One-dimensional Integer Sets

p-ary Expansions

Given $n \in \mathbb{N}$, its p-ary expansion is the word $w \in\{0,1, \ldots, p-1\}^{*}$ such that:

$$
n=w(0) p^{0}+w(1) p^{1}+\ldots+w(k) p^{k}
$$

w is denoted also as $(n)_{p}$. Note that the most significant digit is $w(k)$.

Conversely, to any word $w \in\{0,1, \ldots, p-1\}^{*}$ corresponds its value $[w]_{p}=w(0) p^{0}+w(1) p^{1}+\ldots+w(k) p^{k}$.

Notice that $[w]_{p}=[w 0]_{p}=[w 00]_{p}=\ldots$, i.e. the trailing zeros don't change the value of a word.

One-dimensional Sets

We consider one-dimensional sets $S \subseteq \mathbb{N}$ coded in base p.
Example 1 Powers of 2 coded in base 2:

n	$(n)_{2}$
1	$100000 \ldots$
2	$010000 \ldots$
4	$001000 \ldots$
8	$000100 \ldots$
16	$000010 \ldots$
\ldots	\ldots

One-dimensional p-Automata

A p-automaton is a finite automaton over the alphabet $\{0,1, \ldots, p-1\}$.

A set $S \subseteq \mathbb{N}$ is said to be p-recognizable iff there exists a p-automaton $A=\left(S, q_{0}, T, F\right)$ such that $\mathcal{L}(A)=\left\{w \mid[w]_{p} \in S\right\}$.

We assume that any p-automaton has a loop $q \xrightarrow{0} q$ for all $q \in F$.
Example 2 The 2-automaton recognizing the powers of 2 is $A=\left(\left\{q_{0}, q_{1}\right\}, q_{0}, \rightarrow,\left\{q_{1}\right\}\right)$ where:

- $q_{0} \xrightarrow{0} q_{0}$
- $q_{0} \xrightarrow{1} q_{1}$
- $q_{1} \xrightarrow{0} q_{1}$

p-Definability

Consider the theory $\left\langle\mathbb{N},+, V_{p}\right\rangle$, where $p \in \mathbb{N}$, and $V_{p}: \mathbb{N} \rightarrow \mathbb{N}$ is:

- $V_{p}(0)=1$,
- $V_{p}(x)$ is the greatest power of p dividing x.
$\left\langle\mathbb{N},+, V_{p}\right\rangle$ is strictly more expressive than Presburger Arithmetic (why?)
$P_{p}(x)$ is true iff x is a power of p, i.e. $P_{p}(x): V_{p}(x)=x$.
$x \in_{p} y$ is true iff x is a power of p and x occurs in the p-expansion of y with coefficient $0 \leq j<p$:
$x \in_{j, p} y: P_{p}(x) \wedge\left[\exists z \exists t \cdot y=z+j \cdot x+t \wedge z<x \wedge\left(t=0 \vee x<V_{p}(t)\right)\right]$

p-Definability

A set $S \subseteq \mathbb{N}$ is p-definable iff there exists a first-order formula $\varphi_{S}(x)$ of $\left\langle\mathbb{N},+, V_{p}\right\rangle$ such that:

$$
x \in S \Longleftrightarrow \varphi_{S}(x) \text { holds }
$$

Example 3 The set S of powers of 2 is 2-definable:

$$
\varphi_{S}(x): V_{2}(x)=x
$$

Multi-dimensional Integer Sets

p-Recognizability and p-Definability

Let $(u, v) \in\left(\{0,1, \ldots, p-1\}^{2}\right)^{*}$ be a word, where $u, v \in\{0,1, \ldots, p-1\}^{*}$ such that $|\mathbf{u}|=|\mathbf{v}|$.

We can pad u and v to the right with 0 's to become equal in length.
p-recognizability: a p-automaton is defined now over $\left(\{0,1, \ldots, p-1\}^{2}\right)^{*}$.
p-definability: we consider formulae $\varphi_{S}\left(x_{1}, x_{2}\right)$ of $\left\langle\mathbb{N},+, V_{p}\right\rangle$.

The definitions of p-recognizability and p-definability are easily adapted to the m-dimensional case, for any $m>0$.

p-Recognizability and p-Definability

Consider $T \subseteq \mathbb{N}^{2}$ defined as:

$$
(n, m) \in T \Longleftrightarrow \forall k \geq 0 . \neg(n)_{2}(k) \vee \neg(m)_{2}(k)
$$

$$
\uparrow m
$$

$$
\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}
$$

$$
\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \xrightarrow{n}
\end{array}
$$

p-Recognizability and p-Definability

Consider $T \subseteq \mathbb{N}^{2}$ defined as:

$$
\begin{aligned}
& (n, m) \in T \Longleftrightarrow \forall k \geq 0 . \neg(n)_{2}(k) \vee \neg(m)_{2}(k) \\
& \uparrow m \\
& 1 \begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array} \\
& 1 \begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0 \\
& 1 \begin{array}{lllllll}
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0
\end{array} \\
& (n)_{2}=(4)_{2}=\begin{array}{lllllllllll}
1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& (m)_{2}=(5)_{2}=100 \\
& 1 \begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} 0 \\
& \begin{array}{llllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array} \\
& \begin{array}{llllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array} \\
& \begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \xrightarrow{n}
\end{array}
\end{aligned}
$$

p-Recognizability and p-Definability

Consider $T \subseteq \mathbb{N}^{2}$ defined as:

$$
\begin{aligned}
& (n, m) \in T \Longleftrightarrow \forall k \geq 0 . \neg(n)_{2}(k) \vee \neg(m)_{2}(k) \\
& \uparrow m \\
& 1 \begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array} \\
& 1 \begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0 \\
& 1 \begin{array}{lllllll}
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0
\end{array} \\
& (n)_{2}=(3)_{2} \quad=\begin{array}{lllllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& (m)_{2}=(4)_{2}=100 \\
& 1 \begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} 0 \\
& \begin{array}{llllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array} \\
& \begin{array}{llllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array} \\
& \begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \xrightarrow{n}
\end{array}
\end{aligned}
$$

p-Recognizability and p-Definability

The set T is 2-recognizable.

The set T is 2-definable:

$$
\varphi\left(x_{1}, x_{2}\right): \forall z . \neg\left(z \in_{2} x_{1}\right) \vee \neg\left(z \in_{2} x_{2}\right)
$$

where
$x \epsilon_{2} y: P_{2}(x) \wedge\left[\exists z \exists t \cdot y=z+x+t \wedge z<x \wedge\left(t=0 \vee x<V_{2}(t)\right)\right]$

p-Recognizability and p-Definability

Theorem 1 Let $M \subseteq \mathbb{N}^{m}, m \geq 1$ and $p \geq 2$. Then M is p-recognizable if and only if M is p-definable.

For any p-automaton A there exists a $\left\langle\mathbb{N},+, V_{p}\right\rangle$-formula φ_{A} which defines $\mathcal{L}(A)$.

For any $\left\langle\mathbb{N},+, V_{p}\right\rangle$-formula φ there exists a p-automaton A_{φ} such that $\mathcal{L}(A)$ is the subset of \mathbb{N}^{m} defined by φ.

From Automata to Formulae

Let $A=\left\langle S, q_{0}, T, F\right\rangle$ be a p-automaton.

Suppose $S=\left\{q_{0}, q_{1}, \ldots, q_{\ell-1}\right\}$ and replace w.l.o.g. q_{k} by

$$
e_{k}=\langle\underbrace{0, \ldots, 0}_{k}, 1, \underbrace{0, \ldots, 0}_{\ell-k-1}\rangle \in\{0,1\}^{\ell}
$$

We build a formula that defines all successful runs of A

A run is a tuple $\left\langle n_{1}, \ldots, n_{m}, y_{1}, \ldots, y_{\ell}\right\rangle$ where:

- $\left\langle\left(n_{1}\right)_{p}, \ldots,\left(n_{m}\right)_{p}\right\rangle$ is the word read by A
- $\left\langle y_{1}, \ldots, y_{\ell}\right\rangle$ is the sequence of states during the run

From Automata to Formulae

$x \in_{j, p} y$ iff x is a power of p and the coefficient of x in $(y)_{p}$ is j :
$x \in_{j, p} y: P_{p}(x) \wedge\left[\exists z \exists t \cdot y=z+j \cdot x+t \wedge z<x \wedge\left(x<V_{p}(t) \vee t=0\right)\right]$
$\lambda_{p}(x)$ denotes the greatest power of p occurring in $(x)_{p}\left(\lambda_{p}(0)=1\right)$:

- $\lambda_{p}(x)=p^{k}$, where $k=$ the minimal length of the p-expansion of x
$\lambda_{p}(x)=y:(x=0 \wedge y=1) \vee\left[P_{p}(y) \wedge y \leq x \wedge \forall z \cdot\left(P_{p}(z) \wedge y<z\right) \rightarrow(x<z)\right]$

From Automata to Formulae

$\left\langle\left(n_{1}\right)_{p}, \ldots,\left(n_{m}\right)_{p}\right\rangle \in \mathcal{L}(A)$ iff exists $y_{1}, \ldots, y_{\ell} \in \mathbb{N}$ such that:

- The first state on the run is $q_{0}:\left\langle\left(y_{1}\right)_{p}(0), \ldots,\left(y_{\ell}\right)_{p}(0)\right\rangle=\langle 1,0, \ldots, 0\rangle$:

$$
\varphi_{1}: \bigwedge_{j=1}^{\ell} 1 \in_{q_{0}(j), p} y_{j}
$$

- $\left\langle\left(y_{1}\right)_{p}(k), \ldots,\left(y_{l}\right)_{p}(k)\right\rangle$ is a final state of A, where k is greater or equal to the length of all p-expansions of y_{i}, i.e. $z=p^{k}$:

$$
\varphi_{2}: P_{p}(z) \wedge \bigwedge_{j=1}^{\ell} z \geq \lambda_{p}\left(y_{j}\right) \wedge \bigvee_{q \in F} \bigwedge_{j=1}^{\ell} z \in_{q(j), p} y_{j}
$$

From Automat to Formulae

$\left\langle\left(n_{1}\right)_{p}, \ldots,\left(n_{m}\right)_{p}\right\rangle \in \mathcal{L}(A)$ iff exists $y_{1}, \ldots, y_{\ell} \in \mathbb{N}$ such that:

- for all $0 \leq i<k$:

$$
\left\langle\left(y_{1}\right)_{p}(i), \ldots,\left(y_{l}\right)_{p}(i)\right\rangle \xrightarrow{\left\langle\left(n_{1}\right)_{p}(i), \ldots,\left(n_{m}\right)_{p}(i)\right\rangle}\left\langle\left(y_{1}\right)_{p}(i+1), \ldots,\left(y_{l}\right)_{p}(i+1)\right\rangle
$$

$\varphi_{3}: \forall t . P_{p}(t) \wedge t<z \wedge$

$$
\bigwedge_{T\left(\mathbf{q},\left(a_{1}, \ldots, a_{m}\right)\right)=\mathbf{q}^{\prime}}\left[\bigwedge_{j=1}^{\ell} t \epsilon_{\mathbf{q}(j), p} y_{j} \wedge \bigwedge_{j=1}^{m} t \epsilon_{\mathbf{a}_{j}, p} n_{j} \rightarrow \bigwedge_{j=1}^{\ell} p \cdot t \epsilon_{\mathbf{q}^{\prime}(j), p} y_{j}\right]
$$

From Formulae to Automata

Build automata for the atomic formulae $x+y=z$ and $V_{p}(x)=y$, then compose them with union, intersection, negation and projection.

Corollary 1 The theories $\left\langle\mathbb{N},+, V_{p}\right\rangle, p \geq 2$ are decidable.

The Big Picture

Presburger Arithmetic $\subset\left\langle\mathbb{N},+, V_{p}\right\rangle$
 I
 ॥

Semilinear Sets $\subset p$-automata

Base Dependence Theorems

Base Dependence

Definition 1 Two integers $p, q \in \mathbb{N}$ are said to be multiplicatively dependent if there exist $k, l \geq 1$ such that $p^{k}=q^{l}$.

Equivalently, p and q are multiplicatively dependent iff there exists $r \geq 2$ and $k, l \geq 1$ such that $p=r^{k}$ and $q=r^{l}$ (why?).

Base Dependence

Lemma 1 Let $p, q \geq 2$ be multiplicatively dependent integers. Let $m \geq 1$ and $S \subseteq \mathbb{N}^{m}$ be a set. Then S is p-recognizable iff it is q-recognizable.
p^{k}-definable $\Rightarrow p$-definable Let $\phi(x, y): P_{p^{k}}(y) \wedge y \leq V_{p}(x)$.

We have $V_{p^{k}}(x)=y \Longleftrightarrow \phi(x, y) \wedge \forall z . \phi(x, z) \rightarrow z \leq y$.

We have to define $P_{p^{k}}$ in $\left\langle\mathbb{N},+, V_{p}\right\rangle$.

Base Dependence

$$
P_{p^{k}}(x): P_{p}(x) \wedge \exists y \cdot x-1=\left(p^{k}-1\right) y
$$

Indeed, if $x=p^{a k}$ then $p^{k}-1 \mid x-1$.

Conversely, if assume x is a power of p but not of p^{k}, i.e. $x=p^{a k+b}$, for some $0<b<k$.

Then $x-1=p^{b}\left(p^{a k}-1\right)+\left(p^{b}-1\right)$, and since $p^{k}-1 \mid x-1$, we have $p^{k}-1 \mid p^{b}-1$, contradiction.

Base Dependence

p-definable $\Rightarrow p^{k}$-definable

$$
\begin{array}{ccc}
V_{p^{k}}(x)=V_{p^{k}}\left(p^{k-1} x\right) & \rightarrow & V_{p}(x)=V_{p^{k}}(x) \\
V_{p^{k}}(x)=V_{p^{k}}\left(p^{k-2} x\right) & \rightarrow & V_{p}(x)=p V_{p^{k}}(x) \\
& \cdots & \\
V_{p^{k}}(x)=V_{p^{k}}(p x) & \rightarrow & V_{p}(x)=p^{k-2} V_{p^{k}}(x) \\
\text { else } & & V_{p}(x)=p^{k-1} V_{p^{k}}(x)
\end{array}
$$

Example 4

$$
\begin{aligned}
& V_{4}(x)=V_{4}(2 x) \quad \rightarrow \quad V_{4}(x)=V_{2}(x) \\
& V_{4}(x) \neq V_{4}(2 x) \quad \rightarrow \quad 2 V_{4}(x)=V_{2}(x)
\end{aligned}
$$

The Theorem of Cobham-Semenov

Theorem 2 (Cobham-Semenov) Let $m \geq 1$, and $p, q \geq 2$ be multiplicatively independent integers. Let $s: \mathbb{N}^{m} \rightarrow \mathbb{N}$ be a sequence. If s is p-recognizable and q-recognizable, then s is definable in $\langle\mathbb{N},+\rangle$.
semilinear sets $=p$-recognizable $\cap q$-recognizable
p, q multiplicatively independent

Exercise

1) Prove that every strictly positive natural number $n \in \mathbb{N}^{+}$has a prime factorization. Prove that this factorization is unique.
2) The arithmetic of Skolem is the first order theory of strictly positive natural numbers, with multiplication $\left\langle\mathbb{N}^{+}, \cdot\right\rangle$. Prove the decidability of this theory.
