
About Games and Trees

Barbara Jobstmann

Verimag/CNRS (Grenoble, France)

November 27, 2009

Recap

Winning conditions are defined over Occ and Inf.

Occ(ρ) Inf(ρ)

Reachability/Guarantee game Büchi game

Safety game co-Büchi game

Weak-parity game Parity game

Obligation/Staiger-Wagner game Muller game

LTL games

Recap

How did we solve those games?

Game Solution

Reachability games Attractor + Attractor Strategy

Safety games like Reachability games

Büchi games Recurrence set + Extended Attractor Strategy

co-Büchi games like Büchi games

Weak-parity games Alternation between Attr0 and Attr1

Obligation games
Reduction to Weak-parity games with

record sets

Parity games

Recursive algorithm,

Progress-Measure algorithm, and

Strategy Improvement algorithm

Muller, Rabin, and Streett Games

Muller Games

Given a game graph G = (S, S0, E) and a Muller condition F ⊆ P(S),

then a play ρ is winning for Player 0 if exists F ∈ F s.t.

Inf(ρ) = F.

Recall, in Staiger-Wagner games, we had Occ(ρ) = F .

Example

Player 0 wins iff the number of states in S0 = {s1, s2, s3, s4} visited

infinitely often is equal to the lowest index of the states in

S1 = {t1, t2, t3, t4} visited infinitely often.

s1

s2

s3

s4

t1

t2

t3

t4

Winning condition in Muller form: F ∈ F iff mini(ti ∈ F) = |F ∩ S0|.

Record the Past

For simplicity, we record only the s-states.

Visited letter Record set

s1 s1

s3 s1s3

s3 s1s3

s4 s1s3s4

s2 s1s2s3s4

s4 s1s2s3s4

s3 -”-

s4 -”-

s4 -”-

Latest Appearance Record

Visited letter Record set LAR

s1 s1 s1s2s3s4(1)

s3 s1s3 s3s1s2s4(3)

s3 s1s3 s3s1s2s4(1)

s4 s1s3s4 s4s3s1s2(4)

s2 s1s2s3s4 s2s4s3s1(4)

s4 s1s2s3s4 s4s2s3s4(2)

s3 -”- ..

s4 -”- ..

s4 -”- ..

Example

Assume the states s3 and s4 are repeated infinitely often. Then:

◮ the states s1 and s2 eventually arrive at the last two positions

and are not touched any more, so finally the hit appears at most

on positions 1 and 2

◮ position 2 is hit again and again; if only position 1 is hit from

some point onwards, only the same letter would be chosen from

there onwards (and not two states s3 and s4 as assumed)

Example

LAR-strategy for Player 0:

During play update and use the LAR as follows:

◮ shift the letter of the current state to the front

◮ record the position from where the current letter was taken

◮ move to the state whose index is the current hit position

This is a finite-state winning strategy with n! · n memory states if n

letter states and n number states occur in the game graph.

From Muller to Parity Games

Theorem

For a game (G,φ) with G = (S, S0, E) and Muller winning condition φ

(using the set F ⊆ 2S), there is a game (G′, φ′) with G′ = (S′, S′
0, E

′)

and parity winning condition φ′ such that (G,φ) ≤ (G′, φ′)

Proof.

Assume = {1, . . . n}. Define S′ := LAR(S)

LAR(S) is the set of pairs ((i1, . . . in), h) consisting of a permutation

of 1, . . . n and a number h ∈ {1, . . . n}.

Construction

Initialisation: For i ∈ S set

g(i) = ((i, i + 1, . . . , n, 1, . . . , i − 1), 1)

Definition of E′: Introduce an edges from ((i1 . . . in), h) to

((imi1 . . . im−1im+1 . . . in),m) if (i1, im) ∈ E

Construction

Initialisation: For i ∈ S set

g(i) = ((i, i + 1, . . . , n, 1, . . . , i − 1), 1)

Definition of E′: Introduce an edges from ((i1 . . . in), h) to

((imi1 . . . im−1im+1 . . . in),m) if (i1, im) ∈ E

How should we assign the priorities?

Record Sets and Priorities

Recall, priorities in the reduction of Staiger-Wagner to Weak-Parity.

F = {{s0, s1}, {s0, s1, s2}}.

∅

{s0} : 5 {s1} : 5 {s2} : 5

{s0, s1} : 2 {s1, s2} : 3{s0, s2} : 3

{s0, s1, s2} : 0

d.c.

4 or 5

2 or 3

0 or 1

Construction(2)

Now, we are only interested in states visited infinitely often. The hit

value tells as how many states are visited infinitely often.

E.g., if s0 and s1 are visited infinitely often, we see from some point

on only the LARs: (s0s1 . . . , 1),(s0s1 . . . , 2), (s1s0 . . . , 1), (s1s0 . . . , 2).

If F = {{s0, s1}}, then we want plays that visit only (s0s1 . . . , 1) or

(s1s0 . . . , 1) from some point on to be losing. So, the priorities signed

to (s0s1 . . . , 2) or (s0s1 . . . , 2) need to override the priorities of

(s0s1 . . . , 1) or (s1s0 . . . , 1).

Construction(2)

Now, we are only interested in states visited infinitely often. The hit

value tells as how many states are visited infinitely often.

E.g., if s0 and s1 are visited infinitely often, we see from some point

on only the LARs: (s0s1 . . . , 1),(s0s1 . . . , 2), (s1s0 . . . , 1), (s1s0 . . . , 2).

If F = {{s0, s1}}, then we want plays that visit only (s0s1 . . . , 1) or

(s1s0 . . . , 1) from some point on to be losing. So, the priorities signed

to (s0s1 . . . , 2) or (s0s1 . . . , 2) need to override the priorities of

(s0s1 . . . , 1) or (s1s0 . . . , 1).

Priorities p: LAR(S) → {1, . . . 2n}

p((i1 . . . in, h)) = 2n −

2h − 1 if {i1 . . . ih} 6∈ F

2h if {i1 . . . ih} ∈ F

Proof of Correctness

Lemma

Given a play ρ in (G,φ) and its counterpart ρ′ in (G′, φ′), then

Inf(ρ) = F with |F | = m iff

1. in ρ′ the hit value is > m only finitely often

2. in ρ′ the hit-segment is equal to F infinitely often

Proof (forward).

Let Inf(ρ) = F and |F | = m. Choose k and k′ > k s.t. forall j > k

ρ(j) ∈ F and {ρ(k), . . . , ρ(k′ − 1)} = F .

By construction of ρ′, the F -states F = {i1, . . . , im} are at the

beginning of ρ′(k′) and for every k′′ > k′ the hit is always ≤ m (1).

Proof of Correctness

Proof (forward cont.)

For the hit equal to m the hit-segment must be the set F . So, for (2)

it suffices to show that the hit is infinitely often equal to m. Assume

the hit is only finitely often equal to m, then eventually the

LAR-entries im, im+1, . . . , in are not changed anymore (and so, these

states are not visited anymore). Then,|Inf(ρ)| < m, which

contradcits Inf(ρ) = F with |F | = m.

Proof (backwards).

Assume (1) and (2) holds. It follows from (1), that the LAR-entries

im+1, . . . , in in ρ′ are fixed from some point j0 onwards. So, the states

im+1, . . . , in are not visited anymore after j0. From, (2) it follows that

im+1, . . . , in are not in F (i.e., Inf(ρ) ⊆ F).

Proof of Correctness

Proof (backwards cont.)

For F ⊆ Inf(ρ), assume q ∈ F but q 6∈ Inf(ρ).

Since q ∈ F and hit-segment = F infinitely often (2), we know that

q ∈ hit-segment infinitely often. Furthermore, since |hit-segment| ≤ m

from some point on (1), it follows that from some point on the index i

of q in the hit segment is ≤ m. From q 6∈ Inf(ρ) it follows that from

some point onwards q can only stay in the same position in the LAR

or go to the right and its final position i is > m. Contradiction.

Example

3

1

2

0

ρ ∈ Win ↔ {0, 2} ⊆ Inf(ρ)

F = {{0, 2}, {0, 1, 2}, {0, 1, 2, 3}}

Summary

We can solve Muller games by reduction to parity games using the

Last Appearence Record construction.

Summary

We can solve Muller games by reduction to parity games using the

Last Appearence Record construction.

Finally, Rabin and Streett games can be viewed as Muller games.

Rabin and Streett Games

Given a game graph G = (S, S0, E) and a Rabin/Streett condition

{(F1, E1), . . . , (Fk, Ek)}, then a play ρ is winning for Player 0 for the

◮ Rabin condition if there exists (Fi, Ei)

s.t. Inf(ρ) ∩ Fi 6= ∅ ∧ Inf(ρ) ∩ Ei = ∅

◮ Streett condition if forall (Fi, Ei), we have that

Inf(ρ) ∩ Fi 6= ∅ → Inf(ρ) ∩ Ei 6= ∅

Rabin and Streett to Muller Games

Simple reduction:

Given a Rabin (or Streett) game (G,F) with G = (S, S0, E) and

F = {(F1, E1), . . . , (Fk, Ek)}, there exists an equivalent Muller game

(G′,F ′) with G′ = G and

F ′ = {F ∈ 2S | ∃i ∈ {1, . . . , k} : F ∩ Fi 6= ∅ ∧ F ∩ Ei = ∅} (Rabin)

F ′ = {F ∈ 2S | ∀i ∈ {1, . . . , k} : F ∩ Fi 6= ∅ → F ∩ Ei 6= ∅} (Streett)

Some interesting facts about Rabin/Streett games:

◮ In a Rabin game one of the players (Player 0) has a memoryless

strategy.

◮ There is a special record set called Index Appearance record

(IAR) optimized for Streett games. It records permutation and

satisfaction of Streett-pair indices (not states).

Back to Tree Automata

Muller tree automaton

Recall, a Muller tree automaton over Σ is A = (S, s0, T,F), where

◮ S is a finite set of states,

◮ s0 ∈ S is an initial state,

◮ T : S × Σ → 2S×S is a transition function

◮ F ⊆ 2S is the set of accepting sets.

Given an input tree t, a run π of A over t is accepting iff for every

path σ in t:

Inf(π|σ) ∈ F

Parity tree automaton

A Parity tree automaton over Σ is A = (S, s0, T, p), where

◮ S is a finite set of states,

◮ s0 ∈ S is an initial state,

◮ T : S × Σ → 2S×S is a transition function

◮ p : S → {0, . . . k} is a priority function.

Given an input tree t, a run π of A over t is accepting iff for every

path σ in t:

min
s∈Inf(π|σ)

p(s) is even

Example

A parity tree automaton over Σ = {a, b} that recognizes all binary

trees

T = {t ∈ T ω(Σ) | each path through t has only finitely many b}

◮ S = {qa, qb}

◮ I = {qa, qb}

◮ T (qa, a) = {(qa, qa)}, T (qb, a) = {(qa, qa)}

T (qa, b) = {(qb, qb)}, T (qb, b) = {(qb, qb)}

◮ p(qa) = 2, p(qb) = 1

Tree Automata and Games

With any parity tree automaton A = (S, s0, T, p) over Σ and any

input tree t ∈ T ω(Σ), we can associate a parity game between

◮ Player Automaton and

◮ Player Pathfinder

with proceeds as follows:

◮ First, Automaton picks a transition in T (from s0) which

matches the labels of the root of t

◮ Then Pathfinder decides on a direction (left or right) to proceed

to a son of the root

◮ Then Automaton chooses again a transition for this node (and

compatible with the first transition)

◮ Then Pathfinder reacts again by branching left or right...

Tree Automata and Games

Such a play give a sequence of transitions (and hence a sequence of

states in S) built up along a path chosen by Pathfinder.

Automaton wins the play iff the sequence of states satisfies the parity

condition.

Given a parity tree automaton A = (S, s0, T, p) over Σ and an input

tree t, the game graph GA,t = (S0 ∪ S1, S0, E) is defined by

◮ S0 = {(w, t(w), s) | w ∈ {0, 1}∗, t(w) ∈ Σ, s ∈ S0},

◮ S1 = {(w, t(w), τ) | w ∈ {0, 1}∗, t(w) ∈ Σ, τ ∈ T},

and the edges relation E is such that successive game positions are

compatible with the transitions in A on t.

The priority of a triple u = (w, t(w), s) or (w, t(w), (s, t(w), s′ , s′′)) is

the priority p(s). (Standard initial position: (ǫ, t(ǫ), s0))

Tree Automata and Games

Lemma

The tree automaton A accepts an input tree t iff in the parity game

over GA,t there is a winning strategy for player Automaton from the

initial position (ǫ, t(ǫ), s0).

Proof.

A successful run of A on t yields a winning strategy for Automaton in

the parity game over GA,t: Along each path the suitable choice of

transitions is fixed by the run.

Conversely, a winning strategy for Automaton over GA,t clearly

provides a method to build up a successful run of A on t. Just apply

this winning strategy along arbitrary paths.

Emptiness of Parity Tree Automata

Lemma

For each parity tree automata A = (S, s0, T, p) over Σ, there exists an

input-free tree automaton A′ such that L(A) 6= ∅ iff A′ admits a

successful run.

Idea: build an automaton A′ that guesses an input tree t

Proof.

Given A = (S, s0, T, p) over Σ, we construct

A′ = (S × Σ, s0 × Σ, T ′, p′) that nondeterministically guesses an input

tree t in the second component of its states.

T ′ = {((s, a), (s′, x), (s′′, y)) | (s, a, s′, s′′) ∈ T and

∃p, p′, r, r′ : (s′, x, p, p′) and (s′′, y, r, r′) ∈ T} and p′(s, a) = p(s) for all

states (s, a). The behavior of A′ and A on the guessed input t is

identical.

Emptiness of Parity Tree Automata

For every input-free tree automaton A = (S, s0, T, p), we can associate

a simpler parity game ((S0 ∪ S1, S0, E), p′)

◮ S0 = S and

◮ S1 = T = S × S × S

◮ ∀s ∈ S, (s, s′, s′′) ∈ T , we have (s, (s, s′, s′′)) ∈ E and

∀(s, s′, s′′) ∈ T we have ((s, s′, s′′), s′) and ((s, s′, s′′), s′′) ∈ E

◮ p′((s, s′, s′′)) = p(s) and p′(s) = p(s)

Clearly, every strategy for Player 0 corresponds to a run and vice

versa. So, every winning strategy corresponds to a successful run (vv)

Theorem

For parity tree automata it is deciable wheater their recognized

language is empty or not.

Example

Consider the input-free tree automaton A = (S, s0, T, p) with

S = {s0, sa, sb, sd} and T =

{(s0, sa, sd), (s0, sd, sb), (sa, sa, s0), (sa, sd, sa), (sd, sd, sb), (sb, sb, sd)}.

Parity ↔ Muller

Theorem

1. For any parity tree automaton one can construct an equivalent

Muller tree automaton.

2. For any Muller tree automaton one can construct an equivalent

parity tree automaton.

Proof 2.

Given a parity tree automaton A = (S, s0, T, p) keep states and

transitions and define F as follows:

F = {F ∈ 2S | min
s∈F

p(s) is even}

Parity ↔ Muller

Proof 1.

Copy the simulation of Muller games by parity games. Given a

Muller tree automaton with state set S use for the parity tree

automaton the state set LAR(S) and define the transition according

to the LAR update rule.

Allow transition

((s1 . . . sn, i), a, (s′1 . . . s′n, j), (s′′1 . . . s′′n, k))

for transition (s1, a, s′1, s
′′
1) of the Muller automaton, where

◮ (s′1 . . . s′n, j) is the LAR update for a visit to s′1 and

◮ (s′′1 . . . s′′n, k) is the LAR update for a visit to s′′1.

Define priorities as in the simulation of Muller games by parity games.

Summary: Tree Automaton

◮ Tree Automata can be viewed as games between Automaton and

Pathfinder

◮ Parity and Muller tree automata can be reduced to each other

◮ (Same holds for Rabin/Streett, Parity, and Muller tree automata)

◮ Radu showed closure properties of Muller tree automaton (union,

intersection, projection)

◮ Missing: complementation

Complementation of Parity Tree Automaton

We will show basic idea.

◮ To complement a given automaton A means to construct an

automaton B s.t.

t 6∈ A ↔ t ∈ B

◮ Due to the run lemma, complementation means to conclude from

the non-existence of a winning strategy of Player Automaton in

GA,t that there exists a winning strategy of Automaton in GB,t.

Proof has two steps:

1. use determinacy of parity games to show that if Automaton has

no winning strategy over GA,t, then Pathfinder has a winning

strategy over GA,t (from (ǫ, t(ǫ), s0))

2. Convert Pathfinder’s strategy into an Automaton strategy.

Complementation of Parity Tree Automaton

Theorem

For any parity tree automaton A over Σ, one can construct a Muller

tree automaton (and therefore a parity tree automaton) B over Σ that

recognizes T ω(Σ) \ L(A)

Proof.

From Step 1 (determinacy of parity games), we know there exists a

(memoryless) winning strategy f : S1 → {0, 1} for Player Pathfinder.

f : {0, 1}∗ × Σ × T → {0, 1}

decompose f into a family of strategies parameterized by w ∈ {0, 1}∗

fw : Σ × T → {0, 1}

Complementation of Parity Tree Automaton

Let I be the set of all possible local instructions i : Σ × T → {0, 1}.

Then, f can be represented as I-labeled binary tree s with s(w) = fw.

Let s · t be the corresponding (I × Σ)-labeled tree

s · t(w) = (s(w), t(w)) for w ∈ {0, 1}∗.

Since f exists, we know there is an I-labeled tree s s.t. for all

sequences τ0τ1 . . . of transitions chosen by Automaton and for all

paths (in path for the unique) π ∈ {0, 1}∗, the generated state

sequence violates the parity condition.

Intuitively, f tells the “new” automaton for every tree t 6∈ L(A) which

path to track for a given transition sequences in order to

reject/accept the tree t.

Complementation of Parity Tree Automaton

So, we know:

1. There exists an I-labeled tree s such that s · t satisfies

2. for all π ∈ {0, 1}ω

3. for all τ0τ1 · · · ∈ Tω

4. if the sequence s|π of local

instructions applied to the sequence of tree labels t|π and

the sequence τ0τ1 . . . produces the path π, then the state

sequence determined by τ0τ1 . . . violates the parity

condition.

Complementation of Parity Tree Automaton

◮ Condition 4 is a property of ω-words over I × Σ × T × {0, 1},

which can be checked by a Muller word automaton M4.

◮ Condition 3 is a property of ω-words over I × Σ × {0, 1} checked

by M3, which results from M4 by universally quantifying T

(negate, project, negate).

◮ Condition 2 is a property of (I × Σ)-labeled trees, which can be

checked by a Muller tree automaton M2 that simulates M3 along

each path.

◮ Condition 1, apply nondeterminism, a Muller tree automaton B

can be built by guessing a tree s on the input tree t and running

M2 on s · t.

