Automata and Logic

Radu losif
Verimag/CNRS (Grenoble, France)



Ensuring Correctness of Hw/Sw Systems

e Uses logic to specify correctness properties, e.g.:
— the program never crashes
— the program always terminates
— every request to the server is eventually answered
— the output of the tree balancing function is a tree, provided the input
IS also a tree ...
e Given a logical specification, we can do either:
— VERIFICATION: prove that a given system satisfies the specification
— SYNTHESIS: build a system that satisfies the specification



Approaches to Verification

e THEOREM PROVING: reduce the verification problem to the satisfiability
of a logical formula (entailment) and invoke an off-the-shelf theorem

prover to solve the latter
— Floyd-Hoare checking of pre-, post-conditions and invariants

— Certification and Proof-Carrying Code

e MODEL CHECKING: enumerate the states of the system and check that

the transition system satisfies the property
— explicit-state model checking (SPIN)
— symbolic model checking (SMV)

e COMBINED METHODS:
— static analysis (ASTREE)
— predicate abstraction (SLAM, BLAST)



Approaches to Synthesis

e TREE AUTOMATA:
— starting point: logical specification
— build word automaton from logic formula
— transform into tree automaton

— decide emptiness and build system from witness tree

e CONTROL and GAME THEORY:

— starting point: incomplete/uncontrolled system with two types of

freedom (system /environment choice) and an objective
— the uncontrolled system is given as a game

— controller/strategy tell how to achieve objective



Logic and Automata Connection

Given a logical formula ¢, we build an automaton A, that recognizes the set

of all structures (models) in which ¢ holds.

Assuming that A, belongs to a well-behaved class of automata, we can

tackle the following problems:
o SATISFIABILITY: ¢ has a model if and only if A, is not empty

e MODEL CHECKING: a given structure is a model of ¢ if and only if it
belongs to the language of A,



Overview

First Order Logic C  Monadic Second Order Logic

finite words * Deterministic Finite Automata
infinite words | Linear Temporal Logic Buchi Automata
finite trees * Tree Automata
infinite trees * Rabin Automata
Games

p-calculus



Overview

Presburger Arithmetic C (N, +,V),)

Semilinear Sets p-automata



Preliminaries



Words

An alphabet is a finite non-empty set of symbols > = {a,b,c,...}.

A word of length n over X is a sequence w = ajas...a,, Where a; € X, for

all 1 <7 <n. An infinite word is an infinite sequence of elements of ..

Equivalently, a word is a function w : {0,1,...,n — 1} — 3. The length n of
the word w is denoted by |w|. The empty word is denoted by ¢, i.e. || = 0.

¥ (3¢) is the set of all finite (infinite) words over 3.

The concatenation of two words w and u is denoted as wu. The prefix u of w

Is defined as u < w iff there exists v € >.* such that uv = w.



Trees

A prefix-closed set S € X* is a set such that for all w € S and u € %,
u<w=u€es.

A tree over 3 is a partial function ¢t : N* — X such that dom(t) is a

prefix-closed set.

A tree t is said to be finite-branching iff for all p € dom(t), the number of
children of p is finite. A tree t is said to be finite if dom(t) is finite.

Lemma 1 (Konig) A finitely branching tree is infinite if and only if it has
an infinite path.



Ranked Trees

A ranked alphabet (3, #) is a set of symbols together with a function
# :3 — N. For f € %, the value #(f) is said to be the arity of f.

A ranked tree t over X is a partial function ¢t : N* — ] that satisfies the

following conditions:
e dom(t) is a finite prefix-closed subset of N*, and
e for each p € dom(t), if #(t(p)) = n > 0 then

{i | pi €dom(t)} ={1,...,n}.

A symbol of arity zero is also called a constant. A finite tree over a ranked

alphabet is also called a term.



First Order Logic



Syntax

The alphabet of FOL consists of the following symbols:
e predicate symbols: p1,pa,...,=
e function symbols. fi, fa,...
e constant symbols: cq,ca,. ..
e first-order variables: x,vy, z, ...

e connectives. V,\,—, <, 1, 1, V, 3



Syntax

The set of first-order terms is defined inductively:
e any constant symbol ¢ is a term,
e any first-order variable x is a term,

o ift1,12,...,t, are terms and f is a function symbol of arity n > 0, then
f(tl,tg, e ,tn) Is a term,

e nothing else is a term.

A term with no variable is said to be a ground term. An atomic proposition is
any proposition of the form p(t{,...,pn) or t1 = to, where tq,ts,...,t, are

terms.



Syntax

The set of first-order formulae is defined inductively:
e | and T are formulae,
e pis a formula, if #(p) =0,

o ift1,%2,...,t, are terms and p is a predicate symbol of arity n > 0, then

p(ty1,ta,...,t,) is a formula,
o if t1,to are terms, then t1 = t9 is a formula,

e if © and ¢ are formulae, then p ey, —~p, Vo . ¢ and dx . ¢ are formulae,
for e € {V, A, —, <},

e nothing else is a formula.

The language of logic FOL is the set of formulae, denoted as L(FOL).



FOL Formulae

r =1y

VaVy . e =y«—y==x

Jx(Vy . p(x,y)) — q(x)

Vo . p(z) — q(f(2))

Vedy . fle)=yANVz. f(z) =y — z=1x)



FOL Formulae

The size of a formula is the number of subformulae it contains, in other
words, the number of nodes in the syntax tree representing the formula. The

size of ¢ is denoted as |¢|.

The variables within the scope of a quantifier are said to be bound. The
variables that are not bound are said to be free. We denote by F'V(y) the set
of free variables in . If FV (¢) = () then ¢ is said to be a sentence.

Example 1 FV(Vex .z =yANxz=2— p(x)) ={y,2}0

If x € F'V(yp), we denote by ¢[t/x] the formula obtained from ¢ by
substituting x with the term ¢.



Semantics

A structure is a tuple m = (U, p1, P2, - - -, f1, f2, .- .), where:
e U is a (possible infinite) set called the universe,
e p; CU#Pi) ;=12 ... are the predicates,
o f,:U#) LU, i=1,2,... are the functions,

The elements of the universe are called individuals, denoted by ¢, ¢a, .. ..

NB: Every constant c has a corresponding individual ¢, but not viceversa.



Semantics

Let m = (U, p1,p2, ..., f1, fo,...) be a structure.

The interpretation of variables is a function:

N dry, 2z, ) = U

The interpretation of a term ¢ in a structure m is denoted as t™ € U':

cm — celU

fltr, ... tp)™ = f@F,...,th



Semantics

The meaning of a sentence ¢ in a structure m is denoted as

[¢].,, € {true,false} :

[L] =
[p(t1, ..y tn)]m =
[t =t],, =
[—¢] =
leny], =
13z . o], —

false
true
true
true
true

true

iff
iff
iff
iff
iff

Pt ep
P =g
l¢],, = false
[]m = [¥]n = true
lolt/z]], = true,

for some term ¢, FV (t) = ()



Semantics

Derived meanings:

[o VY], [~ A )]

[ — V] = [~ VY],

o= Y], = o —=Y)A W — )],
[Vz . ¢] [=3z . =],



Decision Problems

If [¢],, = true we say that m is a model of ¢, denoted as m = .
If m |= ¢ for all structures m, we say that ¢ is valid, denoted as = ¢.
If © has at least one model, we say that it is satisfiable.

Satisfiability: Given ¢ is it satisfiable?

Model Checking: Given m and ¢, does m = ¢ 7



Examples

Let < be a binary predicate symbol, and m = (U, <) be a structure. m is a
partially ordered set if m = 1 A o, where:

o1 VaVy .x <yANy<zrx—x=y
wo  VaVyVz .o <yANy<z—ax <z

Notice that = p; — Vz . z < x.

m is a linearly ordered set if m = @1 A w2 A @3, where:

w3 : VaVy .x<yVy<cz



Exercises

Exercise 1 Two problems P and (Q are equivalent when a method for solving
P is also a method for solving (), and viceversa. Show that satisfiability and

validity of first-order sentences are equivalent problems. O

Exercise 2 Prove the validity of the following sentences:

VaeVyVz . e =yANy=2z—x =2

(. oVe) o ((Bz. 9) Vv (@ . )
(Vo . o Ap) = (Vo . @) A(Vo . 1))
Gz .o A) = ((Fz . @) A(Fz . 1))
—((Fz . ) AN(Fz . ) — Tz . o AY)
(Vz . o)V (Vo . ¢)) — (Vo .oV
~((Vz .oV Y) = (Vo . o)V (Ve . )



Normal Forms

A formula ¢ € L(FOL) is said to be quantifier-free iff it contains no
quantifiers.

A quantifier-free formula ¢ € L(FOL) is said to be in negation normal form
(NNF) iff the only subformulae appearing under negation are atomic
propositions.

A formula ¢ € L(FOL) is said to be in prenex normal form (PNF) iff

Y = Qlaj‘lQQZEQ ce ann . w(wla L2y .- 73771)

where Q; € {3,V} and v is a quantifier-free formula. Sometimes ) is said to
be the matrix of .



Normal Forms

A quantifier-free formula ¢ € L(FOL) is said to be in disjunctive normal

form (DNF) iff
o=V AN
U

where )\;; are either atomic propositions or negations of atomic propositions.

A quantifier-free formula ¢ € L(FOL) is said to be in conjunctive normal

form (CNF) iff
o= AV
U

where )\;; are either atomic propositions or negations of atomic propositions.



FOL on Finite Words

Let 3 = {a,b,...} be a finite alphabet and w: {0,1,...,n—1} — 3 be a

finite word, e.g. w =agpay...a,_1.

The structure corresponding to w is my, = (dom(w), {pas taes, <), where:
e dom(w)=1{0,1,...,n—1},
e p, = {x € dom(w) | w(x) =a},

o z<y iffz <uy.

Mabbaab = <{07 I 75}7p_a — {07374}719_6 — {17 27 5}7 i>



Exercises

Exercise 3 Write a FOL formula S(x,y) which is valid for all positions
x,y € Nsuchthaty=x+1. O

Exercise 4 Write a FOL sentence whose models are all words with a on even
positions and b on odd positions. Next, (try to) write a FOL sentence whose

models are all words with a on even positions. O

Exercise 5 Write a FOL sentence whose models are all finite words. O



FOL on Infinite Words

Let w : N — X be an infinite word.
The structure corresponding to w is my, = (N, {pg taes, <).
We denote by > the set of all infinite words, and by > = X* U X%,

Mgh)w = <N7p_a — {Qk | k€ N}ap_b — {2k—|— 1 | k€ N}7§>



FOL on Finite Trees

Let X ={f,g,...} be an alphabet and ¢ : N* — X be a finite tree over X.

The structure corresponding to ¢ is m; = (dom(t), {ps} rex, =5 {Sn}nen),

where:

o py ={pedom(t) | t(p) = [},
e < is the prefix order on N*,

e s,(p) =pn for any n € N, is the n-th successor function.

M£(f(g,9),9) — <{E, 0, 1, 00, Ol},p_f = {6, O},p_g = {OO, 01, 1}, i, {Sn}n€N>-



Exercise

Exercise 6 A red-black tree is a tree in which all nodes are either red or

black, such that the root is black, and each red node has only black children.
Write a FOL sentence whose models are all red-black trees. O



FOL on Infinite Trees

Let ¢ : N* — Y be an infinite tree over Y.

The structure corresponding to ¢ is m; = (N* {ps}rex, <, {sn }nen).

The lexicographic order on N* is defined as follows:

r=y :x<yVdz.so(z) <zAsi(z) <y



Monadic Second Order Logic



Syntax

The alphabet of MSOL consists of:
e all first-order symbols
e set variables: X,Y, Z, ...

The set of MSOL terms consists of all first-order terms and set variables. The

set of MSOL formulae consists of:
e all first-order formulae, i.e. L(FOL) C L(MSOL),
e if tis aterm and X is a set variable, then X (¢) is a formula,

e if © and 1) are formulae, then p ® Y, =, Vr . ¢, dz . ¢, VX . © and
41X . ¢ are formulae, for e € {V, A, —, < }.

X (t) is sometimes written t € X.



Examples

1XVzx . X(x)
Ve . X(z) — Y(z)
VY . (Vx . Y(z) - X(z)) Adx . X(z) A=Y (x)) — Vo . =Y (x)



Semantics

Let m = (U, p1,p2, ..., f1, fo,...) be a structure.

The interpretation of set variables is a function:

mAXY, 2,0 =2V

Example 2 The following MSOL formula characterizes all partitions (X,Y")
of Z:

partition(X,Y, Z) : (VaVy . X(x)A\Y (y) —» -z =y) AN (Vx . Z(z) <« X(z)VY(x))

[



MSOL on Words: (W)S1S

Let 3 = {a,b,...} be a finite alphabet. The alphabet of the sequential
calculus is composed of:

e the function symbol s denotes the successor,
e the set constants {p, | a € X}; p, denotes the set of positions of a

e the first and second order variables and connectives.

(W)eak indicates that quantification is over finite sets only.

Q: Let Mabbaab — <{07 s 75}7p_a — {07374}7]9_6 — {17275}7 §> be a
finite word. How much is s(5) ?




Examples

The order z < y on positions is defined as:
o closed(X) : Vx . X(x) — X(s(x))

e z <y : VX . X(x)Aclosed(X) — X(y)

Q: Given < how do you define s 7

The formula len(x) : Yy . y < x defines the length of a finite word and is

unsatisfiable on infinite words.

The set of positions of a word is defined by pos(X) : Vz . X (x).



Examples

The set of even positions is defined by

even(X) : 3Y,Z .pos(Z) A partition(X,Y,Z) A
Vo,y . X(z) As(x) =y — Y(y) A
Ve,y . Y(z)ANs(x) =y — Y(x)

The set of all words having a’s on even positions is the set of models of the

sentence:
41X . even(X) AVx . X(x) — po(x)



Exercise

Exercise 7 Write a S15 formula whose models are exactly all infinite words

starting with an even number of 0's followed by an infinite number of 1'’s. O



MSOL on Trees: (W)SwS

Let 3 ={a,b,...} be a tree alphabet. The alphabet of (W)SwS is:
e the function symbols {s; | i € N}; s;(z) denotes the i-th successor of x
e the set constants {p, | a € X}, p, denotes the set of positions of a

e the first and second order variables and connectives.

In FOL on trees we had < (prefix) instead of s;. Why 7




Examples

Let us consider binary trees, i.e. the alphabet of S2S.

e The formula closed(X) : Vx . X(x) — X(so(x)) A X (s1(x)) denotes

the fact that X is a downward-closed set.

e The prefix ordering on tree positions is defined by
r<y : VX .closed(X)NX(x) — X(y).

e The root of a tree is defined by root(x) : Vy . x <y.



Exercise

Exercise 8 Define the set of binary treest : {0,1}* — {a,b} such that
t(p) = a if p is of even length and t(p) = b if p is of odd length. O

Exercise 9 Write a SwS formula path(X) that defines the set of all paths in
a binary tree. O

Exercise 10 Write a SwS sentence whose models are all finite trees. O



