

Our Aim

Solution of the Synthesis Problem

- 1. Decide whether there exists such a winning strategy -Realizability Problem
- 2. If "yes", then construct the system Synthesis Problem

Our Aim

Solution of the Synthesis Problem

- 1. Decide whether there exists such a winning strategy -Realizability Problem
- 2. If "yes", then construct the system Synthesis Problem

Main result:

The synthesis problem is algorithmically solvable for finite-state systems with respect to specifications given as ω -automata or linear-time temporal logic.

Other Applications of Games

- ▶ Program repair or program sketching
- ▶ Nicer and more intuitive proofs for logics over trees

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Verification for logics over trees

Outline

- 1. Terminology
- 2. Safety and Reachability games

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

3. Büchi and coBüchi games

Terminology

Two-player games between Player 0 and 1 An infinite game $\langle G, \phi \rangle$ consists of

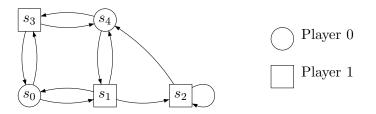
- \blacktriangleright a game graph G and
- a winning condition ϕ .

G defines the "playground", in which the two players compete. ϕ defines which plays are won by Player 0. If a play does not satisfy ϕ , then Player 1 wins on this play.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Game Graphs

- A game graph is a tuple $G = \langle S, S_0, T \rangle$ where:
 - \blacktriangleright S is a finite set of states,
 - ► $S_0 \subseteq S$ is the set of Player-0 states $(S_1 = S \setminus S_0 \text{ are the Player-1 states}),$
 - ▶ $T \subseteq S \times S$ is a transition relation. We assume that each state has at least one successor.



・ロト ・四ト ・ヨト ・ヨト 三国

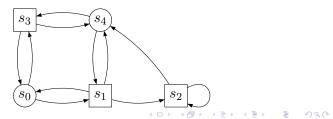
Plays

A play is an infinite sequence of states $\rho = s_0 s_1 s_2 \cdots \in S^{\omega}$ such that for all $i \ge 0 \langle s_i, s_{i+1} \rangle \in T$.

It starts in s_0 and it is built up as follows:

If $s_i \in S_0$, then Player 0 chooses an edge starting in s_i , otherwise Player 1 picks such an edge.

Intuitively, a token is moved from state to state via edges: From S_0 -states Player 0 moves the token, from S_1 -states Player 1 moves the token.



Winning Condition

The winning condition describes the plays won by Player 0.

- A winning condition or winning objective ϕ is a subset of plays, i.e., $\phi \subseteq S^{\omega}$.
- We use logical conditions (e.g., LTL formulas) or automata theoretic acceptance conditions to describe ϕ .

Example:

- ▶ $\Box \diamondsuit s$ for some state $s \in S$
- ▶ All plays that stay within a safe region $F \subseteq S$ are in ϕ .
- ► Given a priority function p : S → {0, 1, ..., d}, all plays in which the smallest priority visited is even.

Games are named after their winning condition, e.g., Safety game, Reachability game, LTL game, Parity game,...

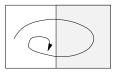
Types of Games

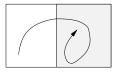
Given a play ρ , we define

$$\bullet \operatorname{Occ}(\rho) = \{ s \in S \mid \exists i \ge 0 : s_i = s \}$$

 $\blacktriangleright \operatorname{Inf}(\rho) = \{ s \in S \mid \forall i \ge 0 \exists j > i : s_j = s \}$

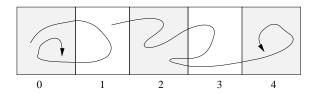
Given a set $F \subseteq S$,





Types of Games

 $\begin{array}{ll} \mbox{Given a priority function } p:S \to \{0,1,\ldots,d\} \mbox{ or an LTL formula } \varphi \\ \mbox{Weak-Parity Game} & \phi = \{\rho \in S^{\omega} \mid \min_{s \in {\rm Occ}(\rho)} p(s) \mbox{ is even} \} \\ \mbox{Parity Game} & \phi = \{\rho \in S^{\omega} \mid \min_{s \in {\rm Inf}(\rho)} p(s) \mbox{ is even} \} \\ \mbox{LTL Game} & \phi = \{\rho \in S^{\omega} \mid \rho \models \varphi \} \end{array}$



We will refer to the type of a game and give F, p, or φ instead of defining ϕ .

We will also talk about Muller and Rabin games.

A strategy for Player 0 from state s is a function

$$f: S^*S_0 \to S$$

specifying for any sequence of states $s_0, s_1, \ldots s_k$ with $s_0 = s$ and $s_k \in S_0$ a successor state s_j such that $(s_k, s_j) \in T$. A play $\rho = s_0 s_1 \ldots$ is compatible with strategy f if for all $s_i \in S_0$ we have that $s_{i+1} = f(s_0 s_1 \ldots s_i)$. (Definitions for Player 1 are analogous.)

Given strategies f and g from s for Player 0 and 1, respectively. We denote by $G_{f,g}$ the (unique) play that is compatible with f and g.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

Winning Strategies and Regions

Given a game (G, ϕ) with $G = (S, S_0, E)$, a strategy f for Player 0 from s is called a winning strategy if for all Player-1 strategies g from s, if $G_{f,g} \in \phi$ holds. Analogously, a Player-1 strategy g is winning if for all Player-0 strategies $f, G_{f,g} \notin \phi$ holds. Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

Winning Strategies and Regions

Given a game (G, ϕ) with $G = (S, S_0, E)$, a strategy f for Player 0 from s is called a winning strategy if for all Player-1 strategies g from s, if $G_{f,g} \in \phi$ holds. Analogously, a Player-1 strategy g is winning if for all Player-0 strategies f, $G_{f,g} \notin \phi$ holds. Player 0 (resp. 1) wins from s if s/he has a winning strategy from s. The winning regions of Player 0 and 1 are the sets

 $W_0 = \{ s \in S \mid \text{Player 0 wins from } s \}$

 $W_1 = \{s \in S \mid \text{Player 1 wins from } s\}$

Note each state s belongs at most to W_0 or W_1 . Otherwise pick winning strategies f and g from s for Player 0 and 1, respectively, then $G_{f,g} \in \phi$ and $G_{f,g} \notin \phi$: Contradiction.

Questions About Games

Solve a game (G, ϕ) with $G = (S, S_0, T)$:

- 1. Decide for each state $s \in S$ if $s \in W_0$.
- 2. If yes, construct a suitable winning strategy from s.

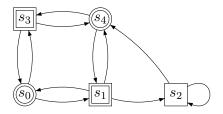
Further interesting question:

▶ Optimize construction of winning strategy (e.g., time complexity)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▶ Optimize parameters of winning strategy (e.g., size of memory)

Example

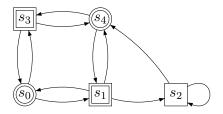


Safety game (G, F) with $F = \{s_0, s_1, s_3, s_4\}$, i.e., $Occ(\rho) \subseteq F$ A winning strategy for Player 0 (from state s_0, s_3 , and s_4): From s_0 choose s_3 and from s_4 choose s_3

A winning strategy for Player 1 (from state s_1 and s_2):

From s_1 choose s_2 , from s_2 choose s_4 , and from s_3 choose s_4

Example

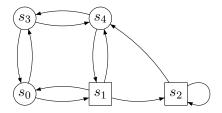


Safety game (G, F) with $F = \{s_0, s_1, s_3, s_4\}$, i.e., $Occ(\rho) \subseteq F$ A winning strategy for Player 0 (from state s_0, s_3 , and s_4): From s_0 choose s_3 and from s_4 choose s_3

A winning strategy for Player 1 (from state s_1 and s_2):

From s_1 choose s_2 , from s_2 choose s_4 , and from s_3 choose s_4 $W_0 = \{s_0, s_3, s_4\}, W_1 = \{s_1, s_2\}$

Another Example



LTL game (G, φ) with $\varphi = \Diamond s_0 \land \Diamond s_4$ (visit s_0 and s_4) Winning strategy for Player 0 from s_0 :

From s_0 to s_3 , from s_3 to s_4 , and from s_4 to s_1 .

Note: this strategy is not winning from s_3 or s_4 . Winning strategy for Player 0 from s_3 :

From s₀ to s₃, from s₄ to s₃, and from s₃ to s₀ on first visit, otherwise to s₄.

Determinacy

Recall: the winning regions are disjoint, i.e., $W_0 \cap W_1 = \emptyset$ Question: Is every state winning for some player? A game (G, ϕ) with $G = (S, S_0, E)$ is called determined if $W_0 \cup W_1 = S$ holds.

Remarks:

1. We will show that all automata theoretic games we consider here are determined.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

2. There are games which are not determined (e.g., Tic-Tac-Toe)

In general, a strategy is a function $f: S^+ \to S$.

- 1. Computable or recursive strategies: f is computable
- 2. Finite-state strategies: f is computable with a finite-state automaton meaning that f has bounded information about the past (history).
- 3. Memoryless or positional strategies: f only depends on the current state of the game (no knowledge about history of play)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Positional Strategies

Given a game (G, ϕ) with $G = (S, S_0, E)$, a strategy $f : S^+ \to S$ is called positional or memoryless if for all words $w, w' \in S^+$ with $w = s_0 \dots s_n$ and $w' = s'_0 \dots s'_m$ such that $s_n = s'_m$, f(w) = f(w')holds.

A positional strategy for Player 0 is representable as

- 1. a function $f: S_0 \to S$
- a set of edges containing for every Player-0 state s exactly one edge starting in s (and for every Player-1 state s' all edges starting in s')

Finite-state Strategies

A strategy automaton over a game graph $G = (S, S_0, E)$ is a finite-state automaton $A = (M, m_0, \delta, \lambda)$ with alphabet S, where

- M is a finite set of states (called memory),
- $m_0 \in M$ is an initial state (the initial memory content),
- ▶ $\delta: M \times S \to M$ is a transition function (the memory update fct),
- ▶ $\lambda : M \times S \to S$ is a labeling function (called the choice function).

Finite-state Strategies

A strategy automaton over a game graph $G = (S, S_0, E)$ is a finite-state automaton $A = (M, m_0, \delta, \lambda)$ with alphabet S, where

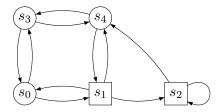
- M is a finite set of states (called memory),
- $m_0 \in M$ is an initial state (the initial memory content),
- ▶ $\delta: M \times S \to M$ is a transition function (the memory update fct),
- ▶ $\lambda : M \times S \to S$ is a labeling function (called the choice function).

The strategy for Player 0 computed by A is the function

$$f_A(s_0 \dots s_k) := \lambda(\delta(m_0, s_0 \dots s_{k-1}), s_k)$$
 with $s_k \in S_0$

and the usual extension of δ to words: $\delta(m_0, \epsilon) = m_0$ and $\delta(m_0, s_0 \dots s_k) = \delta(\delta(m_0, s_0 \dots s_{k-1}), s_k)$. Any strategy f, such that there exists an A with $f_A = f$, is called finite-state strategy.

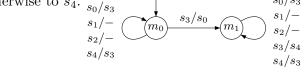
Recall Example



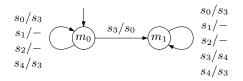
Objective: visit s_0 and s_4 , i.e., $\{s_0, s_4\} \subseteq \operatorname{Occ}(\rho)$

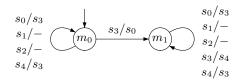
Winning strategy for Player 0 from s_0 , s_3 and s_4 :

From s_0 to s_3 , from s_4 to s_3 , and from s_3 to s_0 on first visit, otherwise to s_4 . s_0/s_3

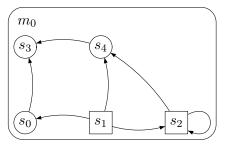


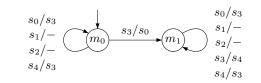
◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

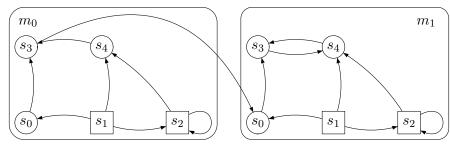




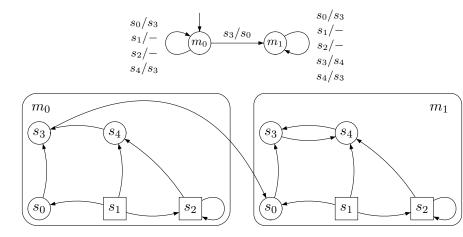
(D) (D) (E) (E) (E)







◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Note: the strategy in the extended grame graph is memoryless.

Reachability and Safety Games

(日) (國) (절) (절) (절)

Theorem

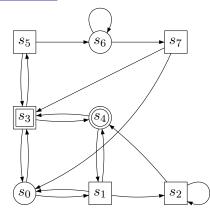
Given a reachability game (G, F) with $G = (S, S_0, E)$ and $F \subseteq S$, then the winning regions W_0 and W_1 of Player 0 and 1, respectively, are computable, and both players have corresponding memoryless winning strategies.

Proof.

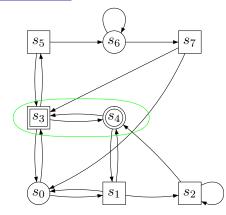
Define

 $\operatorname{Attr}_{0}^{i}(F) := \{ s \in S \mid \text{ Player 0 can force a visit from } s \text{ to } F$ in less than $i \text{ moves} \}$

Example

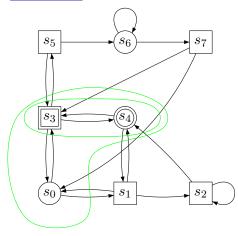


Example

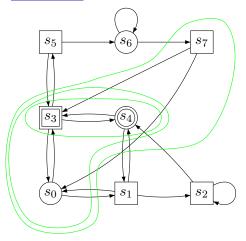


$$Attr_0^0 = \{s_3, s_4\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

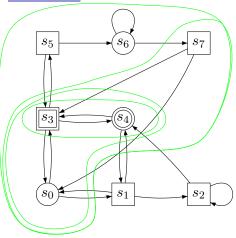


$$Attr_0^0 = \{s_3, s_4\} Attr_0^1 = \{s_0, s_3, s_4\}$$



$$Attr_0^0 = \{s_3, s_4\} Attr_0^1 = \{s_0, s_3, s_4\} Attr_0^2 = \{s_0, s_3, s_4, s_7\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



$$Attr_0^0 = \{s_3, s_4\}$$

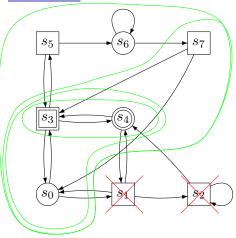
$$Attr_0^1 = \{s_0, s_3, s_4\}$$

$$Attr_0^2 = \{s_0, s_3, s_4, s_7\}$$

$$Attr_0^3 = \{s_0, s_3, s_4, s_6, s_7\}$$

$$Attr_0^4 = \{s_0, s_3, s_4, s_5, s_6, s_7\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



$$Attr_0^0 = \{s_3, s_4\}$$

$$Attr_0^1 = \{s_0, s_3, s_4\}$$

$$Attr_0^2 = \{s_0, s_3, s_4, s_7\}$$

$$Attr_0^3 = \{s_0, s_3, s_4, s_6, s_7\}$$

$$Attr_0^4 = \{s_0, s_3, s_4, s_5, s_6, s_7\}$$

Computing the Attractor

Construction of
$$\operatorname{Attr}_{0}^{i}(F)$$
:
 $\operatorname{Attr}_{0}^{0}(F) = F$
 $\operatorname{Attr}_{0}^{i+1}(F) = \operatorname{Attr}_{0}^{i}(F) \cup$
 $\{s \in S_{0} \mid \exists s' \in S : (s, s') \in E \land s' \in \operatorname{Attr}_{0}^{i}(F)\} \cup$
 $\{s \in S_{1} \mid \forall s' \in S : (s, s') \in E \rightarrow s' \in \operatorname{Attr}_{0}^{i}(F)\}$

Then

 $\operatorname{Attr}_0^0(F) \subseteq \operatorname{Attr}_0^1(F) \subseteq \operatorname{Attr}_0^2(F) \subseteq \dots$ and since S is finite, there exists $k \leq |S|$ s.t. $\operatorname{Attr}_0^k(F) = \operatorname{Attr}_0^{k+1}(F)$. The 0 Attractor is defined as:

The 0-Attractor is defined as:

$$\operatorname{Attr}_0(F) := \bigcup_{i=0}^{|S|} \operatorname{Attr}_0^i(F)$$

0-Attractor

To show $W_0 = \operatorname{Attr}_0(F)$ and $W_1 = S \setminus \operatorname{Attr}_0(F)$, we construct winning strategies for Player 0 and 1. Define distance from state s to F:

$$d(s,F) := \begin{cases} \min\{i \mid s \in \operatorname{Attr}_0^i(F)\} & \text{if } s \in \operatorname{Attr}_0(F), \\ \infty & \text{otherwise.} \end{cases}$$

0-Attractor

To show $W_0 = \operatorname{Attr}_0(F)$ and $W_1 = S \setminus \operatorname{Attr}_0(F)$, we construct winning strategies for Player 0 and 1. Define distance from state s to F:

$$d(s,F) := \begin{cases} \min\{i \mid s \in \operatorname{Attr}_0^i(F)\} & \text{if } s \in \operatorname{Attr}_0(F), \\ \infty & \text{otherwise.} \end{cases}$$

Proof.

 $\operatorname{Attr}_0(F) \subseteq W_0$

(a) $\forall s \in S_0 \cap \operatorname{Attr}_0(F) \setminus F \exists s' \in S: (s, s') \in E \land d(s', F) < d(s, F)$ (b) $\forall s \in S_1 \cap \operatorname{Attr}_0(F) \setminus F, \forall s' \in S: (s, s') \in E \land d(s', F) < d(s, F)$ In $\operatorname{Attr}_0(F) \setminus F$, Player 0 can decrease distance by picking edges according to (a) and Player 1 cannot avoid decreasing the distance because of (b). So, F is reached after a finite number of moves.

0-Attractor cont.

Proof cont.

 $S \setminus \operatorname{Attr}_0(F) \subseteq W_1$

(a) $\forall s \in S_0 \cap S \setminus \operatorname{Attr}_0(F) \ \forall s' \in S: \ (s,s') \in E \to s' \notin \operatorname{Attr}_0(F)$

(b) $\forall s \in S_1 \cap S \setminus \operatorname{Attr}_0(F), \exists s' \in S: (s, s') \in E \land s' \notin \operatorname{Attr}_0(F)$

In $S \setminus \operatorname{Attr}_0(F)$ Player 1 can choose edges according to (b) leading again to $S \setminus \operatorname{Attr}_0(F)$ and by (a) Player 0 cannot escape from $S \setminus \operatorname{Attr}_0(F)$. So, F will be avoided forever.

 $W_0 = \operatorname{Attr}_0(F)$ and $W_1 = S \setminus \operatorname{Attr}_0(F)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given a safety game (G, F) with $G = (S, S_0, E)$, i.e.,

$$\phi_S = \{ \rho \in S^\omega \mid \operatorname{Occ}(\rho) \subseteq F \},\$$

consider the reachability game $(G, S \setminus F)$, i.e.,

$$\phi_R = \{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \cap (S \setminus F) \neq \emptyset \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Then,
$$S^{\omega} \setminus \phi_R = \{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \cap (S \setminus F) = \emptyset \}$$

= $\{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \subseteq F \}.$

Player 0 has a safety objective in (G, F).

Player 1 has a reachability objective in (G, F). So, W_0 in the safety game (G, F) corresponds to W_1 in the reachability game $(G, S \setminus F)$.

Homework

Given a reachability game (G, F) with $G = (S, S_0, E)$, find an algorithm that computes the winning regions and strategies in time O(|E|)-time.

Summary

We know how to solve reachability and safety games by positional winning strategies.

The strategies are

 \blacktriangleright Player 0: Decrease distance to F

▶ Player 1: Stay outside of $Attr_0(F)$

In LTL, $\Diamond F$ = reachability and $\Box F$ = safety.

Next, $\Box \diamondsuit F = B$ üchi and $\diamondsuit \Box F = Co-B$ üchi.

Büchi and Co-Büchi Games

<u>Büchi Game</u>

Given a Büchi game (G, F) over the game graph $G = (S, S_0, E)$ with the set $F \subseteq S$ of Büchi states, we aim to

- determine the winning regions of Player 0 and 1
- compute their respective winning strategies

Recall, Player 0 wins ρ iff she visits infinitely often states in F, i.e., $\phi = \{\rho \in S^{\omega} \mid \inf(\rho) \cap F \neq \emptyset\}.$

<u>Idea</u>

Compute for $i \ge 1$ the set Recur_0^i of states $s \in F$ from which Player 0 can force at least *i* revisits to *F*.

Then,

$$F \supseteq \operatorname{Recur}_0^1(F) \supseteq \operatorname{Recur}_0^2(F) \supseteq \dots$$

We compute the winning region of Player 0 with

$$\operatorname{Recur}_0(F) := \bigcap_{i \le 1} \operatorname{Recur}_0^i(F)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Again, since F is finite, there exists k such that $\operatorname{Recur}_0(F) = \operatorname{Recur}_0^k(F).$ Claim: $W_0 = \operatorname{Attr}_0(\operatorname{Recur}_0(F))$

One-Step Attractor

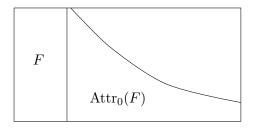
We count revisits, so we need the set of states from which Player 0 can force a revisit to F, i.e., state from which she can force a visit in ≥ 1 steps.

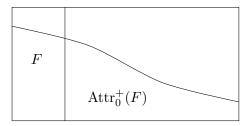
We define a slightly modified attractor:

$$\begin{aligned} A_0^0 &= & \emptyset \\ A_0^{i+1} &= & A_0^i \cup \\ & \{s \in S_0 \mid \exists s' \in S : (s,s') \in E \land s' \in A_0^i \cup F\} \cup \\ & \{s \in S_1 \mid \forall s' \in S : (s,s') \in E \to s' \in A_0^i \cup F\} \\ & \operatorname{Attr}_0^+(F) = \bigcup_{i \ge 0} A_0^i \end{aligned}$$

 $\operatorname{Attr}_{0}^{+}(F)$ is the set of states from which Player 0 can force a revisit to F.

Visit versus Revisit





Recurrence Set

We define

$$\begin{split} \operatorname{Recur}_0^0(F) &:= F \\ \operatorname{Recur}_0^{i+1}(F) &:= F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^i(F)) \\ \operatorname{Recur}_0(F) &:= \bigcap_{i \geq 0} \operatorname{Recur}_0^i(F) \end{split}$$

We show that there exists k such that $\operatorname{Recur}_0(F) := \bigcap_{i\geq 0}^k \operatorname{Recur}_0^i(F)$ by proving $\operatorname{Recur}_0^{i+1}(F) \subseteq \operatorname{Recur}_0^i(F)$ for all $i\geq 0$.

Proof.

•
$$i = 0$$
: $F \cap \operatorname{Attr}_0^+(F) \subseteq F$

 $\blacktriangleright i \to i+1:$

$$\begin{split} \operatorname{Recur}_0^{i+2}(F) &= F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^{i+1}(F)) \subseteq F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^i(F)) \\ &= \operatorname{Recur}_0^{i+1}(F) \end{split}$$

Recurrence Set cont.

We show that all states in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$ are winning for Player 0, i.e., $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_0$. We construct a memoryless winning strategy for Player 0 for all states in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$.

Proof.

We know that there exists k such that

 $\operatorname{Recur}_0^{k+1}(F)=\operatorname{Recur}_0^k(F)=F\cap\operatorname{Attr}_0^+(\operatorname{Recur}_0^k(F)).$ So,

▶ for $s \in \operatorname{Recur}_0^k(F) \cap S_0$ Player 0 can choose an edges back to Attr⁺₀(Recur^k₀(F)) and

▶ for $s \in \operatorname{Recur}_0^k(F) \cap S_1$ all edges lead back to $\operatorname{Attr}_0^+(\operatorname{Recur}_0^k(F))$. For all states in $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \setminus \operatorname{Recur}_0(F)$, Player 0 can follow the attractor strategy to reach $\operatorname{Recur}_0(F)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ����

<u>Recurrence Set cont.</u>

We show $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_1$.

Proof.

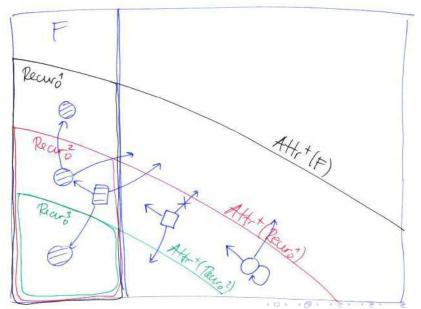
Show: Player 1 can force $\leq i$ visits to F from $s \notin \operatorname{Attr}_0(\operatorname{Recur}_0^i(F))$ $i = 0: s \notin \operatorname{Attr}_0(F)$, so Player 1 can avoid visiting F at all. $i \to i + 1: s \notin \operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F)).$

- ▶ $s \notin \operatorname{Attr}_0(\operatorname{Recur}_0^i(F))$, Player 1 plays according to ind. hypothese
- ► Otherwise, $s \in \operatorname{Attr}_0(\operatorname{Recur}_0^i(F)) \setminus \operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F))$ and Player 1 can avoid $\operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F))$. In particular, $s \notin \operatorname{Recur}_0^{i+1}(F) = F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^i(F))$.
 - ▶ If $s \in \operatorname{Recur}_{0}^{i}$, then Player 1 can force to leave $\operatorname{Attr}_{0}^{+}(\operatorname{Recur}_{0}^{i}(F))$, otherwise $s \in \operatorname{Recur}_{0}^{i+1}(F)$. (So, by ind. hyp. at most i + 1 visits.)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへ⊙

• If $s \in \operatorname{Attr}_0(\operatorname{Recur}_0^i(F)) \setminus \operatorname{Recur}_0^i(F)$, avoid $\operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F))$.

Recurrence Set cont.



Büchi games

We have shown that Player 0 has a (memoryless) winning strategy in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$, so $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_0$. And, Player 1 has a (memoryless) winning strategy in $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F))$, so $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_1$. This implies the following theorem.

Theorem

Given a Büchi game $((S, S_0, E), F)$, the winning regions W_0 and W_1 are computable and form a partition, i.e., $W_0 \cup W_1 = S$. Both players have memoryless winning strategies.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Co-Büchi Games

Given a Co-Büchi Game $((S, S_0, E), F)$, i.e.,

$$\phi_C = \{ \rho \in S^\omega \mid \operatorname{Inf}(\rho) \subseteq F \}$$

consider the Büchi Game $((S, S_0, E), S \setminus F)$, i.e,

$$\phi_B = \{ \rho \in S^\omega \mid \operatorname{Inf}(\rho) \cap S \setminus F \neq \emptyset \}.$$

Then,
$$S^{\omega} \setminus \phi_B = \{ \rho \in S^{\omega} \mid \operatorname{Inf}(\rho) \cap (S \setminus F) = \emptyset \}$$

= $\{ \rho \in S^{\omega} \mid \operatorname{Inf}(\rho) \subseteq F \}.$

Player 0 has a co-Büchi objective in (G, F).

Player 1 has a Büchi objective in (G, F).

So, W_0 in the co-Büchi game (G, F) corresponds to W_1 in the Büchi game $(G, S \setminus F)$.

We know how to solve Büchi and Co-Büchi games by positional winning strategies.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

In LTL,

- $\triangleright \Diamond F =$ reachability
- $\blacktriangleright \Box F = \text{safety}$
- $\blacktriangleright \Box \diamondsuit F = \text{Büchi}$
- $\blacktriangleright \Diamond \Box F = \text{Co-Büchi}$

Next, Muller and Parity games.