
Büchi Automata



Definition of Büchi Automata

Let Σ = {a, b, . . .} be a finite alphabet.

By Σω we denote the set of all infinite words over Σ.

A non-deterministic Büchi automaton (NBA) over Σ is a tuple

A = 〈S, I, T, F 〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T ⊆ S × Σ × S is a transition relation,

• F ⊆ S is a set of final states.



Acceptance Condition

A run of a Büchi automaton is defined over an infinite word w : α1α2 . . .

as an infinite sequence of states π : s0s1s2 . . . such that:

• s0 ∈ I and

• (si, αi+1, si+1) ∈ T , for all i ∈ N.

inf(π) = {s | s appears infinitely often on π}

Run π of A is said to be accepting iff inf(π) ∩ F 6= ∅.



Examples

Let Σ = {0, 1}. Define Büchi automata for the following languages:

1. L = {α ∈ Σω | 0 occurs in α exactly once}

2. L = {α ∈ Σω | after each 0 in α there is 1}

3. L = {α ∈ Σω | α contains finitely many 1’s}

4. L = (01)∗Σω

5. L = {α ∈ Σω | 0 occurs on all even positions in α}



Closure Properties

Closure under union and projection are like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Büchi automata is a complex

result.

Deterministic Büchi automata are not closed under complement.



Closure under Intersection

Let A1 = 〈S1, I1, T1, F1〉 and A2 = 〈S2, I2, T2, F2〉

Build A∩ = 〈S, I, T, F 〉:

• S = S1 × S2 × {1, 2, 3},

• I = I1 × I2 × {1},

• the definition of T is the following:

– ((s1, s
′
1, 1), a, (s2, s

′
2, 1)) ∈ T iff (si, a, s′i) ∈ Ti, i = 1, 2 and s1 6∈ F1

– ((s1, s
′
1, 1), a, (s2, s

′
2, 2)) ∈ T iff (si, a, s′i) ∈ Ti, i = 1, 2 and s1 ∈ F1

– ((s1, s
′
1, 2), a, (s2, s

′
2, 2)) ∈ T iff (si, a, s′i) ∈ Ti, i = 1, 2 and s′1 6∈ F2

– ((s1, s
′
1, 2), a, (s2, s

′
2, 3)) ∈ T iff (si, a, s′i) ∈ Ti, i = 1, 2 and s′1 ∈ F2

– ((s1, s
′
1, 3), a, (s2, s

′
2, 1)) ∈ T iff (si, a, s′i) ∈ Ti, i = 1, 2

• F = S1 × S2 × {3}



The Emptiness Problem

Theorem 1 Given a Büchi automaton A, L(A) 6= ∅ iff there exist

u, v ∈ Σ∗, |u|, |v| ≤ ||A||, such that uvω ∈ L(A).

In practical terms, A is non-empty iff there exists a state s which is

reachable both from an initial state and from itself.

Q: Is the membership problem decidable for Büchi automata?



Complementation of Büchi Automata



Congruences

Definition 1 An equivalence relation R ⊆ Σ∗ × Σ∗ is said to be a

left-congruence iff for all u, v,w ∈ Σ∗ we have u ∼= v ⇒ wu ∼= wv.

Definition 2 An equivalence relation R ⊆ Σ∗ × Σ∗ is said to be a

right-congruence iff for all u, v,w ∈ Σ∗ we have u R v ⇒ uw R vw.

Definition 3 An equivalence relation R ⊆ Σ∗ × Σ∗ is said to be a

congruence iff it is both a left- and a right-congruence.

Ex: the Myhill-Nerode equivalence ∼L is a right-congruence.



Congruences

Let A = 〈S, I, T, F 〉 be a Büchi automaton and s, s′ ∈ S.

Ws,s′ = {w ∈ Σ∗ | s
w
−→ s′}

For s, s′ ∈ S and w ∈ Σ∗, we denote s →F
w s′ iff s

w
−→ s′ visiting a state

from F .

WF
s,s′ = {w ∈ Σ∗ | s →F

w s′}

For any two words u, v ∈ Σ∗ we have u ∼= v iff for all s, s′ ∈ S we have:

• s
u
−→ s′ ⇐⇒ s

v
−→ s′, and

• s →F
u s′ ⇐⇒ s →F

v s′.

The relation ∼= is a congruence of finite index on Σ∗



Congruences

Let [w]∼= denote the equivalence class of w ∈ Σ∗ w.r.t. ∼=.

Lemma 1 For any w ∈ Σ∗, [w]∼= is the intersection of all sets of the form

Ws,s′ ,W
F
s,s′ ,Ws,s′ ,W

F
s,s′, containing w.

Tw =
⋂

w∈Ws,s′

Ws,s′ ∩
⋂

w∈WF
s,s′

WF
s,s′ ∩

⋂

w∈Ws,s′

Ws,s′ ∩
⋂

w∈WF
s,s′

WF
s,s′

We show that [w]∼= = Tw.

“⊆” If u ∼= w then clearly u ∈ Tw.



Congruences

“⊇” Let u ∈ Tw

• if s
w
−→ s′, then w ∈ Ws,s′ , hence u ∈ Ws,s′ , then s

u
−→ s′ as well.

• if s 6
w
−→ s′, then w ∈ Ws,s′ , hence u ∈ Ws,s′ , then s 6

u
−→ s′.

Also,

• if s →F
w s′, then w ∈ WF

s,s′ , hence u ∈ WF
s,s′ , then s →F

u s′ as well.

• if s 6→F
w s′, then w ∈ WF

s,s′ , hence u ∈ WF
s,s′ , then s 6→F

u s′.

Then u ∼= w.

This lemma gives us a way to compute the ∼=-equivalence classes.



Outline of the proof

We prove that:

L(A) =
⋃

V Wω∩L(A) 6=∅

V Wω

where V,W are ∼=-equivalence classes

Then we have

Σω \ L(A) =
⋃

V Wω∩L(A)=∅

V Wω

Finally we obtain an algorithm for complementation of Büchi automata



Saturation

Definition 4 A congruence relation R ⊆ Σ∗ × Σ∗ saturates an

ω-language L iff for all R-equivalence classes V and W , if V Wω ∩ L 6= ∅

then V Wω ⊆ L.

Lemma 2 The congruence relation ∼= saturates L(A).



Every word belongs to some V W
ω

Let α ∈ Σω be an infinite word for the rest of this section.

By α(n,m), we denote α(n)α(n + 1) . . . α(m − 1), n ≤ m.

We will build two ∼=-equivalence classes V and W such that α ∈ V · Wω

Together with the saturation lemma, this proves

L(A) =
⋃

V Wω∩L(A) 6=∅

V Wω



Merging of positions

Definition 5 Two positions k, k′ ∈ N are said to merge at m, m > k and

m > k′ iff α(k,m) ∼= α(k′,m). We say that k and k′ are ∼=α-equivalent,

denoted k ∼=α k′ iff they merge at m, for some m > k, k′.

If k and k′ merge at m then they also merge at m′, for all m′ ≥ m.

k ∼=α k′ (m) is an equivalence relation on N of finite index.



Merging of positions

There exists infinitely many positions 0 < k0 < k1 < . . ., all ∼=α-equivalent.

Consider the sequence α(k0, k1), α(k0, k2), α(k0, k3) . . .

There exist α(k0, ki0), α(k0, ki1), α(k0, ki2) . . . all ∼=-equivalent

There exist kj0 , kj1 , kj2 , . . . such that for all i ≤ j ki
∼=α kj(kj+1)

There exists infinitely many positions 0 < k0 < k1 < k2 < . . . such that

1. α(k0, ki) ∼= α(k0, kj) for all i, j ∈ N

2. ki
∼=α kj(kj+1) for all i ≤ j.



Defining V and W

Let V = [α(0, k0)]∼= and W = [α(k0, k1)]∼=

By (1) α(k0, k1) ∼= α(k0, ki) for all i > 0

By (2) α(k0, ki+1) ∼= α(ki, ki+1), for all i > 0

By (1) α(k0, ki) ∼= α(k0, ki+1) for all i > 0

Hence α(k0, k1) ∼= α(ki, ki+1), for all i > 0.

Therefore α ∈ V · Wω



Complementation of Büchi Automata

Theorem 2 For any Büchi automaton A there exists a Büchi automaton

A such that L(A) = Σω \ L(A).

L(A) =
⋃

V Wω∩L(A) 6=∅

V Wω

where V,W are ∼=-equivalence classes

Σω \ L(A) =
⋃

V Wω∩L(A)=∅

V Wω



An Application of Ramsey Theorem for Infinite Graphs

Theorem 3 (Wikipedia) Let X be some countably infinite set and

colour the subsets of X of size n in c different colours. Then there exists

some infinite subset M of X such that the size n subsets of M all have the

same colour.

Let X = 〈N, {(i, j) | i < j}〉 (n = 2). We define the coloring i
W
−→ j iff

α(i, j) ∈ W .

Then there exists an infinite subset M = {k0 < k1 < . . .} ⊆ N and a

∼=-equivalence class W such that ki
W
−→ kj for all i < j ∈ N.

We obtain that α(ki, ki+1), for all i ∈ N.



Deterministic Büchi Automata

ω-languages recognized by NBA ⊃ ω-languages recognized by DBA

Let W ⊆ Σ∗. Define
−→
W = {α ∈ Σω | α(0, n) ∈ W for infinitely many n}

Theorem 4 A language L ⊆ Σω is recognizable by a deterministic Büchi

automaton iff there exists a rational language W ⊆ Σ∗ such that L =
−→
W .

If L = L(A) then W = L(A′) where A′ is the DFA with the same

definition as A, and with the finite acceptance condition.



Deterministic Büchi Automata

Theorem 5 There exists a Büchi recognizable language that can be

recognized by no deterministic Büchi automaton.

Σ = {a, b} and L = {α ∈ Σω | #a(α) < ∞} = Σ∗bω.

Suppose L =
−→
W for some W ⊆ Σ∗.

bω ∈ L ⇒ bn1 ∈ W

bn1abω ∈ L ⇒ bn1abn2 ∈ W

. . .

bn1abn2a . . . ∈
−→
W = L, contradiction.



Deterministic Büchi Automata are not closed under complement

Theorem 6 There exists a DBA A such that no DBA recognizes the

language Σω \ L(A).

Σ = {a, b} and L = {α ∈ Σω | #a(α) < ∞} = Σ∗bω.

Let V = Σ∗a. There exists a DFA A such that L(A) = V .

There exists a deterministic Büchi automaton B such that L(A) =
−→
V

But Σω \
−→
V = L which cannot be recognized by any DBA.



Büchi Automata and S1S

Let Σ = {a, b, . . .} be a finite alphabet.

Any finite word w ∈ Σ∗ induces the infinite sets pa = {p | w(p) = a}.

• x ≤ y : x is less than y,

• S(x) = y : y is the successor of x,

• pa(x) : a occurs at position x in w

Remember that ≤ and S can be defined one from another.



Problem Statement

Let L(ϕ) = {w | mw |= ϕ}

A language L ⊆ Σ∗ is said to be S1S-definable iff there exists a S1S

formula ϕ such that L = L(ϕ).

1. Given a Büchi automaton A build an S1S formula ϕA such that

L(A) = L(ϕ)

2. Given an S1S formula ϕ build a Büchi automaton Aϕ such that

L(A) = L(ϕ)

The Büchi recognizable and S1S-definable languages coincide



From Automata to Formulae

Let A = 〈S, I, T, F 〉 with S = {s1, . . . , sp}, and Σ = {0, 1}m.

Build ΦA(X1, . . . ,Xm) such that ∀w ∈ Σ∗ . w ∈ L(A) ⇐⇒ w |= ΦA

ΦA(X1, . . . ,Xm) = ∃Y1 . . . ∃Yp . ΦS(Y) ∧ ΦI(Y) ∧ ΦT (Y,X) ∧ ΦF (Y)

ΦF (Y) = ∀x∃y . x ≤ y ∧ x 6= y ∧
∨

si∈F

Yi(y)



Consequences

Theorem 7 A language L ⊆ Σω is definable in S1S iff it is Büchi

recognizable.

Corollary 1 The SAT problem for S1S is decidable.

Lemma 3 Any S1S formula φ(X1, . . . ,Xm) is equivalent to an S1S

formula of the form ∃Y1 . . . ∃Yp . ϕ, where ϕ does not contain other set

variables than X1, . . . ,Xm, Y1, . . . , Yp.



Müller and Rabin Word Automata



Müller Automata

Let Σ = {a, b, . . .} be a finite alphabet.

Definition 6 A Müller automaton over Σ is A = 〈S, s0, T,F〉, where:

• S is the finite set of states

• s0 ∈ S is the initial state

• T : S × Σ 7→ S is the transition table

• F ⊆ 2S is the set of accepting sets

Notice that Müller automata are deterministic and complete by definition.



Acceptance Condition

A run of a Müller automaton is defined over an infinite word w : α1α2 . . .

as an infinite sequence of states π : s0s1s2 . . . such that:

• T (si, αi+1) = si+1, for all i ∈ N.

Let inf(π) = {s | s appears infinitely often on π}.

Run π of A is said to be accepting iff inf(π) ∈ F .

L ⊆ Σω is Müller-recognizable iff there exists a MA A such that L = L(A).



Deterministic Büchi ⊆ Müller

Theorem 8 For each deterministic Büchi automaton A there exists a

Müller automaton B such that L(A) = L(B)

Let A = 〈S, {s0}, T, F 〉 be a deterministic Büchi automaton.

Define B = 〈S, s0, T, {G ∈ 2S | G ∩ F 6= ∅}〉



Closure Properties

Theorem 9 The class of Müller-recognizable languages is closed under

union, intersection and complement.

Let A = 〈S, s0, T,F〉 be a Müller automaton.

Define B = 〈S, s0, T, 2S \ F〉.

We have L(B) = Σω \ L(A).



Closure Properties

Let Ai = 〈Si, s0,i, Ti,Fi〉, i = 1, 2 be Müller automata.

Define B = 〈S, s0, T,F〉 where:

• S = S1 × S2,

• s0 = 〈s0,1, s0,2〉,

• T (〈s1, s2〉, a) = 〈T (s1, a), T (s2, a)〉

• F = {{〈s1, s
′
1〉, . . . , 〈sk, s′k〉} | {s1, . . . , sk} ∈ F1 or {s′1, . . . , s

′
k} ∈ F2}

We have L(B) = L(A1) ∪ L(A2).

For intersection it is enough to set

F = {{〈s1, s
′
1〉, . . . , 〈sk, s′k〉} | {s1, . . . , sk} ∈ F1 and {s′1, . . . , s

′
k} ∈ F2}



Characterization of Müller-recognizable languages

A language L ⊆ Σω is Müller-recognizable iff L is a Boolean combination

of sets
−→
W , W ⊆ Σ∗, i.e. L =

⋃

i

(

⋂

j

−−→
Wij ∩

⋂

k(Σ
ω \

−−→
Wik)

)

.

“⇐” Any set
−−→
Wij is recognized by a deterministic Büchi automaton, hence

also by a Müller automaton.

“⇒” Let A = 〈S, s0, T,F〉 be a Müller automaton recognizing L.

Let Aq = 〈S, s0, T, {q}〉, q ∈ S, and Wq = L(Aq).

L =
⋃

Q∈F

(

⋂

q∈Q

−→
Wq ∩

⋂

q∈S\Q(Σω \
−→
Wq)

)



Exercise

Let Σ = {a, b} and A = 〈S, s0, T,F〉, where:

• S = {s0, s1},

• T (s0, a) = s0, T (s0, b) = s1, T (s1, a) = s0 and T (s1, b) = s1,

• F = {{s0, s1}}

What is L(A)? What if A was Büchi with F = {s0, s1}?



Rabin Word Automata

Let Σ = {a, b, . . .} be a finite alphabet.

Definition 7 A Rabin automaton over Σ is A = 〈S, s0, T,Ω〉, where:

• S is the finite set of states

• s0 ∈ S is the initial state

• T : S × Σ 7→ S is the transition table

• Ω = {〈N1, P1〉, . . . , 〈Nk, Pk〉} is the set of accepting pairs, Ni, Pi ⊆ S.

Run π of A is said to be accepting iff

inf(π) ∩ Ni = ∅ and inf(π) ∩ Pi 6= ∅

for some 1 ≤ i ≤ k.



The Streett acceptance condition

The Rabin acceptance condition is of the form:

∨

1≤i≤k

inf(π) ∩ Ni = ∅ ∧ inf(π) ∩ Pi 6= ∅

The Streett acceptance condition is the negation:

∧

1≤i≤k

inf(π) ∩ Ni 6= ∅ −→ inf(π) ∩ Pi 6= ∅



From Rabin to Müller

Given a Rabin automaton A = 〈S, s0, T,Ω〉, there exists a Müller

automaton B such that L(A) = L(B)

Let Ω = {〈N1, P1〉, . . . , 〈Nk, Pk〉}.

Let Ai = 〈S, s0, T, Pi〉, and Bi = 〈S, s0, T,Ni〉.

L(A) =

k
⋃

i=1

(−−−→
L(Ai) ∩ (Σω \

−−−→
L(Bi))

)



From Rabin to Müller (2)

Given a Rabin automaton A = 〈S, s0, T,Ω〉, such that

Ω = {〈N1, P1〉, . . . , 〈Nk, Pk〉}

let B = 〈S, s0, T,F〉 be the Müller automaton, where

F = {F ⊆ S | F ∩ Ni = ∅ and F ∩ Pi 6= ∅ for some 1 ≤ i ≤ k}



From Müller to Rabin

Given a Müller automaton A = 〈S, s0, T,F〉, there exists a Rabin

automaton B such that L(A) = L(B)

Let F = {Q1, . . . , Qk}

Let B = 〈S′, s′0, T
′,Ω′〉 where:

• S′ = 2Q1 × . . . × 2Qk × S

• s′0 = 〈∅, . . . , ∅, s0〉



From Müller to Rabin

• T ′(〈S1, . . . , Sk, s〉, a) = 〈S′
1, . . . , S

′
k, s

′〉 where:

– s′ = T (s, a)

– S′
i = ∅ if Si = Qi, 1 ≤ i ≤ k

– S′
i = (Si ∪ {s′}) ∩ Qi, 1 ≤ i ≤ k

• Pi = {〈S1, . . . , Si, . . . , Sk, s〉 | Si = Qi}, 1 ≤ i ≤ k

• Ni = {〈S1, . . . , Si, . . . , Sk, s〉 | s 6∈ Qi}, 1 ≤ i ≤ k



The Big Picture

NBA MA

DBA RA

McNaughton



Exercise

Let A = 〈S, s0, T, {Q1, . . . , Qt}〉 be a Müller automaton. Consider the

Rabin automaton A′ = 〈S, s0, T,Ω〉 where

Ω = {(S \ Q1, Q1), . . . , (S \ Qt, Qt)}

Give an example of A such that L(A) 6= L(A′).


