Büchi Automata

Definition of Büchi Automata

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

By Σ^{ω} we denote the set of all infinite words over Σ.

A non-deterministic Büchi automaton (NBA) over Σ is a tuple $A=\langle S, I, T, F\rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $F \subseteq S$ is a set of final states.

Acceptance Condition

A run of a Büchi automaton is defined over an infinite word $w: \alpha_{1} \alpha_{2} \ldots$ as an infinite sequence of states $\pi: s_{0} s_{1} s_{2} \ldots$ such that:

- $s_{0} \in I$ and
- $\left(s_{i}, \alpha_{i+1}, s_{i+1}\right) \in T$, for all $i \in \mathbb{N}$.

$$
\inf (\pi)=\{s \mid s \text { appears infinitely often on } \pi\}
$$

Run π of A is said to be accepting $\operatorname{iff} \inf (\pi) \cap F \neq \emptyset$.

Examples

Let $\Sigma=\{0,1\}$. Define Büchi automata for the following languages:

1. $L=\left\{\alpha \in \Sigma^{\omega} \mid 0\right.$ occurs in α exactly once $\}$
2. $L=\left\{\alpha \in \Sigma^{\omega} \mid\right.$ after each 0 in α there is 1$\}$
3. $L=\left\{\alpha \in \Sigma^{\omega} \mid \alpha\right.$ contains finitely many 1's $\}$
4. $L=(01)^{*} \Sigma^{\omega}$
5. $L=\left\{\alpha \in \Sigma^{\omega} \mid 0\right.$ occurs on all even positions in $\left.\alpha\right\}$

Closure Properties

Closure under union and projection are like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Büchi automata is a complex result.

Deterministic Büchi automata are not closed under complement.

Closure under Intersection

Let $A_{1}=\left\langle S_{1}, I_{1}, T_{1}, F_{1}\right\rangle$ and $A_{2}=\left\langle S_{2}, I_{2}, T_{2}, F_{2}\right\rangle$

Build $A_{\cap}=\langle S, I, T, F\rangle$:

- $S=S_{1} \times S_{2} \times\{1,2,3\}$,
- $I=I_{1} \times I_{2} \times\{1\}$,
- the definition of T is the following:

$$
\begin{aligned}
& -\left(\left(s_{1}, s_{1}^{\prime}, 1\right), a,\left(s_{2}, s_{2}^{\prime}, 1\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2 \text { and } s_{1} \notin F_{1} \\
& -\left(\left(s_{1}, s_{1}^{\prime}, 1\right), a,\left(s_{2}, s_{2}^{\prime}, 2\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2 \text { and } s_{1} \in F_{1} \\
& -\left(\left(s_{1}, s_{1}^{\prime}, 2\right), a,\left(s_{2}, s_{2}^{\prime}, 2\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2 \text { and } s_{1}^{\prime} \notin F_{2} \\
& -\left(\left(s_{1}, s_{1}^{\prime}, 2\right), a,\left(s_{2}, s_{2}^{\prime}, 3\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2 \text { and } s_{1}^{\prime} \in F_{2} \\
& -\left(\left(s_{1}, s_{1}^{\prime}, 3\right), a,\left(s_{2}, s_{2}^{\prime}, 1\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2
\end{aligned}
$$

- $F=S_{1} \times S_{2} \times\{3\}$

The Emptiness Problem

Theorem 1 Given a Büchi automaton $A, \mathcal{L}(A) \neq \emptyset$ iff there exist $u, v \in \Sigma^{*},|u|,|v| \leq\|A\|$, such that $u v^{\omega} \in \mathcal{L}(A)$.

In practical terms, A is non-empty iff there exists a state s which is reachable both from an initial state and from itself.

Q: Is the membership problem decidable for Büchi automata?

Complementation of Büchi Automata

Congruences

Definition 1 An equivalence relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ is said to be a left-congruence iff for all $u, v, w \in \Sigma^{*}$ we have $u \cong v \Rightarrow w u \cong w v$.

Definition 2 An equivalence relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ is said to be a right-congruence iff for all $u, v, w \in \Sigma^{*}$ we have $u R v \Rightarrow u w R$ vw.

Definition 3 An equivalence relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ is said to be a congruence iff it is both a left- and a right-congruence.

Ex: the Myhill-Nerode equivalence \sim_{L} is a right-congruence.

Congruences

Let $A=\langle S, I, T, F\rangle$ be a Büchi automaton and $s, s^{\prime} \in S$.

$$
W_{s, s^{\prime}}=\left\{w \in \Sigma^{*} \mid s \xrightarrow{w} s^{\prime}\right\}
$$

For $s, s^{\prime} \in S$ and $w \in \Sigma^{*}$, we denote $s \rightarrow_{w}^{F} s^{\prime}$ iff $s \xrightarrow{w} s^{\prime}$ visiting a state from F.

$$
W_{s, s^{\prime}}^{F}=\left\{w \in \Sigma^{*} \mid s \rightarrow \underset{w}{F} s^{\prime}\right\}
$$

For any two words $u, v \in \Sigma^{*}$ we have $u \cong v$ iff for all $s, s^{\prime} \in S$ we have:

- $s \xrightarrow{u} s^{\prime} \Longleftrightarrow s \xrightarrow{v} s^{\prime}$, and
- $s \rightarrow{ }_{u}^{F} s^{\prime} \Longleftrightarrow s \rightarrow{ }_{v}^{F} s^{\prime}$.

The relation \cong is a congruence of finite index on Σ^{*}

Congruences

Let $[w] \cong$ denote the equivalence class of $w \in \Sigma^{*}$ w.r.t. \cong.

Lemma 1 For any $w \in \Sigma^{*},[w] \cong$ is the intersection of all sets of the form $W_{s, s^{\prime}}, W_{s, s^{\prime}}^{F}, \overline{W_{s, s^{\prime}}}, \overline{W_{s, s^{\prime}}^{F}}$, containing w.

$$
T_{w}=\bigcap_{w \in W_{s, s^{\prime}}} W_{s, s^{\prime}} \cap \bigcap_{w \in W_{s, s^{\prime}}^{F}} W_{s, s^{\prime}}^{F} \cap \bigcap_{w \in \overline{W_{s, s^{\prime}}}} \overline{W_{s, s^{\prime}}} \cap \bigcap_{w \in \overline{W_{s, s^{\prime}}^{F}}} \overline{W_{s, s^{\prime}}^{F}}
$$

We show that $[w] \cong=T_{w}$.
" \subseteq " If $u \cong w$ then clearly $u \in T_{w}$.

Congruences

$" \supseteq$ " Let $u \in T_{w}$

- if $s \xrightarrow{w} s^{\prime}$, then $w \in W_{s, s^{\prime}}$, hence $u \in W_{s, s^{\prime}}$, then $s \xrightarrow{u} s^{\prime}$ as well.
- if $s \xrightarrow{\nsim} s^{\prime}$, then $w \in \overline{W_{s, s^{\prime}}}$, hence $u \in \overline{W_{s, s^{\prime}}}$, then $s \not \not \ngtr s^{\prime}$.

Also,

- if $s \rightarrow_{w}^{F} s^{\prime}$, then $w \in W_{s, s^{\prime}}^{F}$, hence $u \in W_{s, s^{\prime}}^{F}$, then $s \rightarrow_{u}^{F} s^{\prime}$ as well.
- if $s \not \not_{w}^{F} s^{\prime}$, then $w \in \overline{W_{s, s^{\prime}}^{F}}$, hence $u \in \overline{W_{s, s^{\prime}}^{F}}$, then $s \not \not_{u}^{F} s^{\prime}$.

Then $u \cong w$.

This lemma gives us a way to compute the \cong-equivalence classes.

Outline of the proof

We prove that:

$$
\mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A) \neq \emptyset} V W^{\omega}
$$

where V, W are \cong-equivalence classes

Then we have

$$
\Sigma^{\omega} \backslash \mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A)=\emptyset} V W^{\omega}
$$

Finally we obtain an algorithm for complementation of Büchi automata

Saturation

Definition 4 A congruence relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ saturates an
ω-language L iff for all R-equivalence classes V and W, if $V W^{\omega} \cap L \neq \emptyset$ then $V W^{\omega} \subseteq L$.

Lemma 2 The congruence relation \cong saturates $\mathcal{L}(A)$.

Every word belongs to some $V W^{\omega}$

$$
\text { Let } \alpha \in \Sigma^{\omega} \text { be an infinite word for the rest of this section. }
$$

By $\alpha(n, m)$, we denote $\alpha(n) \alpha(n+1) \ldots \alpha(m-1), n \leq m$.

We will build two \cong-equivalence classes V and W such that $\alpha \in V \cdot W^{\omega}$

Together with the saturation lemma, this proves

$$
\mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A) \neq \emptyset} V W^{\omega}
$$

Merging of positions

Definition 5 Two positions $k, k^{\prime} \in \mathbb{N}$ are said to merge at $m, m>k$ and $m>k^{\prime}$ iff $\alpha(k, m) \cong \alpha\left(k^{\prime}, m\right)$. We say that k and k^{\prime} are $\cong{ }_{\alpha}$-equivalent, denoted $k \cong{ }_{\alpha} k^{\prime}$ iff they merge at m, for some $m>k, k^{\prime}$.

If k and k^{\prime} merge at m then they also merge at m^{\prime}, for all $m^{\prime} \geq m$.
$k \cong{ }_{\alpha} k^{\prime}(m)$ is an equivalence relation on \mathbb{N} of finite index.

Merging of positions

There exists infinitely many positions $0<k_{0}<k_{1}<\ldots$, all \cong_{α}-equivalent.

Consider the sequence $\alpha\left(k_{0}, k_{1}\right), \alpha\left(k_{0}, k_{2}\right), \alpha\left(k_{0}, k_{3}\right) \ldots$

There exist $\alpha\left(k_{0}, k_{i_{0}}\right), \alpha\left(k_{0}, k_{i_{1}}\right), \alpha\left(k_{0}, k_{i_{2}}\right) \ldots$ all \cong-equivalent

There exist $k_{j_{0}}, k_{j_{1}}, k_{j_{2}}, \ldots$ such that for all $i \leq j k_{i} \cong{ }_{\alpha}\left(k_{j+1}\right)$

There exists infinitely many positions $0<k_{0}<k_{1}<k_{2}<\ldots$ such that

1. $\alpha\left(k_{0}, k_{i}\right) \cong \alpha\left(k_{0}, k_{j}\right)$ for all $i, j \in \mathbb{N}$
2. $k_{i} \cong{ }_{\alpha} k_{j}\left(k_{j+1}\right)$ for all $i \leq j$.

Defining V and W

Let $V=\left[\alpha\left(0, k_{0}\right)\right] \cong$ and $W=\left[\alpha\left(k_{0}, k_{1}\right)\right] \cong$

By $(1) \alpha\left(k_{0}, k_{1}\right) \cong \alpha\left(k_{0}, k_{i}\right)$ for all $i>0$
$\operatorname{By}(2) \alpha\left(k_{0}, k_{i+1}\right) \cong \alpha\left(k_{i}, k_{i+1}\right)$, for all $i>0$
$\operatorname{By}(1) \alpha\left(k_{0}, k_{i}\right) \cong \alpha\left(k_{0}, k_{i+1}\right)$ for all $i>0$

Hence $\alpha\left(k_{0}, k_{1}\right) \cong \alpha\left(k_{i}, k_{i+1}\right)$, for all $i>0$.

Therefore $\alpha \in V \cdot W^{\omega}$

Complementation of Büchi Automata

Theorem 2 For any Büchi automaton A there exists a Büchi automaton \bar{A} such that $\mathcal{L}(\bar{A})=\Sigma^{\omega} \backslash \mathcal{L}(A)$.

$$
\mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A) \neq \emptyset} V W^{\omega}
$$

where V, W are \cong-equivalence classes

$$
\Sigma^{\omega} \backslash \mathcal{L}(A)=\bigcup_{V W^{\omega} \cap \mathcal{L}(A)=\emptyset} V W^{\omega}
$$

An Application of Ramsey Theorem for Infinite Graphs

Theorem 3 (Wikipedia) Let X be some countably infinite set and colour the subsets of X of size n in c different colours. Then there exists some infinite subset M of X such that the size n subsets of M all have the same colour.

Let $X=\langle\mathbb{N},\{(i, j) \mid i<j\}\rangle(n=2)$. We define the coloring $i \xrightarrow{W} j$ iff $\alpha(i, j) \in W$.

Then there exists an infinite subset $M=\left\{k_{0}<k_{1}<\ldots\right\} \subseteq \mathbb{N}$ and a \cong-equivalence class W such that $k_{i} \xrightarrow{W} k_{j}$ for all $i<j \in \mathbb{N}$.

We obtain that $\alpha\left(k_{i}, k_{i+1}\right)$, for all $i \in \mathbb{N}$.

Deterministic Büchi Automata

ω-languages recognized by NBA $\supset \omega$-languages recognized by DBA

Let $W \subseteq \Sigma^{*}$. Define $\vec{W}=\left\{\alpha \in \Sigma^{\omega} \mid \alpha(0, n) \in W\right.$ for infinitely many $\left.n\right\}$

Theorem 4 A language $L \subseteq \Sigma^{\omega}$ is recognizable by a deterministic Büchi automaton iff there exists a rational language $W \subseteq \Sigma^{*}$ such that $L=\vec{W}$.

If $L=\mathcal{L}(A)$ then $W=\mathcal{L}\left(A^{\prime}\right)$ where A^{\prime} is the DFA with the same definition as A, and with the finite acceptance condition.

Deterministic Büchi Automata

Theorem 5 There exists a Büchi recognizable language that can be recognized by no deterministic Büchi automaton.
$\Sigma=\{a, b\}$ and $L=\left\{\alpha \in \Sigma^{\omega} \mid \#_{a}(\alpha)<\infty\right\}=\Sigma^{*} b^{\omega}$.

Suppose $L=\vec{W}$ for some $W \subseteq \Sigma^{*}$.
$b^{\omega} \in L \Rightarrow b^{n_{1}} \in W$
$b^{n_{1}} a b^{\omega} \in L \Rightarrow b^{n_{1}} a b^{n_{2}} \in W$
$b^{n_{1}} a b^{n_{2}} a \ldots \in \vec{W}=L$, contradiction.

Deterministic Büchi Automata are not closed under complement

Theorem 6 There exists a DBA A such that no DBA recognizes the language $\Sigma^{\omega} \backslash \mathcal{L}(A)$.
$\Sigma=\{a, b\}$ and $L=\left\{\alpha \in \Sigma^{\omega} \mid \#_{a}(\alpha)<\infty\right\}=\Sigma^{*} b^{\omega}$.

Let $V=\Sigma^{*} a$. There exists a DFA A such that $\mathcal{L}(A)=V$.

There exists a deterministic Büchi automaton B such that $\mathcal{L}(A)=\vec{V}$

But $\Sigma^{\omega} \backslash \vec{V}=L$ which cannot be recognized by any DBA.

Büchi Automata and S1S

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

Any finite word $w \in \Sigma^{*}$ induces the infinite sets $p_{a}=\{p \mid w(p)=a\}$.

- $x \leq y: x$ is less than y,
- $S(x)=y: y$ is the successor of x,
- $p_{a}(x): a$ occurs at position x in w

Remember that \leq and S can be defined one from another.

Problem Statement

Let $\mathcal{L}(\varphi)=\left\{w \mid \mathfrak{m}_{w} \models \varphi\right\}$

A language $L \subseteq \Sigma^{*}$ is said to be S1S-definable iff there exists a S1S formula φ such that $L=\mathcal{L}(\varphi)$.

1. Given a Büchi automaton A build an S1S formula φ_{A} such that $\mathcal{L}(A)=\mathcal{L}(\varphi)$
2. Given an S1S formula φ build a Büchi automaton A_{φ} such that $\mathcal{L}(A)=\mathcal{L}(\varphi)$

The Büchi recognizable and S1S-definable languages coincide

From Automata to Formulae

Let $A=\langle S, I, T, F\rangle$ with $S=\left\{s_{1}, \ldots, s_{p}\right\}$, and $\Sigma=\{0,1\}^{m}$.

Build $\Phi_{A}\left(X_{1}, \ldots, X_{m}\right)$ such that $\forall w \in \Sigma^{*} . w \in \mathcal{L}(A) \Longleftrightarrow w \models \Phi_{A}$
$\Phi_{A}\left(X_{1}, \ldots, X_{m}\right)=\exists Y_{1} \ldots \exists Y_{p} \cdot \Phi_{S}(\mathbf{Y}) \wedge \Phi_{I}(\mathbf{Y}) \wedge \Phi_{T}(\mathbf{Y}, \mathbf{X}) \wedge \Phi_{F}(\mathbf{Y})$

$$
\Phi_{F}(\mathbf{Y})=\forall x \exists y . x \leq y \wedge x \neq y \wedge \bigvee_{s_{i} \in F} Y_{i}(y)
$$

Consequences

Theorem 7 A language $L \subseteq \Sigma^{\omega}$ is definable in S1S iff it is Büchi recognizable.

Corollary 1 The SAT problem for S1S is decidable.

Lemma 3 Any S1S formula $\phi\left(X_{1}, \ldots, X_{m}\right)$ is equivalent to an S1S formula of the form $\exists Y_{1} \ldots \exists Y_{p} \cdot \varphi$, where φ does not contain other set variables than $X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{p}$.

Müller and Rabin Word Automata

Müller Automata

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

Definition $6 A$ Müller automaton over Σ is $A=\left\langle S, s_{0}, T, \mathcal{F}\right\rangle$, where:

- S is the finite set of states
- $s_{0} \in S$ is the initial state
- $T: S \times \Sigma \mapsto S$ is the transition table
- $\mathcal{F} \subseteq 2^{S}$ is the set of accepting sets

Notice that Müller automata are deterministic and complete by definition.

Acceptance Condition

A run of a Müller automaton is defined over an infinite word $w: \alpha_{1} \alpha_{2} \ldots$ as an infinite sequence of states $\pi: s_{0} s_{1} s_{2} \ldots$ such that:

- $T\left(s_{i}, \alpha_{i+1}\right)=s_{i+1}$, for all $i \in \mathbb{N}$.

Let $\inf (\pi)=\{s \mid s$ appears infinitely often on $\pi\}$.

Run π of A is said to be accepting $\operatorname{iff} \inf (\pi) \in \mathcal{F}$.
$L \subseteq \Sigma^{\omega}$ is Müller-recognizable iff there exists a MA A such that $L=\mathcal{L}(A)$.

Deterministic Büchi \subseteq Müller

Theorem 8 For each deterministic Büchi automaton A there exists a Müller automaton B such that $\mathcal{L}(A)=\mathcal{L}(B)$

Let $A=\left\langle S,\left\{s_{0}\right\}, T, F\right\rangle$ be a deterministic Büchi automaton.

Define $B=\left\langle S, s_{0}, T,\left\{G \in 2^{S} \mid G \cap F \neq \emptyset\right\}\right\rangle$

Closure Properties

Theorem 9 The class of Müller-recognizable languages is closed under union, intersection and complement.

Let $A=\left\langle S, s_{0}, T, \mathcal{F}\right\rangle$ be a Müller automaton.

Define $B=\left\langle S, s_{0}, T, 2^{S} \backslash \mathcal{F}\right\rangle$.

We have $\mathcal{L}(B)=\Sigma^{\omega} \backslash \mathcal{L}(A)$.

Closure Properties

Let $A_{i}=\left\langle S_{i}, s_{0, i}, T_{i}, \mathcal{F}_{i}\right\rangle, i=1,2$ be Müller automata.

Define $B=\left\langle S, s_{0}, T, \mathcal{F}\right\rangle$ where:

- $S=S_{1} \times S_{2}$,
- $s_{0}=\left\langle s_{0,1}, s_{0,2}\right\rangle$,
- $T\left(\left\langle s_{1}, s_{2}\right\rangle, a\right)=\left\langle T\left(s_{1}, a\right), T\left(s_{2}, a\right)\right\rangle$
- $\mathcal{F}=\left\{\left\{\left\langle s_{1}, s_{1}^{\prime}\right\rangle, \ldots,\left\langle s_{k}, s_{k}^{\prime}\right\rangle\right\} \mid\left\{s_{1}, \ldots, s_{k}\right\} \in \mathcal{F}_{1}\right.$ or $\left.\left\{s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\} \in \mathcal{F}_{2}\right\}$

We have $\mathcal{L}(B)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$.

For intersection it is enough to set

$$
\mathcal{F}=\left\{\left\{\left\langle s_{1}, s_{1}^{\prime}\right\rangle, \ldots,\left\langle s_{k}, s_{k}^{\prime}\right\rangle\right\} \mid\left\{s_{1}, \ldots, s_{k}\right\} \in \mathcal{F}_{1} \text { and }\left\{s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\} \in \mathcal{F}_{2}\right\}
$$

Characterization of Müller-recognizable languages

A language $L \subseteq \Sigma^{\omega}$ is Müller-recognizable iff L is a Boolean combination of sets $\vec{W}, W \subseteq \Sigma^{*}$, i.e. $L=\bigcup_{i}\left(\bigcap_{j} \overrightarrow{W_{i j}} \cap \bigcap_{k}\left(\Sigma^{\omega} \backslash \overrightarrow{W_{i k}}\right)\right)$.
$" \Leftarrow "$ Any set $\overrightarrow{W_{i j}}$ is recognized by a deterministic Büchi automaton, hence also by a Müller automaton.
$" \Rightarrow$ " Let $A=\left\langle S, s_{0}, T, \mathcal{F}\right\rangle$ be a Müller automaton recognizing L.

Let $A_{q}=\left\langle S, s_{0}, T,\{q\}\right\rangle, q \in S$, and $W_{q}=\mathcal{L}\left(A_{q}\right)$.
$L=\bigcup_{Q \in \mathcal{F}}\left(\bigcap_{q \in Q} \overrightarrow{W_{q}} \cap \bigcap_{q \in S \backslash Q}\left(\Sigma^{\omega} \backslash \overrightarrow{W_{q}}\right)\right)$

Exercise

Let $\Sigma=\{a, b\}$ and $A=\left\langle S, s_{0}, T, \mathcal{F}\right\rangle$, where:

- $S=\left\{s_{0}, s_{1}\right\}$,
- $T\left(s_{0}, a\right)=s_{0}, T\left(s_{0}, b\right)=s_{1}, T\left(s_{1}, a\right)=s_{0}$ and $T\left(s_{1}, b\right)=s_{1}$,
- $\mathcal{F}=\left\{\left\{s_{0}, s_{1}\right\}\right\}$

What is $\mathcal{L}(A)$? What if A was Büchi with $F=\left\{s_{0}, s_{1}\right\}$?

Rabin Word Automata

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

Definition $7 A$ Rabin automaton over Σ is $A=\left\langle S, s_{0}, T, \Omega\right\rangle$, where:

- S is the finite set of states
- $s_{0} \in S$ is the initial state
- $T: S \times \Sigma \mapsto S$ is the transition table
- $\Omega=\left\{\left\langle N_{1}, P_{1}\right\rangle, \ldots,\left\langle N_{k}, P_{k}\right\rangle\right\}$ is the set of accepting pairs, $N_{i}, P_{i} \subseteq S$.

Run π of A is said to be accepting iff

$$
\inf (\pi) \cap N_{i}=\emptyset \text { and } \inf (\pi) \cap P_{i} \neq \emptyset
$$

for some $1 \leq i \leq k$.

The Streett acceptance condition

The Rabin acceptance condition is of the form:

$$
\bigvee_{1 \leq i \leq k} \inf (\pi) \cap N_{i}=\emptyset \wedge \inf (\pi) \cap P_{i} \neq \emptyset
$$

The Streett acceptance condition is the negation:

$$
\bigwedge_{1 \leq i \leq k} \inf (\pi) \cap N_{i} \neq \emptyset \rightarrow \inf (\pi) \cap P_{i} \neq \emptyset
$$

From Rabin to Müller

Given a Rabin automaton $A=\left\langle S, s_{0}, T, \Omega\right\rangle$, there exists a Müller automaton B such that $\mathcal{L}(A)=\mathcal{L}(B)$

Let $\Omega=\left\{\left\langle N_{1}, P_{1}\right\rangle, \ldots,\left\langle N_{k}, P_{k}\right\rangle\right\}$.

Let $A_{i}=\left\langle S, s_{0}, T, P_{i}\right\rangle$, and $B_{i}=\left\langle S, s_{0}, T, N_{i}\right\rangle$.

$$
\mathcal{L}(A)=\bigcup_{i=1}^{k}\left(\overrightarrow{\mathcal{L}\left(A_{i}\right)} \cap\left(\Sigma^{\omega} \backslash \overrightarrow{\mathcal{L}\left(B_{i}\right)}\right)\right)
$$

From Rabin to Müller (2)

Given a Rabin automaton $A=\left\langle S, s_{0}, T, \Omega\right\rangle$, such that

$$
\Omega=\left\{\left\langle N_{1}, P_{1}\right\rangle, \ldots,\left\langle N_{k}, P_{k}\right\rangle\right\}
$$

let $B=\left\langle S, s_{0}, T, \mathcal{F}\right\rangle$ be the Müller automaton, where

$$
\mathcal{F}=\left\{F \subseteq S \mid F \cap N_{i}=\emptyset \text { and } F \cap P_{i} \neq \emptyset \text { for some } 1 \leq i \leq k\right\}
$$

From Müller to Rabin

Given a Müller automaton $A=\left\langle S, s_{0}, T, \mathcal{F}\right\rangle$, there exists a Rabin automaton B such that $\mathcal{L}(A)=\mathcal{L}(B)$

Let $\mathcal{F}=\left\{Q_{1}, \ldots, Q_{k}\right\}$

Let $B=\left\langle S^{\prime}, s_{0}^{\prime}, T^{\prime}, \Omega^{\prime}\right\rangle$ where:

- $S^{\prime}=2^{Q_{1}} \times \ldots \times 2^{Q_{k}} \times S$
- $s_{0}^{\prime}=\left\langle\emptyset, \ldots, \emptyset, s_{0}\right\rangle$

From Müller to Rabin

- $T^{\prime}\left(\left\langle S_{1}, \ldots, S_{k}, s\right\rangle, a\right)=\left\langle S_{1}^{\prime}, \ldots, S_{k}^{\prime}, s^{\prime}\right\rangle$ where:
- $s^{\prime}=T(s, a)$
- $S_{i}^{\prime}=\emptyset$ if $S_{i}=Q_{i}, 1 \leq i \leq k$
$-S_{i}^{\prime}=\left(S_{i} \cup\left\{s^{\prime}\right\}\right) \cap Q_{i}, 1 \leq i \leq k$
- $P_{i}=\left\{\left\langle S_{1}, \ldots, S_{i}, \ldots, S_{k}, s\right\rangle \mid S_{i}=Q_{i}\right\}, 1 \leq i \leq k$
- $N_{i}=\left\{\left\langle S_{1}, \ldots, S_{i}, \ldots, S_{k}, s\right\rangle \mid s \notin Q_{i}\right\}, 1 \leq i \leq k$

The Big Picture

Exercise

Let $A=\left\langle S, s_{0}, T,\left\{Q_{1}, \ldots, Q_{t}\right\}\right\rangle$ be a Müller automaton. Consider the Rabin automaton $A^{\prime}=\left\langle S, s_{0}, T, \Omega\right\rangle$ where

$$
\Omega=\left\{\left(S \backslash Q_{1}, Q_{1}\right), \ldots,\left(S \backslash Q_{t}, Q_{t}\right)\right\}
$$

Give an example of A such that $\mathcal{L}(A) \neq \mathcal{L}\left(A^{\prime}\right)$.

