
Integer Arithmetic



Syntax and Semantics

The integer arithmetic (IA) is the first order theory of integer numbers.

The alphabet of the integer arithmetic consists of:

• function symbols +, ·, s (s is the successor function n 7→ n+ 1)

• constant symbol 0

The semantics of IA is defined in the structure Z = 〈Z,+, ·, n 7→ n+ 1〉.



Examples

Ex: Write a formula pos(x) that holds if and only if x ≥ 0

The order relation is defined as

x ≤ y : ∃z . pos(z) ∧ x+ z = y

The set of even numbers is defined by

even(x) : ∃y . x = y + y

The divisibility relation is defined as

x|y : ∃z . y = x · z



Examples

The set of prime numbers is defined by

prime(x) : ∀y∀z . x = y · z → (y = 1 ∨ z = 1)

The least common multiple is defined as

z = lcm(x, y) : ∀t . x|t ∧ y|t↔ z|t

Goldbach’s Conjecture

∀x . 2 ≤ x ∧ even(x) → ∃y∃z . prime(y) ∧ prime(z) ∧ x = y + z



Peano Arithmetic

An axiomatic theory is a set of formulae in which truth is derived from a

(possibly infinite) set of axioms, e.g. Euclid’s geometry is an axiomatic

theory.

1. 0 6= s(x)

2. s(x) = s(y) → x = y

3. x+ 0 = x

4. x+ s(y) = s(x+ y)

5. x · 0 = 0

6. x · s(y) = x · y + x

7. ϕ(0) ∧ ∀x . [ϕ(x) → ϕ(s(x))] → ∀x . ϕ(x)

Notice that the last point defines an infinite number of axioms.



Undecidability of Integer Arithmetic

Follows directly from Gödel’s Incompletness Theorem:

Kurt Gödel. Uber formal unentscheidbare Sätze der Principia

Mathematica und verwandter Systeme I. Monatshefte für Mathematik und

Physik, 38:173 198, 1931.

Alonzo Church. An unsolvable problem of elementary number theory.

American Journal of Mathematics, 58:345 363, 1936.



Undecidability of Integer Arithmetic

The quantifier-free fragment is also undecidable:

Yuri Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic

Mathematics, (11):354 358, 1970.

Undecidability of Hilbert’s Tenth Problem:

Given a Diophantine equation with any number of unknown quantities and

with rational integral numerical coefficients: To devise a process according

to which it can be determined in a finite number of operations whether the

equation is solvable in rational integers.



Undecidability of Integer Arithmetic

Undecidability of the arithmetic of addition and divisibility:

z = lcm(x, y) : ∀t . x|t ∧ y|t↔ z|t

x2 = lcm(x, x+ 1) − x

4 · x · y = (x+ y)2 − (x− y)2

Consequently, the arithmetic of addition and

• least common multiple

• square function

are undecidable.



Presburger Arithmetic



Definition

PA is the additive theory of natural numbers 〈N, 0, s,+〉

PA is decidable

Mojzesz Presburger. Über die Vollstandigkeit eines gewissen Systems der

Arithmetik. Comptes rendus du I Congrès des Pays Slaves, Warsaw 1929.



Examples

Even/Odd:

even(x) : ∃y . x = y + y

odd(x) : ∃y . even(y) ∧ x = s(y)

Order:

x ≤ y : ∃z . x+ z = y

Zero/One:

zero(x) : ∀y . x ≤ y

one(x) : ∃z . zero(z) ∧ ¬x = z ∧ ∀y . y = z ∨ x ≤ y

Modulo constraints:

x ≡m y : ∃z . (x ≤ y ∧ y − x = mz) ∨ (x > y ∧ x− y = mz)



Quantifier Elimination in PA

A theory admits quantifier elimination if any formula of the form

Q1x1 . . . Qnxn . φ(x1, . . . , xn, y1, . . . , ym) is equivalent (modulo the theory)

to a quantifier-free formula ψ(y1, . . . , ym).

We consider the (equivalent) theory of addition and modulo constraints

x ≡m y : ∃z . (x ≤ y ∧ y − x = mz) ∨ (x > y ∧ x− y = mz)

Given a PA formula ∃x . φ(x, y1, . . . , ym), we build an equivalent formula

ψ(y1, . . . , ym) in the new language (with modulo constraints)



Quantifier Elimination in PA

1. Eliminate the negations

• replace ¬(t1 = t2) by t1 < t2 ∨ t2 < t1,

• replace ¬(t1 < t2) by t1 = t2 ∨ t2 < t1, and

• replace ¬(t1 ≡m t2) by
∨m−1

i=1
t1 ≡m t2 + i.

Then rewrite the formula into DNF, i.e. a disjunction of ∃x . β1 ∧ . . .∧ βn,

where each βi is one of the following forms:

nx = u− t

nx ≡m u− t

nx < u− t

u− t < nx



Quantifier Elimination in PA

2. Uniformize the coefficients of x

Let p be the least common multiple of the coefficients of x.

Multiply each atomic formula containing nx by p
n
.

In particular, nx ≡m u− t becomes px ≡ p

n
m

p
n
(u− t).



Quantifier Elimination in PA

Eliminate the coefficients of x Replace all over the formula px by x

and add the new conjunct x ≡p 0

Special case If x = u− t occurs in the formula, eliminate directly x by

replacing it with u− t.



Quantifier Elimination in PA

Assume x = u− t does not occur.

We have a formula of the form

∃x .

l
∧

j=1

rj − sj < x ∧

k
∧

i=1

x < ti − ui ∧

n
∧

i=1

x ≡mi
vi − wi

Let M = [mi]
n
i=1

. The formula is equivalent to:

M
∨

q=1

[

l
∧

i=1

(

k
∧

j=1

(rj − sj) + q < ti − ui ∧

n
∧

i=1

(rj − sj) + q ≡mi
vi − wi

)]



Example

∃x . 1 < x ∧ x < 100 ∧ x ≡2 1 ∧ x ≡3 2

x ∈ [2, 99] ∧ x ≡2 1 : 3 5 7 9 11 13 15 17 . . .

x ∈ [2, 99] ∧ x ≡3 2 : 2 5 8 11 14 17 . . .

6
∨

q=1

(

1 + q < 100 ∧ 1 + q ≡2 1 ∧ 1 + q ≡3 2
)



Decidability of PA

The result quantifier elimination in a Presburger formula is equivalent to a

disjunction of conjunctions of atomic propositions of the following forms:

n
∑

i=1

aixi + b ≥ 0

n
∑

i=1

aixi + b ≡n m

If all quantifiers are eliminated from a formula with no free variables, the

result is either true of false.



Semilinear Sets



Preliminaries

Let x,y ∈ N
n, for some n > 0

x = 〈x1, x2, . . . , xn〉

y = 〈y1, y2, . . . , yn〉

We define the following operations:

x + y = 〈x1 + y1, x2 + y2, . . . , xn + yn〉

ax = 〈ax1, ax2, . . . , axn〉, a ∈ N

x ≤ y ⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2 ∧ . . . ∧ xn ≤ yn



Preliminaries

Lemma 1 Each set of pairwise incomparable elements of N
n is finite. In

consequence, each set M ⊆ N
n has a finite number of minimal elements.

A strict order ≺ is called well-founded if there are no infinite descending

chains x1 ≻ x2 ≻ . . .. For example, < is well-founded on N
n.

Principle 1 (Well-founded Induction) Let 〈W,�〉 be a well-founded

set, and P a property of the elements of W . If both the following hold:

1. P is true for all minimal elements of W ,

2. for all x ∈W : if P (y) is true for all y ≺ x then P (x) is true

then, for all x ∈W , P (x) is true.



Linear Sets

L(C,P ) = {c+ p1 + . . .+ pm | c ∈ C, p1, . . . , pm ∈ P} for some C,P ∈ N
n

• C = set of constants (bases)

• P = set of periods (generators)

An element x ∈ L(C,P ) is of the form x = c+
∑m

i=1
λipi, where c ∈ C,

λi ∈ N and pi ∈ P , for all 1 ≤ i ≤ m.

A set M ∈ N
n is said to be linear if M = L({c}, P ) where:

• c ∈ N
n

• P ⊆ N
n is finite



Examples

L({(1, 0)}, {(1, 2), (3, 2)}) = {(2, 2), (4, 2), (3, 4), (5, 4), (7, 4), . . .}

{(x, y) | x ≥ 1} = L({(1, 0)}, {(1, 0), (0, 1)})



Semilinear Sets

A set S is semilinear if it is a finite union of linear sets.

Example 1 L(C,P ) is semilinear iff C,P ⊆ N
n are finite.

A function f : N
n → N

m is said to be linear if for all x, y ∈ N
n we have

f(x+ y) = f(x) + f(y).

Lemma 2 If M ⊆ N
m is a semilinear set and f : N

m → N
n is a linear

function, m,n > 0, then f(M) is a semilinear set.

Lemma 3 If M ⊆ N
m is a semilinear set and c ∈ N

m, then the set

c+M = {c+ x | x ∈M} is semilinear.



Counterexample

M = {(x, y) | y ≤ x2} is not semilinear

Suppose M =
⋃k

i=1
L(ci, Pi)

Let m = max{ y
x
| (x, y) ∈

⋃k
i=1

Pi}

Take x1, x2 > m. The slope of the line connecting (x1, x
2
1
) and (x2, x

2
2
) is

x1 + x2 > 2m > m. Hence at most one of (x1, x
2
1), (x2, x

2
2) can be

generated by Pi, i = 1, . . . , k, contradiction.



Closure Properties of Semilinear Sets

Theorem 1 The class of semilinear subsets of N
n, n > 0 is effectively

closed under union, intersection and projection.

The most difficult is to show closure under intersection. It is enough to

show that the intersection of two linear sets is semilinear.



Closure Properties of Semilinear Sets

Let M = L(c, {p1, . . . , pk}) and M ′ = L(c′, {p′
1
, . . . , p′ℓ}).

A
∆
= {〈λ1, . . . , λk, µ1, . . . , µℓ〉 | c+

k
∑

i=1

λipi = c′ +

ℓ
∑

j=1

µjp
′

j}

B
∆
= {〈λ1, . . . , λk, µ1, . . . , µℓ〉 |

k
∑

i=1

λipi =

ℓ
∑

j=1

µjp
′

j , λi > 0, µj > 0}

f(〈λ1, . . . , λk, µ1, . . . , µℓ〉)
∆
=

k
∑

i=1

λipi

f is a linear function, and M ∩M ′ = c+ f(A).

It is enough to prove that A is semilinear.



Closure Properties of Semilinear Sets

Let C, P be the sets of minimal elements of A, B.

Proposition 1 Each element of B is a sum of elements of P .

By well-founded induction. If x ∈ B is a minimal element, then x ∈ P.

Else, x = 〈λ1, . . . , λk, µ1, . . . , µℓ〉 has a minimal element

x′ = 〈λ′
1
, . . . , λ′

k
, µ′

1
, . . . , µ′ℓ〉 ∈ P s.t. x′ < x.

k
∑

i=1

λipi =

ℓ
∑

j=1

µjp
′

j

k
∑

i=1

λ′ipi =

ℓ
∑

j=1

µ′jp
′

j

k
∑

i=1

(λi − λ′i)pi =

ℓ
∑

j=1

(µj − µ′j)pj



Closure Properties of Semilinear Sets

Hence x′′ = 〈λ1 − λ′
1
, . . . , λk − λ′

k
, µ1 − µ′

1
, . . . , µℓ − µ′ℓ〉 ∈ B

Since x′′ < x, we can apply the induction hypothesis.

Since x = x′ + x′′, we conclude. 2



Closure Properties of Semilinear Sets

Proposition 2 A = L(C,P )

“⊆” For each x = 〈λ1, . . . , λk, µ1, . . . , µℓ〉 ∈ A \ C there exists

x′ = 〈λ′
1
, . . . , λ′

k
, µ′

1
, . . . , µ′ℓ〉 ∈ C such that x′ < x.

It is enough to show that x− x′ ∈ B:

k
∑

i=1

(λi − λ′i)pi =
k

∑

i=1

λipi −
k

∑

i=1

λ′ipi

= (c′ − c) +

ℓ
∑

j=1

µjp
′

j −
[

(c′ − c) +

ℓ
∑

j=1

µ′jp
′

j

]

=
ℓ

∑

j=1

(µj − µ′j)p
′

j

2



Semilinear sets = Presburger-definable sets

Theorem 2 (Ginsburg-Spanier) The class of semilinear subsets of N
n

coincides with the class of Presburger definable subsets of N
n.

“⊆” M =
⋃n

i=1
L({ci}, {pi1, . . . , pimi

})

The formula defining M is the following:

M(x) ≡ ∃y11 . . . ∃ynmn
.

n
∨

i=1

x = ci +

mi
∑

j=1

yijpij



Semilinear sets = Presburger-definable sets

“⊇” Let φ(x1, . . . , xk) be a Presburger formula, i.e. a disjunction of

conjunctions of atomic propositions of the following forms:

n
∑

i=1

aixi + b ≥ 0

n
∑

i=1

aixi + b ≡n m

Each atomic proposition describes a semilinear set, hence their

intersections and unions are again semilinear sets.


