Automata and Logic

Radu Iosif
Verimag/CNRS (Grenoble, France)

Ensuring Correctness of Hw/Sw Systems

- Uses logic to specify correctness properties, e.g.:
 - the program never crashes
 - the program always terminates
 - every request to the server is eventually answered
 - the output of the tree balancing function is a tree, provided the input is also a tree ...
- Given a logical specification, we can do either:
 - VERIFICATION: prove that a given system satisfies the specification
 - SYNTHESIS: build a system that satisfies the specification

Approaches to Verification

- THEOREM PROVING: reduce the verification problem to the satisfiability of a logical formula (entailment) and invoke an off-the-shelf theorem prover to solve the latter
 - Floyd-Hoare checking of pre-, post-conditions and invariants
 - Certification and Proof-Carrying Code
- MODEL CHECKING: enumerate the states of the system and check that the transition system satisfies the property
 - explicit-state model checking (SPIN)
 - symbolic model checking (SMV)
- COMBINED METHODS:
 - static analysis (ASTREE)
 - predicate abstraction (SLAM, BLAST)

Approaches to Synthesis

• TREE AUTOMATA:

- starting point: logical specification
- build word automaton from logic formula
- transform into tree automaton
- decide emptiness and build system from witness tree

CONTROL and GAME THEORY:

- starting point: incomplete/uncontrolled system with two types of freedom (system/environment choice) and an objective
- the uncontrolled system is given as a game
- controller/strategy tell how to achieve objective

Logic and Automata Connection

Given a logical formula φ , we build an automaton A_{φ} that recognizes the set of all structures (models) in which φ holds.

Assuming that A_{φ} belongs to a well-behaved class of automata, we can tackle the following problems:

- ullet SATISFIABILITY: φ has a model if and only if A_{φ} is not empty
- ullet MODEL CHECKING: a given structure is a model of arphi if and only if it belongs to the language of A_{arphi}

Overview

	First Order Logic	\subset	Monadic Second Order Logic
finite words	*		Deterministic Finite Automata
infinite words	Linear Temporal Logic		Büchi Automata
finite trees	*		Tree Automata
infinite trees	*		Rabin Automata
			Games
			μ -calculus

Overview

Presburger Arithmetic $\subset \langle \mathbb{N}, +, V_p \rangle$

Semilinear Sets p-automata

Preliminaries

Words

An *alphabet* is a finite non-empty set of symbols $\Sigma = \{a, b, c, \ldots\}$.

A word of length n over Σ is a sequence $w = a_1 a_2 \dots a_n$, where $a_i \in \Sigma$, for all $1 \le i \le n$. An *infinite word* is an infinite sequence of elements of Σ .

Equivalently, a word is a function $w:\{0,1,\ldots,n-1\}\to \Sigma$. The *length* n of the word w is denoted by |w|. The *empty word* is denoted by ϵ , i.e. $|\epsilon|=0$.

 Σ^* (Σ^{ω}) is the set of all finite (infinite) words over Σ .

The *concatenation* of two words w and u is denoted as wu. The *prefix* u of w is defined as $u \leq w$ iff there exists $v \in \Sigma^*$ such that uv = w.

Trees

A prefix-closed set $S \in \Sigma^*$ is a set such that for all $w \in S$ and $u \in \Sigma^*$, $u < w \Rightarrow u \in S$.

A *tree* over Σ is a partial function $t: \mathbb{N}^* \to \Sigma$ such that dom(t) is a prefix-closed set.

A tree t is said to be *finite-branching* iff for all $p \in dom(t)$, the number of children of p is finite. A tree t is said to be *finite* if dom(t) is finite.

Lemma 1 (König) A finitely branching tree is infinite if and only if it has an infinite path.

Ranked Trees

A ranked alphabet $\langle \Sigma, \# \rangle$ is a set of symbols together with a function $\#: \Sigma \to \mathbb{N}$. For $f \in \Sigma$, the value #(f) is said to be the arity of f.

A ranked tree t over Σ is a partial function $t: \mathbb{N}^* \to \Sigma$ that satisfies the following conditions:

- dom(t) is a finite prefix-closed subset of \mathbb{N}^* , and
- for each $p \in dom(t)$, if #(t(p)) = n > 0 then $\{i \mid pi \in dom(t)\} = \{1, \dots, n\}.$

A symbol of arity zero is also called a *constant*. A finite tree over a ranked alphabet is also called a *term*.

First Order Logic

The *alphabet* of FOL consists of the following symbols:

- predicate symbols: $p_1, p_2, \ldots, =$
- function symbols: f_1, f_2, \dots
- constant symbols: c_1, c_2, \ldots
- first-order variables: x, y, z, ...
- connectives: $\lor, \land, \rightarrow, \leftrightarrow, \neg, \bot, \forall, \exists$

The set of *first-order terms* is defined inductively:

- ullet any constant symbol c is a term,
- ullet any first-order variable x is a term,
- if t_1, t_2, \ldots, t_n are terms and f is a function symbol of arity n > 0, then $f(t_1, t_2, \ldots, t_n)$ is a term,
- nothing else is a term.

A term with no variable is said to be a *ground term*. An *atomic proposition* is any proposition of the form $p(t_1, \ldots, p_n)$ or $t_1 = t_2$, where t_1, t_2, \ldots, t_n are terms.

The set of *first-order formulae* is defined inductively:

- \perp and \top are formulae,
- p is a formula, if #(p) = 0,
- if t_1, t_2, \ldots, t_n are terms and p is a predicate symbol of arity n > 0, then $p(t_1, t_2, \ldots, t_n)$ is a formula,
- if t_1, t_2 are terms, then $t_1 = t_2$ is a formula,
- if φ and ψ are formulae, then $\varphi \bullet \psi$, $\neg \varphi$, $\forall x \cdot \varphi$ and $\exists x \cdot \varphi$ are formulae, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$,
- nothing else is a formula.

The *language* of logic FOL is the set of formulae, denoted as $\mathcal{L}(FOL)$.

FOL Formulae

$$x = y$$

$$\forall x \forall y \ . \ x = y \leftrightarrow y = x$$

$$\exists x (\forall y \ . \ p(x,y)) \rightarrow q(x)$$

$$\forall x : p(x) \rightarrow q(f(x))$$

$$\forall x \exists y . f(x) = y \land (\forall z . f(z) = y \rightarrow z = x)$$

FOL Formulae

The *size* of a formula is the number of subformulae it contains, in other words, the number of nodes in the syntax tree representing the formula. The size of φ is denoted as $|\varphi|$.

The variables within the scope of a quantifier are said to be *bound*. The variables that are not bound are said to be *free*. We denote by $FV(\varphi)$ the set of free variables in φ . If $FV(\varphi) = \emptyset$ then φ is said to be a *sentence*.

Example 1
$$FV(\forall x . x = y \land x = z \rightarrow p(x)) = \{y, z\} \Box$$

If $x \in FV(\varphi)$, we denote by $\varphi[t/x]$ the formula obtained from φ by substituting x with the term t.

A *structure* is a tuple $\mathfrak{m} = \langle U, \bar{p_1}, \bar{p_2}, \dots, \bar{f_1}, \bar{f_2}, \dots \rangle$, where:

- *U* is a (possible infinite) set called the *universe*,
- $\bar{p}_i \subseteq U^{\#(p_i)}$, $i = 1, 2, \ldots$ are the *predicates*,
- $\bar{f}_i: U^{\#(f_i)} \to U$, $i=1,2,\ldots$ are the functions,

The elements of the universe are called *individuals*, denoted by $\bar{c_1}, \bar{c_2}, \ldots$

NB: Every constant c has a corresponding individual \bar{c} , but not viceversa.

Let $\mathfrak{m} = \langle U, \bar{p_1}, \bar{p_2}, \dots, \bar{f_1}, \bar{f_2}, \dots \rangle$ be a *structure*.

The interpretation of variables is a function:

$$.^{\mathfrak{m}}:\{x,y,z,\ldots\}\to U$$

The interpretation of a term t in a structure \mathfrak{m} is denoted as $t^{\mathfrak{m}} \in U$:

$$c^{\mathfrak{m}} = \overline{c} \in U$$

$$f(t_1, \dots, t_n)^{\mathfrak{m}} = \overline{f}(t_1^{\mathfrak{m}}, \dots, t_n^{\mathfrak{m}})$$

The *meaning* of a sentence φ in a structure \mathfrak{m} is denoted as $[\![\varphi]\!]_{\mathfrak{m}} \in \{\text{true}, \text{false}\}$:

$$\begin{split} & \llbracket L \rrbracket_{\mathfrak{m}} & = & \text{false} \\ & \llbracket p(t_1, \dots, t_n) \rrbracket_{\mathfrak{m}} & = & \text{true} & \text{iff} & \langle t_1^{\mathfrak{m}}, \dots, t_n^{\mathfrak{m}} \rangle \in \bar{p} \\ & \llbracket t_1 = t_2 \rrbracket_{\mathfrak{m}} & = & \text{true} & \text{iff} & t_1^{\mathfrak{m}} = t_2^{\mathfrak{m}} \\ & \llbracket \neg \varphi \rrbracket_{\mathfrak{m}} & = & \text{true} & \text{iff} & \llbracket \varphi \rrbracket_{\mathfrak{m}} = \text{false} \\ & \llbracket \varphi \wedge \psi \rrbracket_{\mathfrak{m}} & = & \text{true} & \text{iff} & \llbracket \varphi \rrbracket_{\mathfrak{m}} = \mathbb{I} \psi \rrbracket_{\mathfrak{m}} = \text{true} \\ & \llbracket \exists x \; . \; \varphi \rrbracket_{\mathfrak{m}} & = & \text{true} & \text{iff} & \llbracket \varphi [t/x] \rrbracket_{\mathfrak{m}} = \text{true}, & \text{for some term } t, \; FV(t) = \emptyset \end{split}$$

Derived meanings:

Decision Problems

If $\llbracket \varphi \rrbracket_{\mathfrak{m}} = \text{true we say that } \mathfrak{m} \text{ is a } \underline{model} \text{ of } \varphi$, denoted as $\mathfrak{m} \models \varphi$.

If $\mathfrak{m} \models \varphi$ for all structures \mathfrak{m} , we say that φ is *valid*, denoted as $\models \varphi$.

If φ has at least one model, we say that it is *satisfiable*.

Satisfiability: Given φ is it satisfiable?

Model Checking: Given \mathfrak{m} and φ , does $\mathfrak{m} \models \varphi$?

Examples

Let \leq be a binary predicate symbol, and $\mathfrak{m}=\langle U, \leq \rangle$ be a structure. \mathfrak{m} is a partially ordered set if $\mathfrak{m}\models \varphi_1 \wedge \varphi_2$, where:

$$\varphi_1 : \forall x \forall y . x \leq y \land y \leq x \leftrightarrow x = y$$

$$\varphi_2 : \forall x \forall y \forall z . x \leq y \land y \leq z \rightarrow x \leq z$$

Notice that $\models \varphi_1 \rightarrow \forall x . x \leq x$.

 \mathfrak{m} is a linearly ordered set if $\mathfrak{m} \models \varphi_1 \land \varphi_2 \land \varphi_3$, where:

$$\varphi_3 : \forall x \forall y . x \leq y \lor y \leq x$$

Exercises

Exercise 1 Two problems P and Q are equivalent when a method for solving P is also a method for solving Q, and viceversa. Show that satisfiability and validity of first-order sentences are equivalent problems. \square

Exercise 2 Prove the validity of the following sentences:

$$\forall x \forall y \forall z . \ x = y \land y = z \rightarrow x = z$$

$$(\exists x . \varphi \lor \psi) \leftrightarrow ((\exists x . \varphi) \lor (\exists x . \psi))$$

$$(\forall x . \varphi \land \psi) \leftrightarrow ((\forall x . \varphi) \land (\forall x . \psi))$$

$$(\exists x . \varphi \land \psi) \rightarrow ((\exists x . \varphi) \land (\exists x . \psi))$$

$$\neg(((\exists x . \varphi) \land (\exists x . \psi)) \rightarrow (\exists x . \varphi \land \psi))$$

$$((\forall x . \varphi) \lor (\forall x . \psi)) \rightarrow (\forall x . \varphi \lor \psi)$$

$$\neg((\forall x . \varphi \lor \psi) \rightarrow ((\forall x . \varphi) \lor (\forall x . \psi)))$$

Normal Forms

A formula $\varphi \in \mathcal{L}(FOL)$ is said to be *quantifier-free* iff it contains no quantifiers.

A quantifier-free formula $\varphi \in \mathcal{L}(FOL)$ is said to be in *negation normal form* (NNF) iff the only subformulae appearing under negation are atomic propositions.

A formula $\varphi \in \mathcal{L}(FOL)$ is said to be in *prenex normal form* (PNF) iff

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \cdot \psi(x_1, x_2, \dots, x_n)$$

where $Q_i \in \{\exists, \forall\}$ and ψ is a quantifier-free formula. Sometimes ψ is said to be the *matrix* of φ .

Normal Forms

A quantifier-free formula $\varphi \in \mathcal{L}(FOL)$ is said to be in *disjunctive normal* form (DNF) iff

$$\varphi = \bigvee_{i} \bigwedge_{j} \lambda_{ij}$$

where λ_{ij} are either atomic propositions or negations of atomic propositions.

A quantifier-free formula $\varphi \in \mathcal{L}(FOL)$ is said to be in *conjunctive normal* form (CNF) iff

$$\varphi = \bigwedge_{i} \bigvee_{j} \lambda_{ij}$$

where λ_{ij} are either atomic propositions or negations of atomic propositions.

FOL on Finite Words

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet and $w : \{0, 1, \ldots, n-1\} \to \Sigma$ be a **finite word**, e.g. $w = a_0 a_1 \ldots a_{n-1}$.

The structure corresponding to w is $\mathfrak{m}_w = \langle dom(w), \{\bar{p_a}\}_{a \in \Sigma}, \bar{\leq} \rangle$, where:

- $dom(w) = \{0, 1, \dots, n-1\},\$
- $\bar{p_a} = \{x \in dom(w) \mid w(x) = a\}$,
- $x \leq y$ iff $x \leq y$.

$$\mathfrak{m}_{abbaab} = \langle \{0, \dots, 5\}, \bar{p_a} = \{0, 3, 4\}, \bar{p_b} = \{1, 2, 5\}, \bar{\leq} \rangle$$

Exercises

Exercise 3 Write a FOL formula S(x,y) which is valid for all positions $x,y\in\mathbb{N}$ such that y=x+1. \square

Exercise 4 Write a FOL sentence whose models are all words with a on even positions and b on odd positions. Next, (try to) write a FOL sentence whose models are all words with a on even positions. \square

Exercise 5 Write a FOL sentence whose models are all finite words.

FOL on Infinite Words

Let $w: \mathbb{N} \to \Sigma$ be an infinite word.

The structure corresponding to w is $\mathfrak{m}_w = \langle \mathbb{N}, \{\bar{p_a}\}_{a \in \Sigma}, \bar{\leq} \rangle$.

We denote by Σ^{ω} the set of all infinite words, and by $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$.

$$\mathfrak{m}_{(ab)^{\omega}} = \langle \mathbb{N}, \bar{p_a} = \{2k \mid k \in \mathbb{N}\}, \bar{p_b} = \{2k+1 \mid k \in \mathbb{N}\}, \bar{\leq} \rangle$$

FOL on Finite Trees

Let $\Sigma = \{f, g, \ldots\}$ be an alphabet and $t : \mathbb{N}^* \to \Sigma$ be a finite tree over Σ .

The structure corresponding to t is $\mathfrak{m}_t = \langle dom(t), \{\bar{p_f}\}_{f \in \Sigma}, \vec{\leq}, \{s_n\}_{n \in \mathbb{N}} \rangle$, where:

- $\bar{p_f} = \{ p \in dom(t) \mid t(p) = f \},$
- \bullet \leq is the prefix order on \mathbb{N}^* ,
- $s_n(p) = pn$ for any $n \in \mathbb{N}$, is the n-th successor function.

$$\mathfrak{m}_{f(f(g,g),g)} = \langle \{\epsilon, 0, 1, 00, 01\}, \bar{p_f} = \{\epsilon, 0\}, \bar{p_g} = \{00, 01, 1\}, \bar{\leq}, \{s_n\}_{n \in \mathbb{N}} \rangle.$$

Exercise

Exercise 6 A red-black tree is a tree in which all nodes are either red or black, such that the root is black, and each red node has only black children. Write a FOL sentence whose models are all red-black trees. \square

FOL on Infinite Trees

Let $t: \mathbb{N}^* \to \Sigma$ be an infinite tree over Σ .

The structure corresponding to t is $\mathfrak{m}_t = \langle \mathbb{N}^*, \{\bar{p_f}\}_{f \in \Sigma}, \bar{\leq}, \{s_n\}_{n \in \mathbb{N}} \rangle$.

The *lexicographic* order on \mathbb{N}^* is defined as follows:

$$x \leq y : x \leq y \vee \exists z . s_0(z) \leq x \wedge s_1(z) \leq y$$

Monadic Second Order Logic

The alphabet of MSOL consists of:

- all first-order symbols
- set variables: X, Y, Z, ...

The set of MSOL terms consists of all first-order terms and set variables. The set of MSOL formulae consists of:

- all first-order formulae, i.e. $\mathcal{L}(FOL) \subseteq \mathcal{L}(MSOL)$,
- ullet if t is a term and X is a set variable, then X(t) is a formula,
- if φ and ψ are formulae, then $\varphi \bullet \psi$, $\neg \varphi$, $\forall x . \varphi$, $\exists x . \varphi$, $\forall X . \varphi$ and $\exists X . \varphi$ are formulae, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$.

X(t) is sometimes written $t \in X$.

Examples

$$\exists X \forall x . X(x)$$

$$\forall x . X(x) \to Y(x)$$

$$\forall Y . ((\forall x . Y(x) \to X(x)) \land \exists x . X(x) \land \neg Y(x)) \to \forall x . \neg Y(x)$$

Let $\mathfrak{m} = \langle U, \bar{p_1}, \bar{p_2}, \dots, \bar{f_1}, \bar{f_2}, \dots \rangle$ be a *structure*.

The interpretation of set variables is a function:

$$.^{\mathfrak{m}}: \{X, Y, Z, \ldots\} \rightarrow 2^{U}$$

Example 2 The following MSOL formula characterizes all partitions $\langle X, Y \rangle$ of Z:

$$partition(X, Y, Z) : (\forall x \forall y . X(x) \land Y(y) \rightarrow \neg x = y) \land (\forall x . Z(x) \leftrightarrow X(x) \lor Y(x))$$

MSOL on Words: (W)S1S

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet. The alphabet of the sequential calculus is composed of:

- the function symbol s denotes the successor,
- the set constants $\{p_a \mid a \in \Sigma\}$; p_a denotes the set of positions of a
- the first and second order variables and connectives.

(W)eak indicates that quantification is over finite sets only.

Q: Let $\mathfrak{m}_{abbaab} = \langle \{0, \dots, 5\}, \bar{p_a} = \{0, 3, 4\}, \bar{p_b} = \{1, 2, 5\}, \leq \rangle$ be a finite word. How much is s(5)?

Examples

The order $x \leq y$ on positions is defined as:

- closed(X) : $\forall x . X(x) \rightarrow X(s(x))$
- $x \leq y : \forall X . X(x) \land closed(X) \rightarrow X(y)$

Q: Given \leq how do you define s?

The formula $len(x): \forall y \ . \ y \leq x$ defines the length of a finite word and is unsatisfiable on infinite words.

The set of positions of a word is defined by $pos(X): \forall x$. X(x).

Examples

The set of even positions is defined by

$$even(X)$$
 : $\exists Y, Z . pos(Z) \land partition(X, Y, Z) \land \\ \forall x, y . X(x) \land s(x) = y \rightarrow Y(y) \land \\ \forall x, y . Y(x) \land s(x) = y \rightarrow Y(x)$

The set of all words having a's on even positions is the set of models of the sentence:

$$\exists X : even(X) \land \forall x : X(x) \rightarrow p_a(x)$$

Exercise

Exercise 7 Write a S1S formula whose models are exactly all infinite words starting with an even number of 0's followed by an infinite number of 1's. \square

MSOL on Trees: (W)S ω S

Let $\Sigma = \{a, b, \ldots\}$ be a tree alphabet. The alphabet of (W)S ω S is:

- the function symbols $\{s_i \mid i \in \mathbb{N}\}$; $s_i(x)$ denotes the *i*-th successor of x
- the set constants $\{p_a \mid a \in \Sigma\}$; p_a denotes the set of positions of a
- the first and second order variables and connectives.

In FOL on trees we had \leq (prefix) instead of s_i . Why?

Examples

Let us consider binary trees, i.e. the alphabet of S2S.

- The formula $closed(X): \forall x: X(x) \rightarrow X(s_0(x)) \land X(s_1(x))$ denotes the fact that X is a downward-closed set.
- The prefix ordering on tree positions is defined by $x \leq y : \forall X . closed(X) \land X(x) \rightarrow X(y).$
- The root of a tree is defined by root(x) : $\forall y$. $x \leq y$.

Exercise

Exercise 8 Define the set of binary trees $t: \{0,1\}^* \to \{a,b\}$ such that t(p) = a if p is of even length and t(p) = b if p is of odd length. \square

Exercise 9 Write a $S\omega S$ formula path(X) that defines the set of all paths in a binary tree. \square

Exercise 10 Write a $S\omega S$ sentence whose models are all finite trees. \square