Automata-Theoretic Model Checking of Reactive Systems

Radu losif Verimag/CNRS (Grenoble, France)

Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University, Israel)

Ensuring Correctness of Hw/Sw Systems

- Uses logic to specify correctness properties, e.g.:
 - the program never crashes
 - the program always terminates
 - every request to the server is eventually answered
 - the output of the tree balancing function is a tree, provided the input is also a tree ...
- Given a logical specification, we can do either:
 - VERIFICATION: prove that a given system satisfies the specification
 - SYNTHESIS: build a system that satisfies the specification

Approaches to Verification

- THEOREM PROVING: reduce the verification problem to the satisfiability of a logical formula (entailment) and invoke an off-the-shelf theorem prover to solve the latter
 - Floyd-Hoare checking of pre-, post-conditions and invariants
 - Certification and Proof-Carrying Code
- MODEL CHECKING: enumerate the states of the system and check that the transition system satisfies the property
 - explicit-state model checking (SPIN)
 - symbolic model checking (SMV)
- COMBINED METHODS:
 - static analysis (ASTREE)
 - predicate abstraction (SLAM, BLAST)

Model Checking Real-Life Systems

- MODEL EXTRACTION:
 - give precise semantics (meaning) to what the system does and how it does it
 - the result is a (possibly infinite) directed graph in which the nodes denote states and the edges denote transitions
 - the model is an abstraction of the original system, i.e. it has more behaviors
- MODEL VERIFICATION:
 - 1. check whether the model satisfies a given property
 - 2. if no error was found, stop and report OK
 - 3. otherwise, check if the error is feasible in the original system
 - if yes, report ERROR
 - otherwise, refine the abstraction, by excluding the spurious behavior and goto 1

• Safety : something bad never happens

A counterexample is an finite execution leading to something bad happening

Example: the program does not dereference any null pointers

• Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good happens

Example: the function terminates on any given input

Modeling Systems

Systems Dichotomies

- Deterministic/Non-deterministic
- Sequential/Concurrent
 - synchronous/asynchronous communication between processes
- Hardware/Software/Embedded
 - Hw is always finite-state (boolean data)
 - Sw is considered infinite (integers, recursive data structures, etc.)
- Transformational/Reactive
 - a transformational system takes input, computes output and stops
 - a reactive system interacts continuously with the environment

Problems in Systems Modeling

- Representing states
 - local/global components
- Granularity of actions
 - what are the atomic transitions ?
- Representing concurrency
 - one transition at a time
 - coinciding transitions

Modeling States

- V = {x₀, x₁, x₂...} is a set of variables ranging over some domain (bool,int,...)
- $\varphi(x_0, x_1, ...)$ is a parameterized assertion over V e.g., $x_0 < 10, x_1 \le x_2 + x_3, ...$
- A state is an assignment of values to the variables e.g.,
 s(x₀) = 2, s(x₁) = 3, s(x₂) = 5,...
- $s \models \varphi$ iff φ is true under s

Atomic Transitions

- An atomic transition is a small piece of code such that no smaller piece of code is observable
- Question: is $x \leftarrow x + 1$ observable ?
- Answer1: yes, if x is a register and the transition is executed using an inc machine command
- Answer2: yes, if x is variable local to a process, which is not visible to other processes

int a = 0;

P1: load R1, a P2: load R2, a inc R1 inc R2 store R1, a store R2, a

Modeling Atomic Transitions

- Each transition $G \rightarrow A$ has two parts:
 - the guard G: the enabling condition
 - the action A: a multiple assignment
 - the guard and action are executed in one atomic step
- Example: $x > y \rightarrow x' = y \land y' = x$
- Frame rule: if a variable v' does not appear in A then implicitly v' = v

Initial Conditions

- $V = \{x_0, x_1, x_2, \ldots\}$ are program variables
- The initial condition is an assumption $\psi(x_0, x_1, \ldots)$
- The program can start in any state s such that $s\models\psi$
- **Example**: x = 0, x > 0, ...

Sequential Systems

- $V = \{x_0, x_1, x_2, \ldots\}$
- $P = \langle V, T, I \rangle$, where
 - T is a set of transitions $G \rightarrow A$ involving V
 - $-\ I$ is an initial condition over I
- Example:

$$P = \langle \{x, y\}, \{True \rightarrow x' = x + y, y > 0 \rightarrow y' = y - 1\}, x = 0 \land y > 0 \rangle$$

• State space:

Concurrent Systems: the interleaving model

- $S = \langle P_1, P_2, \dots, P_n \rangle$, where $P_i = \langle V_i, T_i, I_i \rangle$, $i = 1, \dots, n$
- $V = \bigcap_{i=1}^{n} V_i$ are called global variables
- $L_i = V_i \setminus V$ are called local variables
- An execution is a possibly infinite sequence of states s_0, s_1, s_2, \ldots such that:
 - $-s_0 \models I_1 \land \ldots \land I_n$
 - for each i = 0, 1, 2, ... there exists $j \in \{1, ..., n\}$ and $G \to A \in T_j$ such that $s_i \models G$ and $s_i, s_{i+1} \models A$ (s_i is the valuation of unprimed and s_{i+1} the valuation of primed variables)
 - i.e., exactly one process is executed at the time
 - the frame rule applies to that specific process

Mutual Exclusion Example

• $P_i = \langle \{m, x, l_i\}, \{t_1^i, t_2^i, t_3^i\}, m = 0 \land x = 0 \land l_i = 0 \rangle$, for i = 1, 2 where

$$t_1^i : l_i = 0 \land m = 0 \rightarrow l'_i = 1 \land m' = 1$$

$$t_2^i : l_i = 1 \land m = 1 \rightarrow l'_i = 2 \land m' = 0 \land x' = x + 1$$

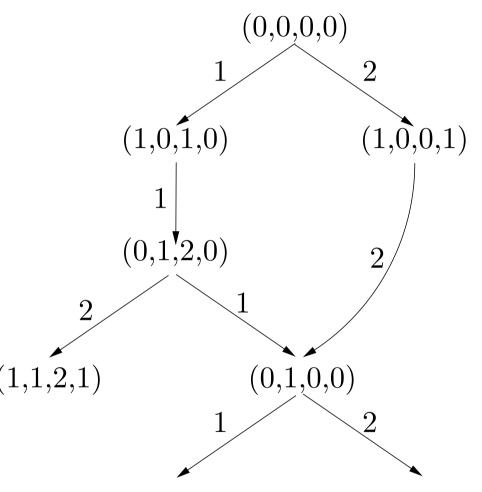
$$t_3^i : l_i = 2 \rightarrow l'_i = 0$$

• A possible execution:

$$(m, x, l_1, l_2) : (0, 0, 0, 0) \xrightarrow{1} (1, 0, 1, 0) \xrightarrow{1} (0, 1, 2, 0)$$
$$\xrightarrow{2} (1, 1, 2, 1) \xrightarrow{2} (0, 2, 2, 2)$$

Mutual Exclusion Example

- No deadlock: in every state there is at least one enabled transition
- Mutex: there is at most one process in the critical section at any time
- No starvation: if a process attempts to enter the critical section, then eventually it will enter (1,1)
- Future problem: the state space is infinite!



Fairness

Global assumptions on the process scheduler:

- Weak process fairness: if some process is enabled continuously from some state, then it will be executed
- Weak transition fairness: if some transition is enabled continuously from some state, then it will be executed
- Strong process fairness: if some process is enabled infinitely often, then it will be executed
- Strong transition fairness: if some transition is enabled infinitely often, then it will be executed

Fairness Example

$$\begin{aligned} x = 0 \land y = 0 \land z = 0 \land l_1 = 0 \land l_2 = 0 \\ \text{P1::= 0: x'=1} \\ \text{P2::= 0: while y=0 do} \\ 1: z'=z+1 \\ & [] \\ 2: \text{ if } x=1 \text{ then } y'=1 \end{aligned}$$

Does P_1 terminate ? Does P_2 terminate ?

- No fairness: nothing guaranteed
- Weak fairness: P_1 terminates
- Strong process fairness: P_1 terminates
- Strong transition fairness: both P_1 and P_2 terminate

Linear Temporal Logic

Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states
- Each state in the sequence gives an interpretation to the atomic propositions
- Temporal operators indicate in which states a formula should be interpreted

Example 1 Consider the sequence of states:

 $\{p,q\} \{\neg p,\neg q\} (\{\neg p,q\} \{p,q\})^{\omega}$

Starting from position 2, q holds forever. \Box

Kripke Structures

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a finite alphabet of *atomic propositions*.

A *Kripke structure* is a tuple $K = \langle S, s_0, \rightarrow, L \rangle$ where:

- S is a set of *states*,
- $s_0 \in S$ a designated *initial state*,
- \rightarrow : $S \times S$ is a *transition relation*,
- $L: S \to 2^{\mathcal{P}}$ is a labeling function.

A *path* in K is an infinite sequence $\pi : s_0, s_1, s_2 \dots$ such that, for all $i \ge 0$, we have $s_i \rightarrow s_{i+1}$.

By $\pi(i)$ we denote the *i*-th state on the path.

By π_i we denote the suffix $s_i, s_{i+1}, s_{i+2} \dots$

 $\inf(\pi) = \{s \in S \mid s \text{ appears infinitely often on } \pi\}$

If S is finite and π is infinite, then $\inf(\pi) \neq \emptyset$.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- atomic proposition symbols p, q, r, \ldots ,
- boolean connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$,
- temporal connectives $\bigcirc, \Box, \diamondsuit, \mathcal{U}, \mathcal{R}$.

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if φ and ψ are formulae, then $\neg \varphi$ and $\varphi \bullet \psi$, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ are also formulae.
- if φ and ψ are formulae, then $\bigcirc \varphi$, $\Box \varphi$, $\diamond \varphi$, $\varphi \mathcal{U} \psi$ and $\varphi \mathcal{R} \psi$ are formulae,
- nothing else is a formula.

- () is read at the next time (in the next state)
- \Box is read always in the future (in all future states)
- \diamond is read eventually (in some future state)
- ${\cal U}$ is read until
- \mathcal{R} is read releases

Linear Temporal Logic: Semantics

Derived meanings:

 $\begin{array}{lll} K,\pi\models\Diamond\varphi & \Longleftrightarrow & K,\pi\models\top\mathcal{U}\varphi\\ K,\pi\models\Box\varphi & \Longleftrightarrow & K,\pi\models\neg\Diamond\neg\varphi\\ K,\pi\models\varphi\mathcal{R}\psi & \Longleftrightarrow & K,\pi\models\neg(\neg\varphi\mathcal{U}\neg\psi) \end{array}$

- p holds throughout the execution of the system (p is invariant) : $\Box p$
- whenever p holds, q is bound to hold in the future : $\Box(p\to \diamondsuit q)$
- p holds infinitely often : $\Box \diamondsuit p$
- p holds forever starting from a certain point in the future : $\Diamond \Box p$
- $\Box(p \rightarrow \bigcirc(\neg q \mathcal{U}r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where ris true, which must occur.
- *pRq* : *q* is true unless this obligation is released by *p* being true in a previous state.

Concurrent system specification in LTL

- Let $S = \langle P_1, \ldots, P_n \rangle$ be a concurrent system, where $P_i = \langle V_i, T_i, I_i \rangle$
- Absence of deadlock: $\Box \bigvee_{i=1}^{n} enabled(P_i)$
- Weak process fairness: $\bigwedge_{i=1}^{n} \Diamond \Box enabled(P_i) \rightarrow \Diamond execute(P_i)$
- Strong process fairness: $\bigwedge_{i=1}^{n} \Box \diamondsuit enabled(P_i) \rightarrow \diamondsuit execute(P_i)$

Conclusion of the first part

- Need a formal language (logic) to express queries about a system's behavior: deadlock freedom, absence of starvation, fairness conditions, etc.
- The global behavior of a system is modeled as a possibly infinite directed graph, whose nodes are labeled with assertions
- System executions are possibly infinite paths through this graph
- Linear Temporal Logic is a powerful language to express properties of system behaviors