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Chapter 1

The Numerical Transition Language

Numerical Transition Systems (NTS, also referred to as Counter Systems, Counter
Automata or Counter Machines) are simple models of computation involving in-
finite (or very large) data domains, such as integers or real numbers. Despite
their apparent simplicity, NTS can, in principle, model anyreal-life computer
system, ranging from hardware circuits to programs. As a consequence, an im-
portant number of tools have emerged, addressing verification problems, such as
reachability or termination, and deploying various techniques (widening, predi-
cate abstraction, acceleration, etc.).

The Numerical Transition Languageis a common language for describing
numerical transition systems. In addition to the basic scalar types, we consider
one-dimensional array types, defined over scalars. The semantics of array manip-
ulation interprets arrays as functions, and considers themto be first-class citizens.

Since even the most simple programs are usually structured into subcompo-
nents, we consider systems that are described as compositions of subsystems.
There are two types of compositions:hierarchical (a subsystem invokes another
subsystem in the same way a procedure invokes another procedure in a program)
andparallel (two or more subsystems run in parallel and communicate via the
global variables).

The design of the Numerical Transition Language (NTL) is inspired by the
input language of several existing tools for the analysis ofnumerical transition
systems, such as: ARMC, FAST, FLATA and INTERPROC. Although a single
tool is unlikely to deal with models using all the features ofNTL (such as e.g.,
parallel recursive systems with arrays), most tools can treat important subfrag-
ments of the language, and are amenable to extensions. The aim of NTL is not
that of replacing existing languages, but rather that of providing means of inter-
operability between tools developed by different groups, and based on different
principles.
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CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

1.0.1 Two Warm-up Examples

The following example is an NTS implementing the Syracuse function:

nts syracuse;

syracuse {
in x : int; // x contains the input value at the initial state

out y : int; // y contains the output value at the final state

initial si; // initial state

final sf; // final state

si -> sf { exists k : (int . 2*k=x and y’=k) }
// if x is even return x/2
si -> sf { exists k : (int . 2*k+1=x and y’=3*x+1) }
// if x is odd return 3*x+1

}

main {
n : int; // a local variable
initial s0;
final s3;
s0 -> s1 { n’>0 } // n is randomly assigned a strictly positive value

s1 -> s2 { n’=syracuse(n) } // apply syracuse to n
s2 -> s1 { n>1 and havoc() } // repeat while n> 1
s2 -> s3 { n=1 and havoc() } // finish when n=1

}

Experimental evidence shows that this system terminates for a large set of
initial values of n. However, no general termination proof has been given so far.

The following example is an NTS implementing McCarthy’s 91 function:

nts mccarthy;

mc91 {
in x : int;
out y : int;
t : int;
initial si;
final sf;
// if x> 100 return x−10
si -> sf { x>100 and y’=x-10 and havoc(y) }
// else return mc91(mc91(x+11))

4



CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

si -> s1 { x<100 and havoc() }
// t is needed to compose the recursive calls

s1 -> s2 { t’=mc91(x+11) }
s2 -> sf { y’=mc91(t) }

}

main {
i,j : int;
initial si;
error se; // error state
si -> s1 { j’=mc91(i) }
// error if not j = i−10 for i > 101
s1 -> se { i>101 and j!=i-10 and havoc() }
// error if not i = 91 for i ≤ 101
s1 -> se { i<=101 and j!=91 and havoc() }

}

Although a proof of correctness for McCarthy91 exists, this function is still
considered to be a challenge for automated program verification. Notice also the
different properties checked: termination for the Syracuse example, and safety
(unreachability of error states) for the McCarthy91 example.

1.1 Lexical Structure

An NTL specification is a sequence of tokens. The tokens are defined by the
following syntax:

〈type〉 ::= {int , real,bool}
〈numeral〉 ::= {0} | {1..9}{0..9}∗

〈decimal〉 ::= 〈numeral〉 {.}{0..9}+

〈boolean〉 ::= {true, false}
〈idn〉 ::= {a..z,A..Z}{a..z,A..Z,0..9, }∗

〈idp〉 ::= 〈idn〉 {’}
〈id〉 ::= 〈idn〉 | 〈idp〉

Note the distinction betweenunprimedidentifiers〈idn〉, used to denote current
values of variables, andprimedidentifiers〈idp〉, used to denote their values after
one transition step.
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CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

1.2 Types and Declarations

The basic (also refer ed to as scalar) types of NTL are: boolean (bool), integer
(int ) and real (real). Variables are declared in blocks of the same type, e.g.:

x1,x2,x3 : int

Declaration blocks can be chained as in, e.g.:

x1,x2,x3 : int, x4,x5 : real

Since we consider systems that are compositions of subsystems, the classical no-
tions ofglobalandlocal variable declarations apply. Global variables are declared
outside the body of a subsystem, and are visible everywhere in the system. Lo-
cal variables are declared inside the body of particular subsystem, and are visible
inside that body only. For instance:

g1 : int, g2 : real; // global declarations

main {
l1 : int, l2 : real; // local declarations
. . .
}

The names of local variables must not conflict with global variable names (in
other words, variable shadowing is not supported).

A variable can be declared to be aparameter, meaning that its value does not
change during the execution. Parameters are specified by enclosing the declaration
sequence between the keywordpar and a semicolon as in, e.g.:

par x1,x2,x3 : int;

A subsystem may declare certain local variables asinput and other asoutputas
in, e.g.:

foo {
in i1 : int, i2 : bool, i3, i4 : int;
out o1, o2, o3 : int, o4 : real;
. . .
}

The order in which input and output variables are declared isimportant for invo-
cation (hierarchical composition), thus the modifiersin andout specifyordered
sequencesof variables.
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CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

1.2.1 Arrays

The NTL language considers multi-dimensional arrays of anyof the basic types.
There are two kinds of declarations: arrays andarray references. In the first case
one must give the size as an arithmetic term of typeint , as in e.g.:

x[5] : int, y[N], z[2*N+3*M+5] : real;

The variables occurring in a size specifier must be scalar parameters of typeint .
Size specifier may also involve array-size operators applied on input arrays of a
subsystem (see Section 1.5). If the size is not specified, onedeclares an array
reference, e.g.:

a[], b[] : int;

An array reference is used as a name for array objects. Array references are the
only array variables that can be assigned to in a transition relation (the meaning
of assignments to array references will be made clear in the next section).

The elements of an arraya[N] are indexed 0, . . . ,N−1. If a is an array or an
array reference, the expression|a| denotes the size ofa. For instance in the exam-
ple below,|a|= 5, and|b|= 0, if b is not initialized, whereas|b|= 5, immediately
following the assignment ofa to b.

a[5],b[] : int; // |a|= 5, |b|= 0
b = a; // |a|= 5, |b|= 5

Multi-dimensional arrays are declared by multiple size specifiers of the form

a[e1] . . . [em] [ ] . . . [ ]
︸ ︷︷ ︸

n−times

: τ

wherem+n≥ 1, τ is a basic type, ande1, . . . ,em are well-typed index terms (de-
fined in Section 1.3.1). Then,a is said to be anm-dimensional array of references
to n-dimensional arrays over the basic typeτ.

For instance, consider the following declaration:

c[2][3] : int, d[2][], e[][] : real;

Herec denotes an array of size 2 of arrays of size 3 of integers, whereasd is an
array of size 2 of real array references. Notice that one cannot declare an array of
references to arrays of specified sizes, e.g.:

f[][3] : int; // illegal declaration
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CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

As will be discussed next, one can assign an integer value toc[i][ j], for 0≤ i < 2
and 0≤ j < 3, and an array object tod[i], for 0≤ i < 2. However, assigning toc[i],
for 0≤ i < 2 is not permitted, sincec[i] is an array object, not an array reference.

A purearray reference is an array declared in the form

a[ ] . . . [ ]
︸ ︷︷ ︸

n−times

: τ

wheren > 0 andτ is a basic type. All input and output array variables of sub-
systems are required to be pure references (e.g.b, e, but nota, c, d in the above
example).

1.2.2 Formal Syntax of Declarations

The full formal syntax of NTL variable declarations is givenbelow. The〈arith-term〉
non-terminal is defined in Section 1.3.1. The〈annotations〉 non-terminal is de-
fined in Section 1.8.

〈basic〉 ::= 〈annotations〉 〈idn〉
〈array〉 ::= 〈basic〉 [ 〈arith-term〉 ]

| 〈array〉 [ 〈arith-term〉 ]
〈array-ref〉 ::= 〈basic〉 [ ]

| 〈array〉 [ ]
| 〈array-ref〉 [ ]

〈array-pure-ref〉 ::= 〈basic〉 [ ]
| 〈array-pure-ref〉 [ ]

〈decl-lit〉 ::= 〈basic〉 | 〈array〉 | 〈array-ref〉
〈decl-lits〉 ::= 〈decl-lits〉 , 〈decl-lit〉

| 〈decl-lit〉
〈decl-block〉 ::= 〈decl-lits〉 : 〈type〉
〈decl-blocks〉 ::= 〈decl-blocks〉 , 〈decl-block〉

| 〈decl-block〉

〈decl-par-lit〉 ::= 〈basic〉 | 〈array〉
〈decl-par-lits〉 ::= 〈decl-par-lits〉 , 〈idn〉

| 〈decl-par-lit〉
〈decl-par-block〉 ::= 〈decl-par-lits〉 : 〈type〉
〈decl-par-blocks〉 ::= 〈decl-par-blocks〉 , 〈decl-par-block〉

| 〈decl-par-block〉
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〈decl-io-lit〉 ::= 〈basic〉 | 〈array-pure-ref〉
〈decl-io-lits〉 ::= 〈d-io-lits〉 , 〈idn〉

| 〈d-io-lit〉
〈decl-io-block〉 ::= 〈decl-io-lits〉 : 〈type〉
〈decl-io-blocks〉 ::= 〈decl-io-blocks〉 , 〈decl-io-block〉

| 〈decl-io-block〉
〈decl〉 ::= 〈decl-blocks〉 ; | par 〈decl-par-blocks〉 ;

〈decl-glob〉 ::= 〈decl-glob〉 〈decl〉 | ε
〈in〉 ::= in 〈decl-io-blocks〉 ; | ε
〈out〉 ::= out 〈decl-io-blocks〉 ; | ε

〈decl-loc〉 ::= 〈decl-loc〉 〈decl〉 | 〈in〉 〈out〉

Notice that array references cannot be declared as parameters, since the parame-
ters cannot be assigned to, whereas the array references become useful only via
assignments. Also, only pure array references can be specified in the input/output
declaration of a subsystem, since passing arrays to subsystems has the same effect
as assigning to them. For a detailed discussion on array assignment, one can refer
to Section 1.3.2.

1.3 First-order Arithmetic

The NTL language relies on first-order arithmetic in order todescribe the initial
configurations and the transition relation of systems. Thissection describes the
syntax adopted for writing first-order arithmetic formulae.

1.3.1 Literals and Terms

A boolean literalis either a variable identifier or a boolean constant (true or false).
A boolean termis an expression composed of boolean literals connected viathe
boolean operatorsnot, and, or, imply andequiv. Precedence of the connectives
is as follows:not > and> or > imply > equiv. These operators may be short-
handed byC/C++-like operators!, &&, ||, ->, <->. The formal syntax of boolean
terms is given below:

〈bop〉 ::= {and,or, imply ,equiv,&&,||,->,<->}
〈not〉 ::= {not,!}

〈bool-lit〉 ::= 〈id〉 | true | false
〈bool-term〉 ::= 〈bool-lit〉 | ( 〈bool-term〉 )

| 〈not〉 〈bool-term〉
| 〈bool-term〉 〈bop〉 〈bool-term〉
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CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

An arithmetic literal is either a variable identifier, the keywordtid (denoting
the current thread identifier), or a positive numeral. The arithmetic and array terms
are defined recursively.

Given an array declaration

a[e1] . . . [em] [ ] . . . [ ]
︸ ︷︷ ︸

n−times

: τ

wherem+n≥ 1, τ is a basic type, ande1, . . . ,em are arithmetic terms calledindex
terms, the following are valid array terms and their corresponding types (ik are
index terms in the following)

array term type
1) |a| int
2) a[i1] . . . [im+n] τ
3) a[i1] . . . [ik] (n−k)-dimensional array overτ (0≤ k< m+n)
4) a′[i1] . . . [im+n] τ
5) a′[i1] . . . [im] reference ton-dimensional array overτ

An arithmetic termis an expression consisting of arithmetic literals and array
terms of kind 1) and 2), connected via the arithmetic operators+, -, *, / and%
(remainder) and brackets. The arithmetic operators have standard precedence i.e.,
*, / and% have precedence over+ and-. The% operator is restricted toint type.
The semantics of/ and% for the int type is given below:

x%y= z iff 0≤ z< |y| and∃k . k∗y= x−z
x/y= z iff (y∗z)+(x%y) = x

For instance, given a declaration

x, y, a[N] : int;

the following is a valid arithmetic term:

2*x + (- 3*y) + (- 7) + |a| + a[0]

The use of array terms of kind 3)−5) will become apparent in Section 1.3.2.
The formal syntax of arithmetic terms is given below:
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CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

〈arith-lit〉 ::= 〈id〉 | tid | 〈numeral〉 | 〈decimal〉
〈array-read〉 ::= 〈idn〉 [ 〈arith-lit〉 ] | 〈array-read〉 [ 〈arith-lit〉 ]
〈array-term〉 ::= 〈array-read〉 | |〈idn〉|

〈aop〉 ::= {+,−,∗,/,%}
〈sign〉 ::= {−} | ε

〈arith-term〉 ::= 〈sign〉 〈arith-lit〉 | 〈sign〉 〈array-term〉
| ( 〈arith-term〉 )
| 〈arith-term〉 〈aop〉 〈arith-term〉

〈arith-list〉 ::= 〈arith-term〉 | 〈arith-list〉 , 〈arith-term〉
〈multi〉 ::= [ 〈arith-term〉 ] 〈multi〉 | [ 〈arith-list〉 ] | ε

〈array-write〉 ::= 〈idp〉 〈multi〉

Typing Rules

The typing rules for arithmetic terms are simple. A primed literal x′ always has
the same type as the corresponding unprimed literalx. All literals occurring in
one term must have the same basic type, which, in turn, is the type of the term.
Furthermore, an arithmetic term can be only of typeint or real. In particular, the
tid literal is implicitly of type int . For instance, the term 2*x + (- 3*y) + (- 7) is
well typed if and only if x and y are variables of the same type,which must be one
of int or real.

In particular, index termsi1, . . . , ik of an array terma[i1] . . . [ik] must be of type
int , and moreover, no primed variables are allowed to occur inside i1, . . . , ik. For
instance,A[3∗n+2∗ |b|+5] is a valid array literal if and only ifn is a variable of
type int , whereasA[3∗n′+2∗ |b|+5] is not, since the indexing term contains a
primed variable.

1.3.2 Atomic Propositions and Formulae

An atomic proposition is either a boolean term, or a relationof the formt1 ∼ t2,
wheret1 andt2 are arithmetic terms of the same type, and∼ ∈ {=, ! =, <=,<,
>=,>} is a binary relation symbol. The left- and the right-hand side of∼ must
be of the same type.

To define array assignments, consider again the following array declaration

a[e1] . . . [em] [ ] . . . [ ]
︸ ︷︷ ︸

n−times

: τ;

in other words,a is m-dimensional array of references ton-dimensional arrays
over typeτ wherem+n≥ 1. Assignments toa are restricted to the following two
forms:

a′[i1] . . . [im] = t (if n> 0)
a′[i1] . . . [im+n] = u

11
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whereik are well-typed index-terms,t is a valid array term exposing ann-dimensional
array (reference) over typeτ, andu is an expression of typeτ. Moreover, no
primed symbol can appear int andu. For example, consider the following decla-
ration:

a[], b[], c[5], d[2][], e[][] : int ;

Herea′ = c, b′ = a, d′[1] = b, d′[0][1] = 5, e′ = d are valid atomic propositions.
However, assignmentsc′ = a, andd′ = e are incorrect in the context of the above
declarations.

Additionally, we allow atomic formulae for multiple assignments of the form

a′[i1] . . . [im−1][ j1, . . . , jk] = [t1, . . . , tk] (if n> 0)
a′[i1] . . . [im+n−1][ j1, . . . , jk] = [u1, . . . ,uk]

which denotes an assignment to positions

a′[i1] . . . [im−1][ j1]
...

a′[i1] . . . [im−1][ jk]

or, respectively, to positions

and

a′[i1] . . . [im+n−1][ j1]
...

a′[i1] . . . [im+n−1][ jk]

Multiple assignments are interpreted as a succession of basic assignments
performed from left to right, i.e. first assigning toa′[i1] . . . [im−1][ j1] and last to
a′[i1] . . . [im−1][ jk]. More details can be found in Section 2.2.

Note that unprimed array terms of the forma[i1] . . . [im+n] can be used freely
in arithmetic terms, as discussed in Section 1.3.1, for instance:

a[i+1] = a[i]
a[n] <= d[2*n-1][0] + |a| + 1
b[2*n] >= e[n][k]

However, the atomic termd2[0] = a is not a valid one, sinced1[0] anda are
not valid arithmetic terms.

The formal syntax of atomic propositions is given below (semantics ofhavoc
is explained at the end of this section):
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〈rop〉 ::= {=, ! =,<=,<,>=,>}
〈mop〉 ::= 〈rop〉 | 〈bop〉

〈idn-list〉 ::= 〈idn〉 | 〈idn-list〉 , 〈idn〉
〈idn-list-e〉 ::= 〈idn-list〉 | ε
〈havoc〉 ::= havoc ( 〈idn-list-e〉 )
〈atom〉 ::= 〈bool-term〉

| 〈arith-term〉 〈rop〉 〈arith-term〉
| 〈array-write〉 = [ 〈arith-list〉 ]
| 〈havoc〉

The syntax of formulae is given below:

〈quantifier〉 ::= {forall ,exists}
〈q-type〉 ::= 〈type〉 | 〈type〉 [ 〈arith-term〉 , 〈arith-term〉 ]
〈formula〉 ::= 〈atom〉 | ( 〈formula〉 )

| 〈formula〉 〈bop〉 〈formula〉 | not 〈formula〉
| 〈quantifier〉 〈idn-list〉 : 〈q-type〉 . 〈formula〉

Notice that quantified variables must be typed by a basic (scalar) type. Conse-
quently, array variables cannot occur in the scope of a quantifier. Also, the quan-
tified variables are supposed to be unprimed. The use of intervals within type
specifications of quantified variables is meant as syntacticsugar, namely:

• forall i : τ [t1, t2] . φ(i) stands forforall i : τ . (t1 <= i and i <= t2 imply φ(i))

• existsi : τ [t1, t2] . φ(i) stands forexistsi : τ . (t1 <= i and i <= t2 and φ(i))

For example, the following are syntactically valid formulae:

N : int, x,y,z,a[N] : int;
forall i : int[0,N-2] . (a[i+1] > a[i])
exists n : int . (y * n <= x and x < y * (n + 1) and z’=n)

The first formula above expresses the fact thata is a sorted integer array without
duplicate values. The second one encodes the integer division relationz′ = ⌊x

y⌋.
Furthermore, as a syntactical sugar, one can use the= operator instead of the

equiv operator. As an example, given a declarationb1,b2 : bool, the following are
valid and equivalent assignements:

• b′2 equiv b1 or b2

• b′2 = (b1 or b2)

Also note that one can writeb′2 as a shorthand forb′2 = true.

13
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About Implicit Copies

The intuition behind the use of primed identifiers is that an occurrence of a primed
variable identifier in an atomic proposition has the effect of an assignment to that
variable (i.e., it produces a possible change of its value inthe next step). In order
to improve readability of the transition rules, we define

havoc(X)≡
∧

x6∈X

x′ = x

whereX are variables in the current scope. For instance, given a scope with vari-
ablesx,y,z,w, a formula

(z<=w and x’=5 and havoc(x)) or (y’<=3 and havoc(y))

is a shorthand for

(z<=w and x’=5 and y’=y and z’=z and w’=w) or
(y’<=3 and x’=x and z’=z and w’=w)

Note thaty′ in the first disjunct andx′ in the second disjunct are left random.

About Assignments to Array References

Since arrays are considered first-class values (i.e., finitesequences of scalar data
values), an assignment to an array variable would change both its size and its
content. However, changing the size of an array variable, such as c[5] :int in the
example above, would result in an array value that would be inconsistent with the
declaration. Hence we allow only assignments to array references , whom sizes
are not declared, e.g. a[], b[] :int .

1.4 Basic Systems

A basic NTS is a component of a global system. A basic NTS is identified by a
unique name that is visible in the entire system. The body of abasic NTS specifies
the local variables (including input and output variable declarations), theinitial ,
final anderror states, and a list of transitions. Typically, final states are used to
check termination, whereas error states are used to state safety properties. Formal
definitions of these properties are given in the next chapter.

A transition is defined by a source state, a destination stateand a transition
rule. For instance, the following transition rule changes the control from state q1
to q2 and increments the value of the variable x if it is less than 100:

14
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q1 -> q2 { x<=100 and x’=x+1 }

Optionally, transitions can be labeled by identifiers that are unique within their
scope (the body of the NTS definition). These identifiers can be used to display
error traces. For instance:

t1: q1 -> q2 { x<=100 and x’=x+1 }

There are two kinds of transition rules:arithmetic relationsandcalls to other
subsystems (basic NTS). All variables that do not appear primed in a transition
relation implicitly carry their values from the source to the destination state. Con-
sequently, an empty rule carries all values from the source to the destination state.

The formal syntax of basic NTS definition is given below. The〈call〉 non-
terminal is defined in the next section. The〈states〉 non-terminal serves as an
optional declaration of control states (see Section 1.8 forits purpose):

〈rule〉 ::= 〈formula〉 | 〈call〉 | ε
〈transition〉 ::= 〈idn〉 ’->’ 〈idn〉 〈annotations〉 ’{’ 〈rule〉 ’}’

| 〈idn〉 : 〈idn〉 ’->’ 〈idn〉 〈annotations〉 ’{’ 〈rule〉 ’}’
〈transitions〉 ::= 〈transition〉 〈transitions〉 | ε

〈statelist〉 ::= 〈statelist〉 , 〈idn〉 | 〈idn〉
〈statelist-a〉 ::= 〈statelist〉 , 〈annotations〉 〈idn〉 | 〈annotations〉 〈idn〉
〈states〉 ::= states 〈statelist-a〉 ; | ε

〈statesinit〉 ::= initial 〈statelist〉 ;
〈statesfin〉 ::= final 〈statelist〉 ; | ε
〈stateserr〉 ::= error 〈statelist〉 ; | ε
〈statemarks〉 ::= 〈states〉 〈states-init〉 〈states-fin〉 〈states-err〉

〈nts-body〉 ::= 〈declar-loc〉 〈statemarks〉 〈transitions〉
〈nts-basic〉 ::= 〈annotations〉 〈idn〉 ’{’ 〈nts-body〉 ’}’

Notice that a basic NTS must specify at least one initial state.

1.5 Hierarchical Systems

A hierarchical NTS is a collection of basic NTS, of which someare denoted as
entry points of the system. The entry points can be given in a global instance
declaration, which also defines the parallel threads (the instance declaration is
presented in detail in the next section). For sequential systems with only one
entry point, this can be specified using the namemain.
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In a hierarchical NTS basic subsystems can invoke other subsystems, viacall
transition rules. A call rule consists of a name of a callee and a list of actual
parameters (arithmetic terms) followed by a list of primed return variables.

The types of the actual parameter terms must match the types of input vari-
ables of the callee. Similarly, the types of the return variables must match the
types of the output variables of the callee. In particular, the input array variables
(which must be declared as pure references) match with both array references and
arrays of the same basic type. On the other hand, the output array variables (which
must be declared as pure references too) match only with purearray references of
the same basic type. Note that passing arrays as formal parameters, or returning
arrays, has the same effect as assigning to array references. For the reasons de-
scribed in section 1.3.2,a′ may appear at most once in the list of return variables
for each array variablea.

For instance, consider the following declarations:

foo {
in (i1, i2 : int, r : real, a[] : int)
out (n : int, i3, b[] : int)
. . .

}

bar {
in (x : int, q : real)
out (m : int, c[] : int)
par N : int;
d[N], y, z : int;
. . .

}

Then,bar can call f ooas follows:

foo(x+3,x+y,q,d,m’,y’,c’) (1.1)

As a syntactic sugar, we allow also the following:

(m’,y’,c’) = foo(x+3,x+y,q,d) (1.2)

Variables that do not appear in the list of return variables remain unchanged
upon return. One may also specify explicitely which variables remain unchanged
upon return usinghavoc:

(m’,y’,c’) = foo(x+3,x+y,q,d) and havoc(m,y,c) (1.3)

16
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(m’,y’,c’) = foo(x+3,x+y,q,d) and havoc(m,y,c,d) (1.4)

Note that (1.1), (1.2), and (1.3) are equivalent. However, (1.3) is not equivalent to
(1.4) since variabled is left random in (1.4).

The formal syntax of a call rule is given below:

〈arglist〉 ::= 〈arith-list〉 | ε
〈ret-terms〉 ::= 〈idp〉 | 〈ret-terms〉 , 〈idp〉
〈retlist〉 ::= 〈ret-terms〉 | ε

〈call-base〉 ::= 〈idn〉 ( 〈arglist〉 , 〈retlist〉 )
| 〈idp〉 = 〈idn〉 ( 〈arglist〉 )
| ( 〈ret-terms〉 ) = 〈idn〉 ( 〈arglist〉 )

〈call〉 ::= 〈call-base〉 | 〈call-base〉 and 〈havoc〉

1.5.1 Two Examples

The example below implements Fibonacci’s recursive function:

nts fibonacci;

fib {
in x : int;
out y : int;
t1, t2 : int;
initial si;
final sf;
si -> sf { x=0 and y’=0 and havoc(y) }
si -> sf { x=1 and y’=1 and havoc(y) }
si -> s1 { x>1 and havoc() }
s1 -> s2 { t1’=fib(x-2) }
s2 -> s3 { t2’=fib(x-1) }
s3 -> sf { y’=t1+t2 and havoc(y) }

}
main {

x, y : int;
initial si;
error se;
si -> s1 { x>=0 and havoc() }
s2 -> s2 { y’=fib(x) }
s2 -> se { x>=4 and y<=x and havoc() }

}

The example below describes an NTS that concatenates two arrays:
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nts concatenation;

concat {
in a1[], a2[] : int;
out a[] : int;
t[|a1|+|a2|] : int, i : int;
initial si;
final sf;
si -> s1 { i’=0 and havoc(i) }
s1 -> s1 { i<|a1| and t’[i]=a1[i] and i’=i+1 and havoc(t,i) }
s1 -> s2 { i=|a1| and i’=0 and havoc(i) }
s2 -> s2 { i<|a2| and t’[i+|a1|]=a2[i] and i’=i+1 and havoc(t,i) }
s2 -> sf { i=|a2| and a’=t and havoc(a) }

}

1.6 Parallel Systems

A parallel NTS is a collection of basic NTS with a global specification of instances
that run in parallel. For example

par N : int;
instances producer[N], consumer[2*N];

declares a parametric concurrent system in which there are Ninstances of the
producer thread running in parallel with 2*N instances of the consumer thread.
As a general rule, the NTS used in aninstancesdeclaration must not declare
input nor output variables.

Each instance has access to a predefined variabletid of typeint . Two different
instances have differenttid values. Moreover, the order in which the instances are
specified determines the value of thetid variable. For instance, in the example
above the value oftid for producer threads ranges between 0 andN−1, whereas
the value oftid for consumer threads ranges betweenN and 2∗N−1. Since the
values oftid are pairwise distinct, all values in the above ranges are used. These
considerations are useful to the specification of parallel systems with shared array
resources.

The following gives the formal syntax of the instance declaration:

〈instance〉 ::= 〈idn〉 [ 〈arith-term〉 ]
〈inst-list〉 ::= 〈instance〉 | 〈inst-list〉 , 〈instance〉
〈instances〉 ::= instances 〈inst-list〉 ;

18



CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

1.7 Global NTS Specification

The global specification of an NTS consists of a declaration of global variables and
parameters, an initial condition (a formula describing theinitial configurations),
an instance declaration, and a list of basic NTS. The initialcondition is written
using full first-order arithmetic, e.g.:

par N : int;
a[N] : int;
init forall i : int[0,N-1] . a[i] = 0;

The formal syntax of a global NTS specification is given below. The start
symbol is the〈system〉 non-terminal.

〈nts-name〉 ::= 〈annotations〉 nts 〈idn〉 ;
〈init〉 ::= init 〈formula〉 ;

〈nts-list〉 ::= 〈nts-basic〉 〈nts-list〉 | ε
〈nts〉 ::= 〈nts-name〉 〈decl-glob〉 〈init〉 〈instances〉 〈nts-list〉

1.7.1 Lamport’s Bakery Protocol

nts bakery;

// global declarations
par N : int;
choose[N] : int;
num[N] : int;
CS[N] : bool;

// initial condition on global variables
init forall i : int[0,N-1] . (choose[i]=0 and

num[i]=0 and not CS[i]) and N>0;

// note that the order of entry points determines their tids:
// tid of bakery threads will be in range [0...N-1] and
// tid of the monitor thread will be N
instances bakery[N], monitor[1];

// bakery threads
bakery {
initial s1;
s1 -> s2 { lock(tid) }
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s2 -> s1 { unlock(tid) }
}
// monitor thread
monitor {
initial si;
error se;
si -> se { exists i,j : int[0,N-1] . (i!=j and

CS[i] and CS[j]) and havoc() }
}
lock {
in i : int;
max : int, j : int;
initial s1;
final s5;

// set max
s1 -> s2 { choose’[i] = 1 and max’=0 and j’=0

and havoc(max,choose,j) }
s2 -> s2 { j<N and max >= num[j] and j’=j+1

and havoc(j) }
s2 -> s2 { j<N and max < num[j] and max’=num[j] and j’=j+1

and havoc(max,j) }
s2 -> s3 { j=N and choose’[i] = 0 and j’=0

and havoc(choose,j) }

// wait for entering the critical section
s3 -> s3 { j<N and choose[j] != 0 and havoc() }
s3 -> s4 { j<N and choose[j] = 0 and havoc() }
s4 -> s4 { num[j]!=0 and (num[j]<num[i] or

num[j]=num[i] and j<i) and havoc() }
s4 -> s3 { not (num[j]!=0 and (num[j]<num[i] or

num[j]=num[i] and j<i)) and j’=j+1 and havoc(j) }

// enter the critical section
s3 -> s5 { j=N and CS’[i]=true and havoc(CS) }

}
unlock {
in i : int;
initial s1;
final s2;
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// leave the critical section
s1 -> s2 { CS’[i]=false and num’[i]=0 and havoc(CS,num) }

}

1.8 Annotations

Some syntactical elements of the NTS can be annotated. Namely, the global NTS,
its subsystems, control states, transitions, and variables. In the case of global
systems, subsystems, transitions, and variables, the annotation is placed before
their definition (see sections 1.2.2, 1.4, and 1.7). In orderto allow annotations of
control states, the〈statesdecl〉 declaration block is introduced (see Section 1.4),
which contains a list of (annotated) control states. Note that such (annotated)
declaration can be partial, in other words, not all the control states used later in
a definition of transitions have to appear there. An annotation can be of typeint,
real, bool, string, or formula. The formal syntax for annotations follows:

〈string〉 ::= ” 〈PRINTABLE-CHAR〉∗ ”
〈a-type-val〉 ::= int : 〈sign〉 〈numeral〉

| real : 〈sign〉 〈decimal〉
| bool : 〈boolean〉
| string : 〈string〉
| formula : 〈formula〉

〈annotation〉 ::= @ 〈idn〉 : 〈a-type-val〉 ;
〈annotations〉 ::= 〈annotations〉 〈annotation〉 | ε

The following example illustrates the use of annotations:

@inv:formula: x=0 and x<=11; // annotation of global NTS

@line:int:101; @col:int:5; // annotation of global variable x

x : int;
init x=0;
@inv:formula: x<=11; // subsystem annotation

main {
@line:int:101; @col:int:15; // annotation of local variable y

y : int;
states // partial declaration of control states

@line:int:5; // annotation of the control state s1

s1
;
initial s1;
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final s2;
s1 -> s1 @line:int:105; @col:int:1; // annotation of a transition

{ x<0 and x’=x+1 }
s1 -> s2 { x=0 and x’=x }
s2 -> s2 { x<=10 and x’=x+1 }

}
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Chapter 2

Numerical Transition Systems

In the following, the symbolsB, N, N+, Z andR are used to denote the sets
of booleans, natural, strictly positive natural, integer,rational and real numbers,
respectively.

Let D be adata domain, or simply domain. Each domain has an associated
first-order logical theoryTD = 〈D,X ,{Pi}

n
i=1,{ fi}mi=1〉 consisting of:

• a (possibly infinite countable) set of variablesX

• a (possibly infinite countable) set of predicate symbols{Pi}
n
i=1

• a (possibly infinite countable) set of function symbols{ fi}mi=1

all ranging over the universeD. As usual, we consider constants to be functions
of zero arity.

Thealphabetof TD is the set of all variables, predicate and function symbols
of TD, together with the classical first-order logic connectives: ∨, ∧, ¬, ∃, ∀ and
the equality sign=. A termof TD is either a variablex∈ X , or a function symbol
f (t1, . . . , tn) applied to a number of terms equal to its arity. An atomic proposition
is eithert1 = t2, or p(t1, . . . , tn) for a predicate symbol of arityn and termst1,...,n.
The languageof TD is the set of all syntactically valid first-order formulae build
from atomic propositions, using the first-order connectives.

Each atomic propositionπ in the language ofTD has an attachedguard, de-
notedG(π), which is a formula also in the language ofTD. Unless specified, we
assume the guard to be true. The guard of a first-order formulais defined induc-
tively:

• G(ϕ1∧ϕ2)≡ G(ϕ1∧ϕ2)≡ G(ϕ1)∧G(ϕ2)

• G(∃x . ϕ)≡ G(∀x . ϕ)≡ G(¬ϕ)≡ G(ϕ)
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Given two (or more) domainsD1 andD2 with associated first-order theories
TD1 = 〈D1,{Ri}

n1
i=1,{ fi}

m1
i=1〉 andTD2 = 〈D2,{Ri}

n2
i=1,{ fi}

m2
i=1〉, the disjoint union

of TD1 andTD2 is defined as:

TD1⊎D2 = 〈D1⊎D2,X1⊎X2,{Pi}
n1
i=1⊎{Pi}

n2
i=1,{ fi}

m1
i=1⊎{ fi}

m2
i=1〉

An atomic proposition ofTD1⊎D2 is either an atomic proposition ofTD1 or of TD2

i.e., without mixing variables, predicates or function symbols from both theories.
The language ofTD1⊎D2 is the set of all syntactically valid first-order formulae
build from the atomic propositions ofTD1⊎D2.

Given a finite set of domainsD1, . . . ,Dk, a multi-domainnumerical transition
system(NTS) is a tuple

S= 〈{Di}
k
i=1,{Xi}

k
i=1,{pi}

k
i=1,{x

in
i }

k
i=1,{x

out
i }

k
i=1,Q, I ,F,E,∆〉

where, for alli = 1, . . . ,k:

• Xi is a set ofstate variablesranging overDi . W.l.o.g. we require that
Xi ∩Xj = /0, for all i 6= j.

An interpretationof the state variables is a mappingνi : Xi→Di . We denote
by X′i the set of primed variables i.e.,{x′ | x∈ Xi}, and byν′i : X′i → Di an
interpretation of the primed variables.

The set ofrelationsover Xi is the set of formulae in the language ofTDi

with free variables in the setXi ∪X′i , and is denoted asRDi . For any relation
R∈ RDi we write

|= R[νi/Xi ,ν′i/X′i ]

if the formula in which each variablex ∈ Xi is substituted byνi(x), each
x′i ∈ X′i is substituted byν′i(x′i), and each predicate and function symbol is
interpreted overDi , is logically true.

• pi ⊆ Xi is a set ofparametersi.e., variables whose values do not change
during execution

• xin
i ⊆ Xi is a (possibly empty) ordered sequence ofinput variables

• xout
i ⊆ Xi is a (possibly empty) ordered sequence ofoutput variables

• Q is a finite set ofcontrol states

• I ⊆Q is a non-empty set ofinitial states

• F ⊆Q is a (possibly empty) set offinal states
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• E ⊆Q is a (possibly empty) set oferror states

• ∆ is a set oftransition rulesof the form:

q
R
−→ q′

whereq,q′ ∈Q andR∈ TD1⊎...⊎Dk

We require that, for all transition rulesq
R1−→ q′, . . . ,q

Rn−→ q′ with q andq′

as the source and destination states, respectively, for no two i, j ∈ {1, . . . ,n}
it is the case thatRi =⇒ Rj is valid (a transition rule does not subsume
another).

Additionally, for each transition relationR occurring in∆, the following
implication is assumed to be valid:

R=⇒
k∧

i=1

∧

p∈pi

p= p′

Moreover, we assume a transition ruleq
¬G(R)
−−−−→ qe to some error stateqe∈E,

for each transition ruleq
R
−→ q′.

A configurationof an NTSSis a tuple(q,ν1, . . . ,νk), whereq∈Q is a control state
andνi : Xi → Di are interpretations of the state variables. A configurationwhose
control state is fromE (F) is called an error (final) configuration, respectively. A
configuration(q′,ν′1, . . . ,ν

′
k) is animmediate successorof (q,ν1, . . . ,νk), denoted

as
(q,ν1, . . . ,νk)⇒ (q′,ν′1, . . . ,ν

′
k)

if and only if Shas a transition ruleq
R
−→ q′, whereR∈ TD1⊎...Dk and

|= R[ν1/X1, . . . ,νk/Xk,ν′1/X′1, . . . ,ν
′
k/X′k]

Given two control statesq,q′ ∈Q, a run ρ of A from q to q′ is a finite sequence of
configurations

ρ : c1⇒ c2⇒ . . .cm

wherec1=(q,ν1, . . . ,νk) andcm=(q′,ν′1, . . . ,ν
′
k) for some interpretationsν1, . . . ,νk

andν′1, . . . ,ν
′
k. A run where the endpoint is not specified is assumed to be infinite.

Let c= (q,ν1, . . . ,νk) be an arbitrary configuration of an NTSSand letc⇒
c′ = (q′,ν′1, . . . ,ν

′
k) andc⇒ c′′ = (q′′,ν′′1, . . . ,ν

′′
k):
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• Sis said to becontrol deterministiciffy q′ = q′′, independently of the choice
of c,c′ andc′′.

• S is said to bedata deterministiciff ν′i = ν′′i , for all i ∈ {1, . . . ,k}, indepen-
dently of the choice ofc,c′ andc′′.

• S is said to bedeterministiciff it is both control and data deterministic, and
non-deterministicotherwise.

LetS= 〈{Di}
k
i=1,{Xi}

k
i=1,{p}

k
i=1,{x

in
i }

k
i=1,{x

out
i }

k
i=1,Q, I ,F,E,∆〉 be an NTS,

and letΘ(X) be a formula in the language ofTD1⊎...⊎Dk denotinginitial conditions.
A configuration(q,ν1, . . . ,νk) such thatq∈ I and|= Θ[ν1/X1, . . . ,νk/Xk] is called
a Θ-initial configuration. The following define theverification problemswe con-
sider for NTS.

Definition 1 (SAFETY) S is said to besafewith respect toΘ if and only if there is
no run starting in aΘ-initial configuration, and ending in an error configuration.

Definition 2 (TERMINATION) S is said toterminatewith respect toΘ if and
only if each run starting in aΘ-initial configuration eventually reaches a final
configuration.

2.1 Basic NTS

A basic NTS(BNTS) is an NTS over purely numeric domains. We distinguish
between booleanB, integerZ and realR domains. The domain theory is in this
case the first order arithmetic of addition and multiplication i.e.,〈D,≤,0,1,+, ·〉,
whereD ∈ {Z,R} and≤, 0, 1,+ and· are interpreted as usual. For booleans we
write f alse, true, or andand instead of 0,1,+ and·, respectively.

Notice that the domain of variables plays an important role in the semantics of
the transition relation. For instance, the relationx< 8 ∧ x′+8= x is satisfiable on
Z but unsatisfiable onN, whereas 2·x·x= y·y is satisfiable onR but unsatisfiable
onZ.

2.1.1 A Classification of BNTS (skip on first reading)

As shown by Minsky1, the class of single-domain BNTS withD1 ∈ {N,Z}, X1 =
{x1,x2} and transition rules of one of the forms, fori = 1,2:

1M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
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q
x′i=xi+1
−−−−→ q′ (increment)

q
x′i=xi−1
−−−−→ q′ (decrement)

q
xi=0
−−→ q′ (zero test)

has equivalent (Turing-complete) verification problems asthe class of BNTS us-
ing unrestricted first-order transition rules. On the otherhand, using only incre-
ment, decrement and zero tests results in complex and hard tounderstand system
descriptions (as one needs a great number of control states). Therefore it seems
reasonable to identify expressive subfragments of the firstorder arithmetic and
classify BNTS according to the syntax of their transition rules.

Definition 3 (DIFFERENCE BOUNDS) A formulaφ(X) is adifference bounds
constraintif it is equivalent to a finite conjunction of atomic propositions of the
form x−y≤ a where x,y∈ X and a∈ Z.

LetR db
D (X,X′) denote the class of difference bound relations over the variables in

X. A BNTS using only difference bounds transition relations iscalled adifference
bounds (B)NTS.

Definition 4 (OCTAGONS) A formula φ(X) is an octagonal constraintif it is
equivalent to a finite conjunction of atomic propositions ofthe form±x± y≤ a,
2x≤ b, or−2x≤ c, where a,b,c∈ Z and x,y∈ X.

The class of octagonal relations over the variables inX is denoted byR oct
D (X,X′).

A BNTS using only octagonal transition relations is called anoctagonal (B)NTS.

Definition 5 (POLYHEDRA) A formulaφ(X) is a polyhedronif it is equivalent
to a finite conjunction of atomic propositions of the form∑n

i=1aixi +b≥ 0 where
x1, . . . ,xn ∈ X and a1, . . . ,an,b∈ Z.

The class of polyhedral relations over the variables inX is denoted byR poly
D (X,X′).

A BNTS using only polyhedral transition relations is called apolyhedral (B)NTS.

Definition 6 (PRESBURGER) A formulaφ(X) is a Presburgerformula if it is
equivalent to a conjunction of a polyhedron with a finite conjunction of atomic
propositions of the form c| ∑n

i=1aixi +b where x1, . . . ,xn ∈ X, a1, . . . ,an,b,c∈ Z

and | denotes integer division. A Presburger formula is interpreted only over
〈N,≤,0,1,+, ·〉 and〈Z,≤,0,1,+, ·〉.
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The class of Presburger relations over the variables inX is denoted byR presb
D (X,X′).

A BNTS using only Presburger transition relations is called aPresburger (B)NTS.
We have the following hierarchy2, which reflects the expressive power of dif-

ferent subfragments of the first-order arithmetic.

R db
D ( R oct

D ( R
poly
D ( R

presb
D

The last inclusion concerns only the case of{N,Z} domains. Also, when inter-
preted overN or Z, all classes of BNTS defined above have equivalent (Turing-
complete) decision problems (safety and termination).

2.2 Array NTS

Let D be a base domain, in our case, one ofB, Z or R. For the time being, we
consider only one-dimensional arrays of purely numeric types. Thearray domain
of D is the set

AD = {a : [0. . .N−1]→ D | N ∈ N+}

The alphabet of the theoryTAD
consists of the combined alphabet ofN, D and the

following three function symbols:

• size : AD→ N+, size(a) = N if a : [0, . . . ,N−1]→ D for someN ∈ N+

• read : AD×N+→ D, read(a, i) = a(i) if 1 ≤ i ≤ size(a), and undefined
otherwise.

• write : AD×N+×D→AD, write(a, i,v) = a[i← v] if 1 ≤ i ≤ size(a), and
undefined otherwise.

Note that, since an array is a function, the theory of arrays is not a first-order
theory stricto sensu. For this reason, we do not allow (second-order) quantification
over array variables for the time being.

Given a multiple array assignment

a′[i1, . . . , ik] = [e1, . . . ,ek]

its effect is as if the basic assignments were performed leftto right, formally:

write(write(write(. . .(write(a, i1,e1)) . . .), ik−1,ek−1), ik,ek)

An array NTS(ANTS) is an NTS over three kinds of domains:

2This hierarchy is not just purely syntactic. For instance,x−y≤ 0 ∧ x−z≤ 1 ∧ 2x−y−z≤ 1
is still a difference bounds constraint, equivalent tox−y≤ 0 ∧ x−z≤ 1, although the syntax is
that of a polyhedron.
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• N is theindex domain. The set of index variables is denoted byI .

• D1,...,k are thescalar domains, namelyB, N, Z or R. We denote the sets of
scalar variables byV1,...,k.

• AD1,...,k are thearray domains. We denote the sets of array variables by
A1,...,k.

The transition rules ofSare of the form

q
R
−→ q′

whereR∈ TN ⊎ D1⊎...Dk ⊎ AD1⊎...⊎ADk
. We formally restrict the occurrences of un-

primed array variablesa to read (read(a, i)) and write (write(a, i, t)) functions,
and primed array variables to atomic propositions of the form a′ = write(a, i, t).
If π is an atomic proposition containing an array read or write, let G(π) ≡ 1≤
i ∧ i ≤ size(a) i.e., we explicitly represent array out-of-bounds errors.

2.3 Hierarchical NTS

A hierarchical NTS(HNTS) S〈m〉 over the domainsD1,...,k is defined using a col-
lectionS1, . . . ,Sn of basic NTS overD1,...,k, with a designatedmainNTS, denoted
by m∈ {1, . . . ,n}. Let

Si = 〈{D j}
k
j=1,{Xi, j}

k
j=1,{pi, j}

k
j=1,{x

in
i, j}

k
j=1,{x

out
i, j }

k
j=1,Qi, Ii,Fi,Ei,∆i〉

for all i ∈ {1,2, . . . ,n}, such that, for anyj, ℓ ∈ {1,2, . . . ,n}, j 6= ℓ implies Q j ∩
Qℓ = /0. We have then

S〈m〉=
〈
{D j}

k
j=1,

{
n⋃

i=1

Xi, j
}k

j=1,{
n⋃

i=1

pi, j}
k
j=1,{x

in
m, j}

k
j=1,{x

out
m, j}

k
j=1,

k⋃

j=1

Q j , Im,Fm,
k⋃

j=1

E j ,
n⋃

i=1

∆i
〉

Let Xg
j =

⋂n
i=1Xi, j denote the sets ofglobal (common) variables, andXl

i, j = Xi, j \

Xg
j denote the sets oflocal variables, for allj ∈ {1, . . . ,k}. We explicitly require

that, for anyi 6= i′, Xl
i, j ∩Xl

i′, j = /0 i.e., local variables of component NTS are
pairwise disjoint.

The transition rules ofS〈m〉 are of two kinds:

• q
R
−→ q′ (internal rules)

whereq,q′ ∈Qi, for somei ∈ {1, . . . ,n}, andR∈ TD1⊎...⊎Dk
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• q
Sj (t1,...,tk,y′1,...,y

′
k)−−−−−−−−−−−→ q′ (call-return rules3)

whereq,q′ ∈ Qi, for somei ∈ {1, . . . ,n}, andtℓ are ordered sequences of
terms over the variablesXi,ℓ, such that||tℓ|| = ||xin

j,ℓ|| and||y′ℓ|| = ||x
out
j,ℓ || for

somej ∈ {1, . . . ,n} and for allℓ ∈ {1, . . . ,k}.

Given base domainsD1,...,k and the set of basic NTS{Si}
n
i=1 above, theframe

domainis defined as follows:

FD1,...,k =
n⋃

i=1

(
∆i× (Xl

i,1→ D1)× . . .× (Xl
i,k→ Dk)

)

Given a relationR∈ RD1,...,Dk, interpretations of global variablesγ j ,γ′j : Xg
j →D j ,

for all j ∈ {1, . . . ,k}, and framesφ = (δ,ν1, . . . ,νk), φ′ = (δ′,ν′1, . . . ,ν
′
k), we write

〈Γ,φ,Γ′,φ′〉 |= R for the following:

|= R[γ1/Xg
1 , . . . ,γk/Xg

k ,ν1/Xl
1, . . . ,νk/Xl

l ,γ
′
1/Xg′

1, . . . ,γ
′
k/Xg′

k,ν
′
1/Xl ′

1, . . . ,ν
′
k/Xl ′

k]

whereΓ = {γ1, . . . ,γk} andΓ′ = {γ′1, . . . ,γ
′
k}.

Thestackdomain is the set of sequences of frames

SD1,...,k = (FD1,...,k)
∗

The alphabet of the stack domain consists of three functions:

• push : SD1,...,k×FD1,...,k → SD1,...,k defined aspush(σ,φ) = σ ◦ φ, where◦
denotes sequence concatenation.

• pop : SD1,...,k→ SD1,...,k defined aspop(σ◦φ) = σ, and undefined if applied
to the empty sequence.

• top : SD1,...,k → FD1,...,k defined astop(σ◦φ) = φ, and undefined if applied
to the empty sequence.

A configuration of a HNTS is a tuple(q,γ1, . . . ,γk,σ), where

• q∈
⋃n

i=1Qi is the current control state

• γi : Xg
i → Di are interpretations of global variables, for alli ∈ {1, . . . ,k}

• σ ∈ SD1,...,k is a stack

3For the sake of simplicity, we introduce transition rules that cannot be written using first-
order logic. The semantics however can be fitted into logic defining a stack domain and push/pop
functions.
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The immediate successor relation is defined as follows. We have

(q,γ1, . . . ,γk,σ)⇒ (q′,γ′1, . . . ,γ
′
k,σ
′)

if and only if either one of the following holds:

• q
R
−→ q′ ∈ ∆ and〈Γ, top(σ),Γ′, top(σ′)〉 |= R

• δ ≡ q
Sj (t1,...,tk,y′1,...,y

′
k)−−−−−−−−−−−→ q′′ ∈ ∆i for somei ∈ {1, . . . ,n}, q′ ∈ I j , γℓ = γ′ℓ, for

all ℓ ∈ {1, . . . ,k} andσ′ = push(σ,φ), whereφ = (δ,ν1, . . . ,νk) is a stack
frame such that:

〈Γ, top(σ),Γ′,φ〉 |=
k∧

ℓ=1

p∧

m=1

x′m,ℓ = tm,ℓ

where xin
j,ℓ = 〈x1,ℓ,x2,ℓ, . . .xp,ℓ〉 and tℓ = 〈t1,ℓ, t2,ℓ, . . .tp,ℓ〉 are ordered se-

quences, with equal number of elements.

• δ ≡ q′′
Sj (t1,...,tk,y′1,...,y

′
k)−−−−−−−−−−−→ q′ ∈ ∆i for somei ∈ {1, . . . ,n}, q∈ Fj , γℓ = γ′ℓ, for

all ℓ ∈ {1, . . . ,k}, such thattop(σ) = (δ,ν1, . . . ,νk). Let σ′′ = pop(σ) and
top(σ′′) = (δ′′,ν′′1, . . . ,ν

′′
k). Thenφ = (δ′′,ν′1, . . . ,ν

′
k) is a frame such that:

〈Γ, top(σ′′),Γ′,φ〉 |=
k∧

ℓ=1

∧

x∈Xl
i,ℓ\yℓ

x′ = x

and

〈Γ, top(σ),Γ′,φ〉 |=
k∧

ℓ=1

p∧

m=1

xm,ℓ = y′m,ℓ

wherexout
j,ℓ = 〈x1,ℓ,x2,ℓ, . . .xp,ℓ〉 andy′ℓ = 〈y

′
1,ℓ,y

′
2,ℓ, . . .y

′
p,ℓ〉 are ordered se-

quences, with equal number of elements. Finally, letσ′= push(pop(σ′′),φ).

2.4 Parallel NTS

A parallel NTSPNTS S [M] is defined as a collection of (possibly hierarchic)
NTSS1, . . . ,Sn, over the domainsD1, . . . ,Dk, together with amultiset of instances
M : {1, . . . ,n}→ N. A configuration ofS [M] is a tuple

C= 〈c1,1 . . .c1,M(1), c2,1 . . .c2,M(2), . . . , cn,1 . . .cn,M(n)〉
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xl
i

xin
j xl

j xl
j xout

j

Si callsSj Sj returns toSi

xl
i

y′
xl

i \y

whereci,1, . . . ,ci,M(i) are configurations ofSi, for all i ∈ {1, . . . ,n}.
Given a formulaΘ in the language ofTD1⊎...⊎Dk, a Θ-initial configuration of

S[M] is a configuration whoseci, j components are allΘ-initial configurations of
Si , for all i ∈ {1, . . . ,n}. A final configuration is a configuration whoseci, j compo-
nents are all final configurations ofSi, for all i ∈ {1, . . . ,n}. An error configuration
is a configuration such that at least oneci, j component is an error configuration of
Si , for somei ∈ {1, . . . ,n}.

The transition relation is defined as follows. We haveC⇒C′ if and only ifC′

is same asC except for exactly one componenti ∈ {1, . . . ,n}, j ∈ {1, . . . ,M(i)},
for which we haveCi, j ⇒i C′i, j , where⇒i is the transition relation ofSi.

In a parallel NTS, all thread instances have access to a predefined variable
tid . Globally, tid is defined as a partial functiontid(i, j) = ∑i−1

ℓ=1M(ℓ)+ j−1, if
1≤ i ≤ n and 1≤ j ≤M(i), and undefined otherwise. Intuitively,tid(i, j) is the
local value of the variabletid for the instance(i, j) of the parallel system.
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