One-dimensional Integer Sets

Given $n \in \mathbb{N}$, its *p*-ary expansion is the word $w \in \{0, 1, \dots, p-1\}^*$ such that:

$$n = w(0)p^0 + w(1)p^1 + \ldots + w(k)p^k$$

w is denoted also as $(n)_p$. Note that the most significant digit is w(k).

Conversely, to any word $w \in \{0, 1, \dots, p-1\}^*$ corresponds its value $[w]_p = w(0)p^0 + w(1)p^1 + \dots + w(k)p^k.$

Notice that $[w]_p = [w0]_p = [w00]_p = \dots$, i.e. the trailing zeros don't change the value of a word.

One-dimensional Sets

We consider one-dimensional sets $S \subseteq \mathbb{N}$ coded in base p.

Example 1 Powers of 2 coded in base 2:

n	$(n)_{2}$
1	100000
2	010000
4	001000
8	000100
16	000010
•••	

A *p*-automaton is a finite automaton over the alphabet $\{0, 1, \ldots, p-1\}$.

A set $S \subseteq \mathbb{N}$ is said to be *p*-recognizable iff there exists a *p*-automaton $A = (S, q_0, T, F)$ such that $\mathcal{L}(A) = \{w \mid [w]_p \in S\}.$

We assume that any *p*-automaton has a loop $q \xrightarrow{0} q$ for all $q \in F$.

Example 2 The 2-automaton recognizing the powers of 2 is $A = (\{q_0, q_1\}, q_0, \rightarrow, \{q_1\})$ where:

- $q_0 \xrightarrow{0} q_0$
- $q_0 \xrightarrow{1} q_1$
- $q_1 \xrightarrow{0} q_1$

p-Definability

Consider the theory $\langle \mathbb{N}, +, V_p \rangle$, where $p \in \mathbb{N}$, and $V_p : \mathbb{N} \to \mathbb{N}$ is:

- $V_p(0) = 1$,
- $V_p(x)$ is the greatest power of p dividing x.

 $\langle \mathbb{N}, +, V_p \rangle$ is strictly more expressive than Presburger Arithmetic (why?)

 $P_p(x)$ is true iff x is a power of p, i.e. $P_p(x) : V_p(x) = x$.

 $x \in_p y$ is true iff x is a power of p and x occurs in the p-expansion of y with coefficient $0 \le j < p$:

 $x \in_{j,p} y : P_p(x) \land [\exists z \exists t . y = z + j \cdot x + t \land z < x \land (t = 0 \lor x < V_p(t))]$

p-Definability

A set $S \subseteq \mathbb{N}$ is *p*-definable iff there exists a first-order formula $\varphi_S(x)$ of $\langle \mathbb{N}, +, V_p \rangle$ such that:

 $x \in S \iff \varphi_S(x)$ holds

Example 3 The set S of powers of 2 is 2-definable:

 $\varphi_S(x) : V_2(x) = x$

Multi-dimensional Integer Sets

Let $(u, v) \in (\{0, 1, \dots, p-1\}^2)^*$ be a word, where $u, v \in \{0, 1, \dots, p-1\}^*$ such that $|\mathbf{u}| = |\mathbf{v}|$.

We can pad u and v to the right with 0's to become equal in length.

p-recognizability: a *p*-automaton is defined now over $(\{0, 1, \ldots, p-1\}^2)^*$.

p-definability: we consider formulae $\varphi_S(x_1, x_2)$ of $\langle \mathbb{N}, +, V_p \rangle$.

The definitions of *p*-recognizability and *p*-definability are easily adapted to the *m*-dimensional case, for any m > 0.

Consider $T \subseteq \mathbb{N}^2$ defined as:

$$(n,m) \in T \iff \forall k \ge 0 \ . \ \neg(n)_2(k) \lor \neg(m)_2(k)$$

Consider $T \subseteq \mathbb{N}^2$ defined as:

$$(n,m) \in T \iff \forall k \ge 0 \ . \ \neg(n)_2(k) \lor \neg(m)_2(k)$$

$$1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

$$1 \quad 1 \quad \frac{n}{\longrightarrow}$$

Consider $T \subseteq \mathbb{N}^2$ defined as:

$$(n,m) \in T \iff \forall k \ge 0 \ . \ \neg(n)_2(k) \lor \neg(m)_2(k)$$

$$1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

$$1 \quad 1 \quad \frac{n}{\longrightarrow}$$

The set T is 2-recognizable.

The set T is 2-definable:

$$\varphi(x_1, x_2) : \forall z : \neg(z \in_2 x_1) \lor \neg(z \in_2 x_2)$$

where

 $x \in_2 y : P_2(x) \land [\exists z \exists t . y = z + x + t \land z < x \land (t = 0 \lor x < V_2(t))]$

Theorem 1 Let $M \subseteq \mathbb{N}^m$, $m \ge 1$ and $p \ge 2$. Then M is p-recognizable if and only if M is p-definable.

For any *p*-automaton A there exists a $\langle \mathbb{N}, +, V_p \rangle$ -formula φ_A which defines $\mathcal{L}(A)$.

For any $\langle \mathbb{N}, +, V_p \rangle$ -formula φ there exists a *p*-automaton A_{φ} such that $\mathcal{L}(A)$ is the subset of \mathbb{N}^m defined by φ .

Let $A = \langle S, q_0, T, F \rangle$ be a *p*-automaton.

Suppose $S = \{q_0, q_1, \dots, q_{\ell-1}\}$ and replace w.l.o.g. q_k by $e_k = \langle \underbrace{0, \dots, 0}_k, 1, \underbrace{0, \dots, 0}_{\ell-k-1} \rangle \in \{0, 1\}^{\ell}$

We build a formula that defines all successful runs of A

A run is a tuple $\langle n_1, \ldots, n_m, y_1, \ldots, y_\ell \rangle$ where:

- $\langle (n_1)_p, \ldots, (n_m)_p \rangle$ is the word read by A
- $\langle y_1, \ldots, y_\ell \rangle$ is the sequence of states during the run

 $x \in_{j,p} y$ iff x is a power of p and the coefficient of x in $(y)_p$ is j:

 $x \in_{j,p} y : P_p(x) \land [\exists z \exists t . y = z + j \cdot x + t \land z < x \land (x < V_p(t) \lor t = 0)]$

 $\lambda_p(x)$ denotes the greatest power of p occurring in $(x)_p$ $(\lambda_p(0) = 1)$:

• $\lambda_p(x) = p^k$, where k = the minimal length of the *p*-expansion of x

 $\lambda_p(x) = y : (x = 0 \land y = 1) \lor [P_p(y) \land y \le x \land \forall z . (P_p(z) \land y < z) \to (x < z)]$

 $\langle (n_1)_p, \ldots, (n_m)_p \rangle \in \mathcal{L}(A)$ iff exists $y_1, \ldots, y_\ell \in \mathbb{N}$ such that:

• The first state on the run is q_0 : $\langle (y_1)_p(0), \ldots, (y_\ell)_p(0) \rangle = \langle 1, 0, \ldots, 0 \rangle$:

$$\varphi_1 : \bigwedge_{j=1}^{\ell} 1 \in_{q_0(j), p} y_j$$

• $\langle (y_1)_p(k), \ldots, (y_l)_p(k) \rangle$ is a final state of A, where k is greater or equal to the length of all p-expansions of y_i , i.e. $z = p^k$:

$$\varphi_2$$
: $P_p(z) \wedge \bigwedge_{j=1}^{\ell} z \ge \lambda_p(y_j) \wedge \bigvee_{q \in F} \bigwedge_{j=1}^{\ell} z \in_{q(j), p} y_j$

 $\langle (n_1)_p, \ldots, (n_m)_p \rangle \in \mathcal{L}(A)$ iff exists $y_1, \ldots, y_\ell \in \mathbb{N}$ such that:

• for all $0 \le i < k$:

$$\langle (y_1)_p(i), \dots, (y_l)_p(i) \rangle \xrightarrow{\langle (n_1)_p(i), \dots, (n_m)_p(i) \rangle} \langle (y_1)_p(i+1), \dots, (y_l)_p(i+1) \rangle$$

$$\varphi_3 : \forall t . P_p(t) \land t < z \land$$

$$\bigwedge_{T(\mathbf{q}, (a_1, \dots, a_m)) = \mathbf{q}'} \left[\bigwedge_{j=1}^{\ell} t \in_{\mathbf{q}(j), p} y_j \land \bigwedge_{j=1}^m t \in_{\mathbf{a}_j, p} n_j \to \bigwedge_{j=1}^{\ell} p \cdot t \in_{\mathbf{q}'(j), p} y_j \right]$$

Build automata for the atomic formulae x + y = z and $V_p(x) = y$, then compose them with union, intersection, negation and projection.

Corollary 1 The theories $\langle \mathbb{N}, +, V_p \rangle$, $p \geq 2$ are decidable.

Presburger Arithmetic $\subset \langle \mathbb{N}, +, V_p \rangle$ \uparrow \uparrow Semilinear Sets \subset *p*-automata

Base Dependence Theorems

Base Dependence

Definition 1 Two integers $p, q \in \mathbb{N}$ are said to be multiplicatively dependent if there exist $k, l \geq 1$ such that $p^k = q^l$.

Equivalently, p and q are multiplicatively dependent iff there exists $r \ge 2$ and $k, l \ge 1$ such that $p = r^k$ and $q = r^l$ (why?).

Base Dependence

Lemma 1 Let $p, q \ge 2$ be multiplicatively dependent integers. Let $m \ge 1$ and $S \subseteq \mathbb{N}^m$ be a set. Then S is p-recognizable iff it is q-recognizable.

 p^k -definable $\Rightarrow p$ -definable Let $\phi(x, y) : P_{p^k}(y) \land y \leq V_p(x).$

We have $V_{p^k}(x) = y \iff \phi(x, y) \land \forall z \ . \ \phi(x, z) \to z \le y.$

We have to define P_{p^k} in $\langle \mathbb{N}, +, V_p \rangle$.

$$P_{p^k}(x) : P_p(x) \land \exists y . x - 1 = (p^k - 1)y$$

Indeed, if $x = p^{ak}$ then $p^k - 1|x - 1$.

Conversely, if assume x is a power of p but not of p^k , i.e. $x = p^{ak+b}$, for some 0 < b < k.

Then $x - 1 = p^b(p^{ak} - 1) + (p^b - 1)$, and since $p^k - 1|x - 1$, we have $p^k - 1|p^b - 1$, contradiction.

p-definable $\Rightarrow p^k$ -definable

$$V_{p^k}(x) = V_{p^k}(p^{k-1}x) \longrightarrow V_p(x) = V_{p^k}(x)$$
$$V_{p^k}(x) = V_{p^k}(p^{k-2}x) \longrightarrow V_p(x) = pV_{p^k}(x)$$

$$V_{p^{k}}(x) = V_{p^{k}}(px) \longrightarrow V_{p}(x) = p^{k-2}V_{p^{k}}(x)$$

else
$$V_{p}(x) = p^{k-1}V_{p^{k}}(x)$$

. . .

Example 4

$$V_4(x) = V_4(2x) \quad \rightarrow \quad V_4(x) = V_2(x)$$
$$V_4(x) \neq V_4(2x) \quad \rightarrow \quad 2V_4(x) = V_2(x)$$

Theorem 2 (Cobham-Semenov) Let $m \ge 1$, and $p, q \ge 2$ be multiplicatively independent integers. Let $s : \mathbb{N}^m \to \mathbb{N}$ be a sequence. If s is p-recognizable and q-recognizable, then s is definable in $(\mathbb{N}, +)$.

semilinear sets = p-recognizable $\cap q$ -recognizable

p,q multiplicatively independent

1) Prove that every strictly positive natural number $n \in \mathbb{N}^+$ has a prime factorization. Prove that this factorization is unique.

2) The arithmetic of Skolem is the first order theory of strictly positive natural numbers, with multiplication $\langle \mathbb{N}^+, \cdot \rangle$. Prove the decidability of this theory.