
Object-Oriented Programs as Parametrised
Systems
Antti Siirtola
Department of Information and Computer Science
Aalto University, School of Science
antti.siirtola@aalto.fi

Rich Model Toolkit COST Action Meeting, June 17th, 2013



Outline
June 17th, 2013

2/30

Outline

Introduction

Model of Computation

Parametrised LTSs

Modelling Object-Oriented Programs

Verification Techniques for Parametrised Parts

Conclusions



Introduction
June 17th, 2013

3/30

Introduction



Introduction
June 17th, 2013

4/30

Formal Verification

Main Question
Does a given system implementation meet its specification?



Introduction
June 17th, 2013

4/30

Formal Verification

Main Question
Does a given system implementation meet its specification?

Formally
Sys ! Spec?



Introduction
June 17th, 2013

4/30

Formal Verification

Main Question
Does a given system implementation meet its specification?

Formally
Sys ! Spec?

Not natural to object-oriented programs



Introduction
June 17th, 2013

4/30

Formal Verification

Main Question
Does a given system implementation meet its specification?

Formally
Sys ! Spec?

Not natural to object-oriented programs

Why?



Introduction
June 17th, 2013

5/30

Object-Oriented Programs

OO Programs have many natural parameters:
! the number of concurrent threads,
! the number of replicated objects,
! the size of stack = the number of recursions.



Introduction
June 17th, 2013

5/30

Object-Oriented Programs

OO Programs have many natural parameters:
! the number of concurrent threads,
! the number of replicated objects,
! the size of stack = the number of recursions.

OO Programs are usually not representable as a single
(finite-state) system!



Introduction
June 17th, 2013

6/30

Parametrised Verification

Main Question
Does a given parametrised system implementation meet its
parametrised specification for every parameter value?



Introduction
June 17th, 2013

6/30

Parametrised Verification

Main Question
Does a given parametrised system implementation meet its
parametrised specification for every parameter value?

Formally
Sys(i) ! Spec(i) for all i ∈ I?



Introduction
June 17th, 2013

6/30

Parametrised Verification

Main Question
Does a given parametrised system implementation meet its
parametrised specification for every parameter value?

Formally
Sys(i) ! Spec(i) for all i ∈ I?

Natural to object-oriented programs!



Model of Computation
June 17th, 2013

7/30

Model of Computation



Model of Computation
June 17th, 2013

8/30

Labelled Transition System

τ

τ

a

b

Σ = {a, b}



Model of Computation
June 17th, 2013

9/30

Parallel Composition
Hoare-style alphabet-based synchronisation

τ c a

Σ = {a, c}

‖ τ c b

Σ = {b, c}



Model of Computation
June 17th, 2013

9/30

Parallel Composition
Hoare-style alphabet-based synchronisation

τ c a

Σ = {a, c}

‖ τ c b

Σ = {b, c}

=
τ

τ

τ

τ

c
a

b

b

a

Σ = {a, b, c}



Parametrised LTSs
June 17th, 2013

10/30

Parametrised LTSs



Parametrised LTSs
June 17th, 2013

11/30

Parametrised LTS

Parametrised action: c(x1, . . . , xk)
! c is a channel
! x1, . . . , xk are variables over parametrised types T1, . . . ,Tk
! T1, . . . ,Tn represent arbitrary large sets

Parametrised LTS (PLTS)
! An LTS with parametrised actions is a PLTS
! There are also other PLTSs



Parametrised LTSs
June 17th, 2013

12/30

Parametrised Parallel Composition

Syntax: ‖ x : P
! x is a variable of a type T
! T = {t0, t1, . . . , tn} where n ∈ Z+

! P is a parametrised LTS



Parametrised LTSs
June 17th, 2013

12/30

Parametrised Parallel Composition

Syntax: ‖ x : P
! x is a variable of a type T
! T = {t0, t1, . . . , tn} where n ∈ Z+

! P is a parametrised LTS

Instance of (‖ x : P) when n = 3 and P =
a(x)

a(t1)

a(t2)

a(t3)

a(t2)

a(t3)

a(t1)

a(t3)

a(t1)

a(t2)

a(t2)

a(t1)

a(t3)

a(t1)

a(t3)

a(t2)



Parametrised LTSs
June 17th, 2013

13/30

Parametrised Choice

Applied to transitions within parametrised LTSs



Parametrised LTSs
June 17th, 2013

13/30

Parametrised Choice

Applied to transitions within parametrised LTSs

Example
Parametrised LTS:

"x : a(x)



Parametrised LTSs
June 17th, 2013

13/30

Parametrised Choice

Applied to transitions within parametrised LTSs

Example
Parametrised LTS:

"x : a(x)

Instance when n = 3: a(t2)
a(t1)

a(t3)



Parametrised LTSs
June 17th, 2013

13/30

Parametrised Choice

Applied to transitions within parametrised LTSs

Example
Parametrised LTS:

"x : a(x)

Instance when n = 3: a(t2)
a(t1)

a(t3)



Parametrised LTSs
June 17th, 2013

14/30

PLTS Verification

Theorem (Siirtola & Heljanko 2013)
Trace inclusion problem of two PLTSs, where the
implementation PLTS may involve hiding, is decidable when

! no two variables of the same type occur both in a
parametrised parallel composition and a parametrised
choice and

! the specification PLTS is deterministic.
Otherwise, the problem is undecidable.



Parametrised LTSs
June 17th, 2013

14/30

PLTS Verification

Theorem (Siirtola & Heljanko 2013)
Trace inclusion problem of two PLTSs, where the
implementation PLTS may involve hiding, is decidable when

! no two variables of the same type occur both in a
parametrised parallel composition and a parametrised
choice and

! the specification PLTS is deterministic.
Otherwise, the problem is undecidable.

The technique is implemented in our Bounds tool.



Modelling Object-Oriented Programs
June 17th, 2013

15/30

Modelling Object-Oriented Programs



Modelling Object-Oriented Programs
June 17th, 2013

16/30

Specifications

Concurrency related properties
! Mutual exclusion, deadlocks, . . .
! Control flow and references to objects must be preserved
! Data can be abstracted away



Modelling Object-Oriented Programs
June 17th, 2013

17/30

Case: Shared Resource System (SRS)
! An arbitrary number of Resource objects is created
! An arbitrary number of User threads is started
! The users should access a resource in a mutually
exclusive way



Modelling Object-Oriented Programs
June 17th, 2013

17/30

Case: Shared Resource System (SRS)
! An arbitrary number of Resource objects is created
! An arbitrary number of User threads is started
! The users should access a resource in a mutually
exclusive way



Modelling Object-Oriented Programs
June 17th, 2013

18/30

Parameters

! A finite set of thread ids (for each runnable class)
! n User-threads User1, . . . ,Usern plus the main thread SRS



Modelling Object-Oriented Programs
June 17th, 2013

18/30

Parameters

! A finite set of thread ids (for each runnable class)
! n User-threads User1, . . . ,Usern plus the main thread SRS

! A finite set of objects ids (for each class)
! m Resource objects Res1, . . . ,Resm



Modelling Object-Oriented Programs
June 17th, 2013

18/30

Parameters

! A finite set of thread ids (for each runnable class)
! n User-threads User1, . . . ,Usern plus the main thread SRS

! A finite set of objects ids (for each class)
! m Resource objects Res1, . . . ,Resm

! A finite ordered set of stack positions
! Only two levels of nested method calls in the example
! Two stack positions: s1 < s2



Modelling Object-Oriented Programs
June 17th, 2013

19/30

Actions

Each method call/operation is represented as two actions

Example
Method call:
Actions:

o.setValue(v)
begSetValue(t , s, o, v)
endSetValue(t , s, o, v)

! t is the id of the thread that makes the call
! s denotes the next stack position



Modelling Object-Oriented Programs
June 17th, 2013

20/30

LTSs I
A control flow LTS Ctrl(u, s) for each runnable object u and
stack position s



Modelling Object-Oriented Programs
June 17th, 2013

21/30

LTSs II

An LTS MemVar(r , vr ) for each member variable vr of each
object r



Modelling Object-Oriented Programs
June 17th, 2013

21/30

LTSs II

An LTS MemVar(r , vr ) for each member variable vr of each
object r

An LTS New(r) for each object r (to guarantee unique creation)



Modelling Object-Oriented Programs
June 17th, 2013

22/30

LTSs III

An LTS Sync(c) for each class c (with synchronised methods)



Modelling Object-Oriented Programs
June 17th, 2013

23/30

Parametrised Implementation LTS

Compose all the parts in parallel

(‖ u, s : Ctrl(u, s)) ‖ (‖ r , vr : MemVar(r , vr ))
‖ (‖ r : New(r)) ‖ (‖ c : Sync(c))

! u ranges over thread ids
! s ranges over stack positions
! r ranges over objects
! vr ranges over member variables of the object r
! c ranges over classes with synchronised methods



Verification Techniques for Parametrised Parts
June 17th, 2013

24/30

Verification Techniques for Parametrised Parts



Verification Techniques for Parametrised Parts
June 17th, 2013

25/30

Dealing with Objects

Data independence (Lazić 1999)
! a cut-off/threshold for the number of replicated objects
! in our case, 113 resources is sufficient
! the cut-off of 113 resource can be pushed down to 3



Verification Techniques for Parametrised Parts
June 17th, 2013

25/30

Dealing with Objects

Data independence (Lazić 1999)
! a cut-off/threshold for the number of replicated objects
! in our case, 113 resources is sufficient
! the cut-off of 113 resource can be pushed down to 3

Limitation
Abstraction is needed:

! a member variable may change its value independently
! a call to a new operator may give an existing object



Verification Techniques for Parametrised Parts
June 17th, 2013

26/30

Dealing with Threads

Precongruence reduction (Siirtola & Kortelainen 2009)
! a cut-off/threshold for the number of concurrent threads
! in our case, 2 users is sufficient



Verification Techniques for Parametrised Parts
June 17th, 2013

26/30

Dealing with Threads

Precongruence reduction (Siirtola & Kortelainen 2009)
! a cut-off/threshold for the number of concurrent threads
! in our case, 2 users is sufficient

Limitation
The same as above: abstraction is needed.



Verification Techniques for Parametrised Parts
June 17th, 2013

27/30

Dealing with Stack

Behavioural fixed point (BFP) method (Valmari & Tienari
1991)

! the control flow from the viewpoint of any two threads and
any two stack positions (= behavioural fixed point)

! strictly linear topology→ totally ordered topology
! with the BFP method, a cut-off/threshold for the number of
stack positions (Siirtola 2010)

! not needed in our example (no real recursion)



Verification Techniques for Parametrised Parts
June 17th, 2013

27/30

Dealing with Stack

Behavioural fixed point (BFP) method (Valmari & Tienari
1991)

! the control flow from the viewpoint of any two threads and
any two stack positions (= behavioural fixed point)

! strictly linear topology→ totally ordered topology
! with the BFP method, a cut-off/threshold for the number of
stack positions (Siirtola 2010)

! not needed in our example (no real recursion)

Limitation
Fixed point may not exist



Verification Techniques for Parametrised Parts
June 17th, 2013

28/30

Verification of SRS

! The instances up to 2 users and 3 resources were found to
be correctly synchronised

! Hence, SRS is correctly synchronised for any number of
users and resources



Conclusions
June 17th, 2013

29/30

Conclusions



Conclusions
June 17th, 2013

30/30

Conclusions

! Object-oriented programs are naturally modelled as
parametrised systems

! There exists techniques and tools for the verification of
such models


	Introduction
	Model of Computation
	Parametrised LTSs
	Modelling Object-Oriented Programs
	Verification Techniques for Parametrised Parts
	Conclusions

