
Automata on Finite Trees



Preliminaries



Trees

A tree over Σ is a partial function t : N
∗ → Σ such that dom(t) is a

prefix-closed set:

• for each p ∈ dom(t) for all q ≤ p we have q ∈ dom(t).

A word p ∈ dom(t) is called a position.

If p, q ∈ dom(t) such that p · n = q for some n ∈ N:

• p is the parent of q,

• q is the n-th child of p.



Trees

Given a finite tree t ∈ T (Σ), the frontier of t is the set

fr(t) = {p ∈ dom(t) | for all n ∈ N pn 6∈ dom(t)}

A path in t is a maximal subset π of dom(t) linearly ordered by ≤.

Given p ∈ dom(t), the subtree tp is defined as

tp : {q ∈ N
∗ | pq ∈ dom(t)} → Σ

such that tp(q) = t(pq), for all q ∈ dom(tp).

Lemma 1 (König) A finitely branching tree is infinite if and only if it

has an infinite path.



Coding ω-branching trees as binary trees

Let t : N
∗ → Σ be a tree of arbitrary (possibly infinite) branching.

Define t′ : {0, 1}∗ → Σ ∪ {•} as follows:

• for all n1n2 . . . nk ∈ dom(t), let t′(1n101n2 . . . 01nk) = t(n1n2 . . . nk),

• for all other p let t′(p) = •



Tree Concatenation

Let σ ∈ Σ and T, T ′ ⊆ T (Σ).

By T ·σ T ′ we denote the set of trees obtained from some t ∈ T by

replacing each occurrence of σ on fr(t) by a tree in T ′.

If ~σ = 〈σ1, . . . , σn〉, let T ·~σ 〈T1, . . . , Tm〉 be the set of trees obtained from

some t ∈ T by replacing each occurrence of σi on fr(t) by a tree in Ti.

We denote by T ·~σ 〈T1, . . . , Tm〉ω~σ the set of infinite trees obtained by the

infinite unfolding of the concatenation operation.



Terms

A ranked alphabet 〈Σ,#〉 is a set of symbols together with a function

# : Σ → N. For f ∈ Σ, the value #(f) is said to be the arity of f .

Zero-arity symbols are called constants, and denoted by a, b, c, . . ..

A term t over Σ is a partial function t : N
∗ → Σ:

• dom(t) is a finite prefix-closed subset of N
∗, and

• for each p ∈ dom(t), if #(t(p)) = n > 0 then

{i | pi ∈ dom(t)} = {1, . . . , n}.



Contexts

Let X = {x1, . . . , xn} be a finite set of variables, interpreted over terms.

A term t ∈ T (Σ ∪ X) is said to be linear if each variable occurs in t at

most once.

A context is a linear term C[x1, . . . , xn], and C[t1, . . . , tn] denotes the

result of replacing xi with the term ti, for all 1 ≤ i ≤ n.

A context is said to be trivial if it is reduced to a variable, and non-trivial

otherwise.



Bottom Up Tree Automata



Definition

Let Σ = {f, g, h, . . .} be a finite ranked alphabet. A bottom-up tree

automaton is a tuple A = 〈S, T, F 〉 where:

• S is a finite set of states,

• T is a set of transition rules of the form:

f(q1, . . . , qn) −→ q

where f ∈ Σ, #(f) = n, and q1, . . . qn, q ∈ S.

• F ⊆ S is a set of final states.

Notice that there are no initial states.

If #(f) = 0 we have rules of the form f −→ q.



Examples

1. Let Σ = {f, g, a}, where #(f) = 2, #(g) = 1 and #(a) = 0.

Let A = 〈S, T, F 〉, where:

• S = {qf , qg, qa},

• F = {qf},

• T = {a −→ qa, g(qa) −→ qg, g(qg) −→ qg, f(qg, qg) −→ qf}

2. Let Σ = {red, black, nil} with #(red) = #(black) = 2 and #(nil) = 0.

Let Arb = 〈{qb, qr}, T, {qb}〉 with

T = {nil −→ qb, black(qb/r, qb/r) −→ qb, red(qb, qb) −→ qr}



Runs

A run of A over a tree t : N
∗ → Σ is a mapping π : dom(t) → S such that,

for each position p ∈ dom(t), where q = π(p):

• if #(t(p)) = n and qi = π(pi), 1 ≤ i ≤ n, then T has a rule

t(p)(q1, . . . , qn) −→ q

A run π is said to be accepting, if and only if π(λ) ∈ F .

The language of A, denoted as L(A) is the set of all trees over which A

has an accepting run.

A set of trees L ⊆ T (Σ) is said to be a rational tree language iff there

exists a bottom-up tree automaton A such that L(A) = L.



Determinism

A tree automaton is said to be deterministic iff there are no two transition

rules with the same left-hand side.

Proposition 1 A deterministic tree automaton has at most one run for

each input tree.

A tree automaton is said to be complete iff there exists at least one

transition rule f(q1, . . . , qn) −→ q, for each f ∈ Σ, #(f) = n and

q1, . . . , qn ∈ S.

Proposition 2 A complete tree automaton has at least one run for each

input tree.



Determinism

Theorem 1 Let L be a rational tree language. Then there exists a

complete deterministic tree automaton A such that L(A) = L.

We define Ad = 〈Sd, Td, Fd〉 where Sd = 2S , Fd = {s ⊆ S | s ∩ F 6= ∅} and:

f(s1, . . . , sn) −→ s ⇐⇒ s = {q ∈ S | ∃q1 ∈ s1, . . . ∃qn ∈ sn . f(q1, . . . , qn) −→ q}

a −→ s ⇐⇒ s = {q ∈ S | a −→ q}

To prove L(Ad) = L(A), we prove:

t
∗

−−→
Ad

s ⇐⇒ s = {q ∈ S | t
∗
−→
A

q}



Determinism

By induction on the structure of t.

If t = a, by definition we have a −→ s ⇐⇒ s = {q ∈ S | a −→ q}

If t = f(t1, . . . , tn), by ind. hyp. ti
∗

−−→
Ad

si ⇐⇒ si = {q ∈ S | ti
∗
−→
A

q}

“⇒” if t
∗

−−→
Ad

f(s1, . . . , sn) −−→
Ad

s we show :

∃qi ∈ si . f(q1, . . . , qn) −→
A

q ⇐⇒ t
∗
−→
A

q



Determinism

“⇐” Let si = {q | ti −→
A

q}, i = 1, . . . , n and

s′ = {q | ∃qi ∈ si . f(q1, . . . , qn) −→
A

q}

We conclude by showing s = s′ 2



Closure Properties

Theorem 2 The class of rational tree languages is closed under union,

complementation and intersection.

Union Let Ai = 〈Si, Ti, Fi〉 for i = 1, 2. Suppose that S1 ∩ S2 = ∅. Let

A∪ = 〈S1 ∪ S2, T1 ∪ T2, F1 ∪ F2〉.

Complementation Let A = 〈S, T, F 〉 be a complete deterministic tree

automaton such that L(A) = L. Define Ā = 〈S, T, S \ F 〉.

Intersection We use the fact that L1 ∩ L2 = L1 ∪ L2.



Projection

Let Σ = Σ1 × Σ2 = {(σ1, σ2) | σ1 ∈ Σ1, σ2 ∈ Σ2, #(σ1) = #(σ2)}

We define pr1(t) : N
∗ → Σ1, where pr1(t)(p) = σ1 iff there exist σ2 ∈ Σ2

such that t(p) = 〈σ1, σ2〉.

pr2(t) is defined in a similar way.

Theorem 3 If L ⊆ T (Σ1 × Σ2) is a rational tree language, then so are

the projections pr1(L) and pr2(L).



Minimization

A relation ≡ ⊆ T (Σ) × T (Σ) is a congruence on T (Σ) iff for every context

C[x1, . . . xn]:

∀1 ≤ i ≤ n . ui ≡ vi ⇒ C[u1, . . . , un] ≡ C[v1, . . . , vn]

For a given tree language L, we define ≡L:

u ≡L v iff for all contexts C[x] we have C[u] ∈ L ⇐⇒ C[v] ∈ L

Exercise 1 Show that ≡L is a congruence.2



A Myhill-Nerode Theorem for Tree Languages

Theorem 4 (Myhill-Nerode) A tree language is rational iff the

congruence ≡L is of finite index.

“⇒” Let A = 〈S, T, F 〉 be a complete TA such that L = L(A).

Let u ≡A v iff u
∗
−→ q ⇐⇒ v

∗
−→ q, for all q ∈ S. We have

u ≡A v ⇒ u ≡L v.

“⇐” Define Amin = 〈Smin, Tmin, Fmin〉, where:

• Smin = {[u]L | u ∈ T (Σ)}

• Tmin = {f([u1]L, . . . , [un]L) = [f(u1, . . . , un)]L | u1, . . . , un, u ∈ T (Σ)}

• Fmin = {[u]L | u ∈ L}



Pumping Lemma for Rational Tree Languages

Lemma 2 (Pumping) Let L be a rational tree language. Then there

exists a constant N > 0 such that, for every t ∈ L with height(t) > N ,

there exists a context C, a non-trivial context D and a tree u such that

C[D[u]] ∈ L, and, for all n ≥ 0 we have C[Dn[u]] ∈ L.

Corollary 1 Let A = 〈S, T, F 〉 be a tree automaton.

1. L(A) 6= ∅ iff there exists t ∈ L(A) with height(t) < ||S||,

2. ||L(A)|| = ω iff there exists t ∈ L(A) with ||S|| < height(t) < 2||S||.



Pumping Lemma for Rational Tree Languages

Exercise 2 Show that {f(gn(a), gn(a)) | n ≥ 0} is not rational. 2

Exercise 3 (Homework) Let L be a rational tree language over the

alphabet Σ = {f, a, b}, where #(f) = 2 and #(a) = #(b) = 0. Let Lac ⊇ L

be the smallest tree language which is closed by the application of the two

rules below:

• commutativity: for all context C and subtrees t1, t2:

C[f(t1, t2)] ∈ Lac ⇒ C[f(t2, t1)] ∈ Lac

• associativity: for all context C and subtrees t1, t2, t3:

C[f(f(t1, t2), t3)] ∈ Lac ⇒ C[f(t1, f(t2, t3))] ∈ Lac

Show that there exists a rational tree language L for which Lac is not

rational. 2



Decidability

• Emptiness L(A) = ∅ ?

• Equality L(A) = L(B) ?

• Infinity ||L(A)|| < ∞ ?

• Universality L(A) = T (Σ) ?

Theorem 5 The emptiness, equality, infinity and universality problems

on tree automata are decidable. In particular, emptiness is decidable in

time polynomial in the size (number of states) of automata.



Top Down Tree Automata



Definition

A top-down tree automaton is a tuple A = 〈S, I, T, F 〉 where:

• S is a set of states,

• I ⊆ S is a set of initial states,

• T is a set of transition rules of the form

q(f) −→ 〈q1, . . . , qn〉

where #(f) = n > 0.

• F is a set of final states

Notice that, for #(f) = 0 there are no rules in T .



Runs

A run of A over a tree t : N
∗ → Σ is a mapping π : dom(t) → S such that,

for each position p ∈ dom(t), where q = π(p), we have:

• if p = ǫ then q ∈ I, and

• if #(t(p)) = n and qi = π(pi), 1 ≤ i ≤ n, then T has a rule

q(t(p)) −→ 〈q1, . . . , qn〉

A run π is said to be accepting, if and only if π(p) ∈ F , for all p ∈ fr(t).



Top Down vs. Bottom Up

Theorem 6 Bottom up and top down tree automata recognize the same

languages.

A top down tree automaton is said to be deterministic if it has one initial

state and no two rules with the same left-hand side.

Proposition 3 A deterministic top down tree automaton has at most one

run for each input tree.

Proposition 4 There exists a rational tree language that is not accepted

by any top down deterministic tree automaton.

Proof: L = {f(a, b), f(b, a)} 2



Tree Automata and WSkS



MSOL on Trees: (W)SωS

Let Σ = {a, b, . . .} be a tree alphabet. The alphabet of (W)SωS is:

• the function symbols {si | i ∈ N}; si(x) denotes the i-th successor of x

• the set constants {pa | a ∈ Σ}; pa denotes the set of positions of a

• the first and second order variables and connectives.



From Automata to Formulae

Let X1, . . . Xk, xk+1, . . . , xm, and Σ = {0, 1}m ∪ {⊥}.

We work on binary trees w.l.o.g. #(〈σ0, . . . , σm〉) = 2 and #(⊥) = 0.

Let A = 〈S, I, T, F 〉 be a non-deterministic top-down tree automaton,

where S = {s1, . . . , sp}.



Coding of Σ

Let σ ∈ {0, 1}m ∪ {⊥} and ~X = 〈X1, . . . ,Xm,Xm+1〉.

We define the formula Φσ(x, ~X) as the conjunction of:

• Xi(x), 1 ≤ i ≤ m, if σi = 1,

• ¬Xi(x), 1 ≤ i ≤ m, if σi = 0,

• Xm+1(x), if σ = ⊥.

It follows, that for any t ∈ T (Σ), we have t |= ∀x .
∨

σ∈Σ Φσ(x, ~X).



Coding of S

Let ~Y = {Y1, . . . , Yp} be set variables.

Intuitivelly, the set variable Yi, 1 ≤ i ≤ p contains all tree positions

labeled by A with state si during the run on some tree.

ΦS(~Y ) : ∀z .
∨

1≤i≤p

Yi(z) ∧
∧

1≤i<j≤p

¬∃z . Yi(z) ∧ Yj(z)



Coding of I, T and F

Every run starts from an initial state:

ΦI(~Y ) : ∃x∀y . x ≤ y ∧
∨

si∈I

Yi(x)

If A is at position x and t(x) ∈ {0, 1}m, A moves on 〈s0(x), s1(x)〉:

ΦT ( ~X, ~Y ) :

p∧

i=1

∀x . Yi(x)∧
∨

σ∈Σ\{⊥}

Φσ(x, ~X) →
∨

si(σ)−→〈sj ,sk〉

Yj(s0(x))∧Yk(s1(x))

If A is at position x and t(x) = ⊥, A must be in an accepting state:

ΦF ( ~X, ~Y ) : ∀x . Φ⊥(x, ~X) →
∨

si∈F

Yi(x)



From Formulae to Automata

Let ϕ : x2 ∈ X1.

We define Aϕ = 〈{s0, s1}, s0, T, {s1}〉, where:

〈0, 0〉(s0) −→ {〈s0, s1〉, 〈s1, s0〉}

〈1, 0〉(s0) −→ {〈s0, s1〉, 〈s1, s0〉}

〈1, 1〉(s0) −→ 〈s1, s1〉

〈0, 0〉(s1) −→ 〈s1, s1〉

〈1, 0〉(s1) −→ 〈s1, s1〉

⊥(s0) −→ s0

⊥(s1) −→ s1



From Formulae to Automata

Let ϕ : s0(x1) = x2.

We define Aϕ = 〈{s0, s1, s2}, T, {s0}〉, where:

〈0, 0〉 −→ s2

〈0, 1〉 −→ s1

〈1, 1〉 −→ s0

〈0, 0〉(s2, s2) −→ s2

〈0, 1〉(s2, s2) −→ s1

〈1, 0〉(s1, s2) −→ s0

〈0, 0〉(s0, s2) −→ s0

〈0, 0〉(s2, s0) −→ s0



From Formulae to Automata

As in the case of automata on words, AΦ can be effectively constructed,

for any formula Φ of WSkS.

Theorem 7 Given a ranked alphabet Σ, a tree language L ⊆ T (Σ) is

definable in WSkS iff it is rational.

Corollary 2 The SAT problem for WSkS is decidable.


