Büchi Automata

Definition of Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

By Σ^{ω} we denote the set of all infinite words over Σ .

A non-deterministic Büchi automaton (NBA) over Σ is a tuple $A = \langle S, I, T, F \rangle$, where:

- S is a finite set of *states*,
- $I \subseteq S$ is a set of *initial states*,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $F \subseteq S$ is a set of *final states*.

Acceptance Condition

A *run* of a Büchi automaton is defined over an infinite word $w: \alpha_1\alpha_2...$ as an infinite sequence of states $\pi: s_0s_1s_2...$ such that:

- $s_0 \in I$ and
- $(s_i, \alpha_{i+1}, s_{i+1}) \in T$, for all $i \in \mathbb{N}$.

$$\inf(\pi) = \{s \mid s \text{ appears infinitely often on } \pi\}$$

Run π of A is said to be accepting iff $\inf(\pi) \cap F \neq \emptyset$.

Examples

Let $\Sigma = \{0, 1\}$. Define Büchi automata for the following languages:

- 1. $L = \{ \alpha \in \Sigma^{\omega} \mid 0 \text{ occurs in } \alpha \text{ exactly once} \}$
- 2. $L = \{ \alpha \in \Sigma^{\omega} \mid \text{after each } 0 \text{ in } \alpha \text{ there is } 1 \}$
- 3. $L = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains finitely many 1's} \}$
- 4. $L = (01)^* \Sigma^{\omega}$
- 5. $L = \{ \alpha \in \Sigma^{\omega} \mid 0 \text{ occurs on all even positions in } \alpha \}$

Closure Properties

Closure under union and projection are like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Büchi automata is a complex result.

Deterministic Büchi automata are not closed under complement.

Closure under Intersection

Let
$$A_1 = \langle S_1, I_1, T_1, F_1 \rangle$$
 and $A_2 = \langle S_2, I_2, T_2, F_2 \rangle$

Build $A_{\cap} = \langle S, I, T, F \rangle$:

- $S = S_1 \times S_2 \times \{1, 2, 3\},$
- $I = I_1 \times I_2 \times \{1\},$
- the definition of T is the following:
 - $-((s_1, s_1', 1), a, (s_2, s_2', 1)) \in T \text{ iff } (s_i, a, s_i') \in T_i, i = 1, 2 \text{ and } s_1 \notin F_1$
 - $-((s_1, s'_1, 1), a, (s_2, s'_2, 2)) \in T \text{ iff } (s_i, a, s'_i) \in T_i, i = 1, 2 \text{ and } s_1 \in F_1$
 - $-((s_1, s_1', 2), a, (s_2, s_2', 2)) \in T \text{ iff } (s_i, a, s_i') \in T_i, i = 1, 2 \text{ and } s_1' \notin F_2$
 - $-((s_1, s'_1, 2), a, (s_2, s'_2, 3)) \in T \text{ iff } (s_i, a, s'_i) \in T_i, i = 1, 2 \text{ and } s'_1 \in F_2$
 - $-((s_1, s'_1, 3), a, (s_2, s'_2, 1)) \in T \text{ iff } (s_i, a, s'_i) \in T_i, i = 1, 2$
- $\bullet \ F = S_1 \times S_2 \times \{3\}$

The Emptiness Problem

Theorem 1 Given a Büchi automaton A, $\mathcal{L}(A) \neq \emptyset$ iff there exist $u, v \in \Sigma^*$, $|u|, |v| \leq ||A||$, such that $uv^{\omega} \in \mathcal{L}(A)$.

In practical terms, A is non-empty iff there exists a state s which is reachable both from an initial state and from itself.

Q: Is the membership problem decidable for Büchi automata?

Definition 1 An equivalence relation $R \subseteq \Sigma^* \times \Sigma^*$ is said to be a left-congruence iff for all $u, v, \mathbf{w} \in \Sigma^*$ we have $u \cong v \Rightarrow \mathbf{w}u \cong \mathbf{w}v$.

Definition 2 An equivalence relation $R \subseteq \Sigma^* \times \Sigma^*$ is said to be a right-congruence iff for all $u, v, w \in \Sigma^*$ we have $u R v \Rightarrow uw R vw$.

Definition 3 An equivalence relation $R \subseteq \Sigma^* \times \Sigma^*$ is said to be a congruence iff it is both a left- and a right-congruence.

Ex: the Myhill-Nerode equivalence \sim_L is a right-congruence.

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton and $s, s' \in S$.

$$W_{s,s'} = \{ w \in \Sigma^* \mid s \xrightarrow{w} s' \}$$

For $s, s' \in S$ and $w \in \Sigma^*$, we denote $s \to_w^F s'$ iff $s \xrightarrow{w} s'$ visiting a state from F.

$$W_{s,s'}^F = \{ w \in \Sigma^* \mid s \to_w^F s' \}$$

For any two words $u, v \in \Sigma^*$ we have $u \cong v$ iff for all $s, s' \in S$ we have:

- $s \xrightarrow{u} s' \iff s \xrightarrow{v} s'$, and
- $\bullet \ s \to_u^F s' \iff s \to_v^F s'.$

The relation \cong is a congruence of finite index on Σ^*

Let $[w]_{\cong}$ denote the equivalence class of $w \in \Sigma^*$ w.r.t. \cong .

Lemma 1 For any $w \in \Sigma^*$, $[w]_{\cong}$ is the intersection of all sets of the form $W_{s,s'}, W_{s,s'}^F, \overline{W_{s,s'}}, \overline{W_{s,s'}^F}$, containing w.

$$T_w = \bigcap_{w \in W_{s,s'}} W_{s,s'} \cap \bigcap_{w \in W_{s,s'}^F} W_{s,s'}^F \cap \bigcap_{w \in \overline{W_{s,s'}}} \overline{W_{s,s'}} \cap \bigcap_{w \in \overline{W_{s,s'}^F}} \overline{W_{s,s'}^F}$$

We show that $[w]_{\cong} = T_w$.

" \subseteq " If $u \cong w$ then clearly $u \in T_w$.

"\geq" Let $u \in T_w$

- if $s \xrightarrow{w} s'$, then $w \in W_{s,s'}$, hence $u \in W_{s,s'}$, then $s \xrightarrow{u} s'$ as well.
- if $s \not\stackrel{w}{\to} s'$, then $w \in \overline{W_{s,s'}}$, hence $u \in \overline{W_{s,s'}}$, then $s \not\stackrel{u}{\to} s'$.

Also,

- if $s \to_w^F s'$, then $w \in W_{s,s'}^F$, hence $u \in W_{s,s'}^F$, then $s \to_u^F s'$ as well.
- if $s \not\to_w^F s'$, then $w \in \overline{W_{s,s'}^F}$, hence $u \in \overline{W_{s,s'}^F}$, then $s \not\to_u^F s'$.

Then $u \cong w$.

This lemma gives us a way to compute the \cong -equivalence classes.

Outline of the proof

We prove that:

$$\mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) \neq \emptyset} VW^{\omega}$$

where V, W are \cong -equivalence classes

Then we have

$$\Sigma^{\omega} \setminus \mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) = \emptyset} VW^{\omega}$$

Finally we obtain an algorithm for complementation of Büchi automata

Saturation

Definition 4 A congruence relation $R \subseteq \Sigma^* \times \Sigma^*$ saturates an ω -language L iff for all R-equivalence classes V and W, if $VW^{\omega} \cap L \neq \emptyset$ then $VW^{\omega} \subseteq L$.

Lemma 2 The congruence relation \cong saturates $\mathcal{L}(A)$.

Every word belongs to some VW^{ω}

Let $\alpha \in \Sigma^{\omega}$ be an infinite word for the rest of this section.

By $\alpha(n,m)$, we denote $\alpha(n)\alpha(n+1)\ldots\alpha(m-1), n\leq m$.

We will build two \cong -equivalence classes V and W such that $\alpha \in V \cdot W^{\omega}$

Together with the saturation lemma, this proves

$$\mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) \neq \emptyset} VW^{\omega}$$

Merging of positions

Definition 5 Two positions $k, k' \in \mathbb{N}$ are said to merge at m, m > k and m > k' iff $\alpha(k, m) \cong \alpha(k', m)$. We say that k and k' are \cong_{α} -equivalent, denoted $k \cong_{\alpha} k'$ iff they merge at m, for some m > k, k'.

If k and k' merge at m then they also merge at m', for all $m' \geq m$.

 $k \cong_{\alpha} k'$ (m) is an equivalence relation on N of finite index.

Merging of positions

There exists infinitely many positions $0 < k_0 < k_1 < ...$, all \cong_{α} -equivalent.

Consider the sequence $\alpha(k_0, k_1), \alpha(k_0, k_2), \alpha(k_0, k_3) \dots$

There exist $\alpha(k_0, k_{i_0}), \alpha(k_0, k_{i_1}), \alpha(k_0, k_{i_2}) \dots$ all \cong -equivalent

There exist $k_{j_0}, k_{j_1}, k_{j_2}, \ldots$ such that for all $i \leq j \ k_i \cong_{\alpha} k_j(k_{j+1})$

There exists infinitely many positions $0 < k_0 < k_1 < k_2 < \dots$ such that

- 1. $\alpha(k_0, k_i) \cong \alpha(k_0, k_j)$ for all $i, j \in \mathbb{N}$
- 2. $k_i \cong_{\alpha} k_j(k_{j+1})$ for all $i \leq j$.

Defining V and W

Let
$$V = [\alpha(0, k_0)]_{\cong}$$
 and $W = [\alpha(k_0, k_1)]_{\cong}$

By (1)
$$\alpha(k_0, k_1) \cong \alpha(k_0, k_i)$$
 for all $i > 0$

By (2)
$$\alpha(k_0, k_{i+1}) \cong \alpha(k_i, k_{i+1})$$
, for all $i > 0$

By (1)
$$\alpha(k_0, k_i) \cong \alpha(k_0, k_{i+1})$$
 for all $i > 0$

Hence
$$\alpha(k_0, k_1) \cong \alpha(k_i, k_{i+1})$$
, for all $i > 0$.

Therefore $\alpha \in V \cdot W^{\omega}$

Complementation of Büchi Automata

Theorem 2 For any Büchi automaton A there exists a Büchi automaton \overline{A} such that $\mathcal{L}(\overline{A}) = \Sigma^{\omega} \setminus \mathcal{L}(A)$.

$$\mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) \neq \emptyset} VW^{\omega}$$

where V, W are \cong -equivalence classes

$$\Sigma^{\omega} \setminus \mathcal{L}(A) = \bigcup_{VW^{\omega} \cap \mathcal{L}(A) = \emptyset} VW^{\omega}$$

An Application of Ramsey Theorem for Infinite Graphs

Theorem 3 (Wikipedia) Let X be some countably infinite set and colour the subsets of X of size n in c different colours. Then there exists some infinite subset M of X such that the size n subsets of M all have the same colour.

Let $X = \langle \mathbb{N}, \{(i,j) \mid i < j\} \rangle$ (n = 2). We define the coloring $i \xrightarrow{W} j$ iff $\alpha(i,j) \in W$.

Then there exists an infinite subset $M = \{k_0 < k_1 < \ldots\} \subseteq \mathbb{N}$ and a \cong -equivalence class W such that $k_i \xrightarrow{W} k_j$ for all $i < j \in \mathbb{N}$.

We obtain that $\alpha(k_i, k_{i+1})$, for all $i \in \mathbb{N}$.

Deterministic Büchi Automata

 ω -languages recognized by NBA $\supset \omega$ -languages recognized by DBA

Let $W \subseteq \Sigma^*$. Define $\overrightarrow{W} = \{ \alpha \in \Sigma^\omega \mid \alpha(0, n) \in W \text{ for infinitely many } n \}$

Theorem 4 A language $L \subseteq \Sigma^{\omega}$ is recognizable by a deterministic Büchi automaton iff there exists a rational language $W \subseteq \Sigma^*$ such that $L = \overrightarrow{W}$.

If $L = \mathcal{L}(A)$ then $W = \mathcal{L}(A')$ where A' is the DFA with the same definition as A, and with the finite acceptance condition.

Deterministic Büchi Automata

Theorem 5 There exists a Büchi recognizable language that can be recognized by no deterministic Büchi automaton.

$$\Sigma = \{a, b\} \text{ and } L = \{\alpha \in \Sigma^{\omega} \mid \#_a(\alpha) < \infty\} = \Sigma^* b^{\omega}.$$

Suppose $L = \overrightarrow{W}$ for some $W \subseteq \Sigma^*$.

$$b^{\omega} \in L \Rightarrow b^{n_1} \in W$$

$$b^{n_1}ab^{\omega} \in L \Rightarrow b^{n_1}ab^{n_2} \in W$$

• • •

$$b^{n_1}ab^{n_2}a\ldots\in\overrightarrow{W}=L$$
, contradiction.

Deterministic Büchi Automata are not closed under complement

Theorem 6 There exists a DBA A such that no DBA recognizes the language $\Sigma^{\omega} \setminus \mathcal{L}(A)$.

$$\Sigma = \{a, b\} \text{ and } L = \{\alpha \in \Sigma^{\omega} \mid \#_a(\alpha) < \infty\} = \Sigma^* b^{\omega}.$$

Let $V = \Sigma^* a$. There exists a DFA A such that $\mathcal{L}(A) = V$.

There exists a deterministic Büchi automaton B such that $\mathcal{L}(A) = \overrightarrow{V}$

But $\Sigma^{\omega} \setminus \overrightarrow{V} = L$ which cannot be recognized by any DBA.

Büchi Automata and S1S

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

Any finite word $w \in \Sigma^*$ induces the *infinite* sets $p_a = \{p \mid w(p) = a\}$.

- $x \le y : x$ is less than y,
- S(x) = y : y is the successor of x,
- $p_a(x)$: a occurs at position x in w

Remember that \leq and S can be defined one from another.

Problem Statement

Let
$$\mathcal{L}(\varphi) = \{ w \mid \mathfrak{m}_w \models \varphi \}$$

A language $L \subseteq \Sigma^*$ is said to be S1S-definable iff there exists a S1S formula φ such that $L = \mathcal{L}(\varphi)$.

- 1. Given a Büchi automaton A build an S1S formula φ_A such that $\mathcal{L}(A) = \mathcal{L}(\varphi)$
- 2. Given an S1S formula φ build a Büchi automaton A_{φ} such that $\mathcal{L}(A) = \mathcal{L}(\varphi)$

The Büchi recognizable and S1S-definable languages coincide

From Automata to Formulae

Let $A = \langle S, I, T, F \rangle$ with $S = \{s_1, ..., s_p\}$, and $\Sigma = \{0, 1\}^m$.

Build $\Phi_A(X_1,\ldots,X_m)$ such that $\forall w\in\Sigma^*$. $w\in\mathcal{L}(A)\iff w\models\Phi_A$

$$\Phi_A(X_1,\ldots,X_m) = \exists Y_1\ldots\exists Y_p \ . \ \Phi_S(\mathbf{Y}) \land \Phi_I(\mathbf{Y}) \land \Phi_T(\mathbf{Y},\mathbf{X}) \land \Phi_F(\mathbf{Y})$$

$$\Phi_F(\mathbf{Y}) = \forall x \exists y \ . \ x \le y \land x \ne y \land \bigvee_{s_i \in F} Y_i(y)$$

Consequences

Theorem 7 A language $L \subseteq \Sigma^{\omega}$ is definable in S1S iff it is Büchi recognizable.

Corollary 1 The SAT problem for S1S is decidable.

Lemma 3 Any S1S formula $\phi(X_1, \ldots, X_m)$ is equivalent to an S1S formula of the form $\exists Y_1 \ldots \exists Y_p : \varphi$, where φ does not contain other set variables than $X_1, \ldots, X_m, Y_1, \ldots, Y_p$.

Müller and Rabin Word Automata

Müller Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

Definition 6 A Müller automaton over Σ is $A = \langle S, s_0, T, \mathcal{F} \rangle$, where:

- S is the finite set of states
- $s_0 \in S$ is the initial state
- $T: S \times \Sigma \mapsto S$ is the transition table
- $\mathcal{F} \subseteq 2^S$ is the set of accepting sets

Notice that Müller automata are deterministic and complete by definition.

Acceptance Condition

A *run* of a Müller automaton is defined over an infinite word $w: \alpha_1\alpha_2...$ as an infinite sequence of states $\pi: s_0s_1s_2...$ such that:

• $T(s_i, \alpha_{i+1}) = s_{i+1}$, for all $i \in \mathbb{N}$.

Let $\inf(\pi) = \{s \mid s \text{ appears infinitely often on } \pi\}.$

Run π of A is said to be accepting iff $\inf(\pi) \in \mathcal{F}$.

 $L \subseteq \Sigma^{\omega}$ is *Müller-recognizable* iff there exists a MA A such that $L = \mathcal{L}(A)$.

Deterministic Büchi \subseteq Müller

Theorem 8 For each deterministic Büchi automaton A there exists a Müller automaton B such that $\mathcal{L}(A) = \mathcal{L}(B)$

Let $A = \langle S, \{s_0\}, T, F \rangle$ be a deterministic Büchi automaton.

Define
$$B = \langle S, s_0, T, \{G \in 2^S \mid G \cap F \neq \emptyset\} \rangle$$

Closure Properties

Theorem 9 The class of Müller-recognizable languages is closed under union, intersection and complement.

Let $A = \langle S, s_0, T, \mathcal{F} \rangle$ be a Müller automaton.

Define $B = \langle S, s_0, T, 2^S \setminus \mathcal{F} \rangle$.

We have $\mathcal{L}(B) = \Sigma^{\omega} \setminus \mathcal{L}(A)$.

Closure Properties

Let $A_i = \langle S_i, s_{0,i}, T_i, \mathcal{F}_i \rangle$, i = 1, 2 be Müller automata.

Define $B = \langle S, s_0, T, \mathcal{F} \rangle$ where:

- $\bullet \ S = S_1 \times S_2,$
- $s_0 = \langle s_{0,1}, s_{0,2} \rangle$,
- $T(\langle s_1, s_2 \rangle, a) = \langle T(s_1, a), T(s_2, a) \rangle$
- $\mathcal{F} = \{\{\langle s_1, s_1' \rangle, \dots, \langle s_k, s_k' \rangle\} \mid \{s_1, \dots, s_k\} \in \mathcal{F}_1 \text{ or } \{s_1', \dots, s_k'\} \in \mathcal{F}_2\}$

We have $\mathcal{L}(B) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$.

For intersection it is enough to set

$$\mathcal{F} = \{ \{ \langle s_1, s_1' \rangle, \dots, \langle s_k, s_k' \rangle \} \mid \{s_1, \dots, s_k\} \in \mathcal{F}_1 \text{ and } \{s_1', \dots, s_k'\} \in \mathcal{F}_2 \}$$

Characterization of Müller-recognizable languages

A language $L \subseteq \Sigma^{\omega}$ is Müller-recognizable iff L is a Boolean combination of sets \overrightarrow{W} , $W \subseteq \Sigma^*$, i.e. $L = \bigcup_i \left(\bigcap_j \overrightarrow{W_{ij}} \cap \bigcap_k (\Sigma^{\omega} \setminus \overrightarrow{W_{ik}}) \right)$.

"\(=\)" Any set \overrightarrow{W}_{ij} is recognized by a deterministic Büchi automaton, hence also by a Müller automaton.

"\Rightarrow" Let $A = \langle S, s_0, T, \mathcal{F} \rangle$ be a Müller automaton recognizing L.

Let
$$A_q = \langle S, s_0, T, \{q\} \rangle$$
, $q \in S$, and $W_q = \mathcal{L}(A_q)$.

$$L = \bigcup_{Q \in \mathcal{F}} \left(\bigcap_{q \in Q} \overrightarrow{W_q} \cap \bigcap_{q \in S \setminus Q} (\Sigma^{\omega} \setminus \overrightarrow{W_q}) \right)$$

Exercise

Let $\Sigma = \{a, b\}$ and $A = \langle S, s_0, T, \mathcal{F} \rangle$, where:

- $S = \{s_0, s_1\},$
- $T(s_0, a) = s_0$, $T(s_0, b) = s_1$, $T(s_1, a) = s_0$ and $T(s_1, b) = s_1$,
- $\mathcal{F} = \{\{s_0, s_1\}\}$

What is $\mathcal{L}(A)$? What if A was Büchi with $F = \{s_0, s_1\}$?

Rabin Word Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

Definition 7 A Rabin automaton over Σ is $A = \langle S, s_0, T, \Omega \rangle$, where:

- S is the finite set of states
- $s_0 \in S$ is the initial state
- $T: S \times \Sigma \mapsto S$ is the transition table
- $\Omega = \{\langle N_1, P_1 \rangle, \dots, \langle N_k, P_k \rangle\}$ is the set of accepting pairs, $N_i, P_i \subseteq S$.

Run π of A is said to be accepting iff

$$\inf(\pi) \cap N_i = \emptyset \text{ and } \inf(\pi) \cap P_i \neq \emptyset$$

for some $1 \leq i \leq k$.

The Streett acceptance condition

The Rabin acceptance condition is of the form:

$$\bigvee_{1 \le i \le k} inf(\pi) \cap N_i = \emptyset \land inf(\pi) \cap P_i \ne \emptyset$$

The Streett acceptance condition is the negation:

$$\bigwedge_{1 \le i \le k} inf(\pi) \cap N_i \neq \emptyset \rightarrow inf(\pi) \cap P_i \neq \emptyset$$

From Rabin to Müller

Given a Rabin automaton $A = \langle S, s_0, T, \Omega \rangle$, there exists a Müller automaton B such that $\mathcal{L}(A) = \mathcal{L}(B)$

Let
$$\Omega = \{\langle N_1, P_1 \rangle, \dots, \langle N_k, P_k \rangle\}.$$

Let
$$A_i = \langle S, s_0, T, P_i \rangle$$
, and $B_i = \langle S, s_0, T, N_i \rangle$.

$$\mathcal{L}(A) = \bigcup_{i=1}^{k} \left(\overline{\mathcal{L}(A_i)} \cap (\Sigma^{\omega} \setminus \overline{\mathcal{L}(B_i)}) \right)$$

From Rabin to Müller (2)

Given a Rabin automaton $A = \langle S, s_0, T, \Omega \rangle$, such that

$$\Omega = \{\langle N_1, P_1 \rangle, \dots, \langle N_k, P_k \rangle\}$$

let $B = \langle S, s_0, T, \mathcal{F} \rangle$ be the Müller automaton, where

$$\mathcal{F} = \{ F \subseteq S \mid F \cap N_i = \emptyset \text{ and } F \cap P_i \neq \emptyset \text{ for some } 1 \leq i \leq k \}$$

From Müller to Rabin

Given a Müller automaton $A = \langle S, s_0, T, \mathcal{F} \rangle$, there exists a Rabin automaton B such that $\mathcal{L}(A) = \mathcal{L}(B)$

Let
$$\mathcal{F} = \{Q_1, \dots, Q_k\}$$

Let $B = \langle S', s'_0, T', \Omega' \rangle$ where:

- $S' = 2^{Q_1} \times \ldots \times 2^{Q_k} \times S$
- $s_0' = \langle \emptyset, \dots, \emptyset, s_0 \rangle$

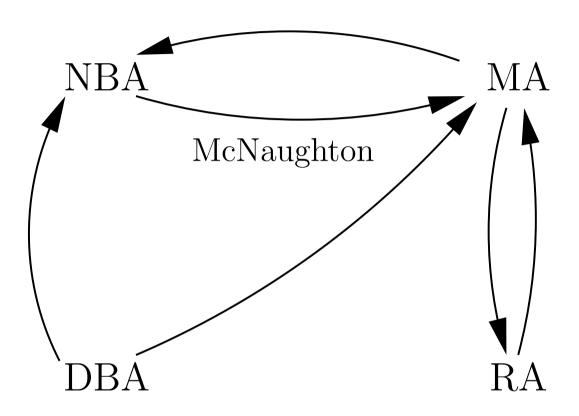
From Müller to Rabin

•
$$T'(\langle S_1, \dots, S_k, s \rangle, a) = \langle S'_1, \dots, S'_k, s' \rangle$$
 where:
 $-s' = T(s, a)$
 $-S'_i = \emptyset$ if $S_i = Q_i$, $1 \le i \le k$
 $-S'_i = (S_i \cup \{s'\}) \cap Q_i$, $1 \le i \le k$

•
$$P_i = \{ \langle S_1, \dots, S_i, \dots, S_k, s \rangle \mid S_i = Q_i \}, \ 1 \le i \le k$$

•
$$N_i = \{ \langle S_1, \dots, S_i, \dots, S_k, s \rangle \mid s \notin Q_i \}, 1 \le i \le k$$

The Big Picture



Exercise

Let $A = \langle S, s_0, T, \{Q_1, \dots, Q_t\} \rangle$ be a Müller automaton. Consider the Rabin automaton $A' = \langle S, s_0, T, \Omega \rangle$ where

$$\Omega = \{ (S \setminus Q_1, Q_1), \dots, (S \setminus Q_t, Q_t) \}$$

Give an example of A such that $\mathcal{L}(A) \neq \mathcal{L}(A')$.