A

Aalto University
School of Science

Object-Oriented Programs as Parametrised
Systems

Antti Siirtola

Department of Information and Computer Science
Aalto University, School of Science
antti.siirtola@aalto.fi

Rich Model Toolkit COST Action Meeting, June 17th, 2013

Outline

Introduction

Model of Computation

Parametrised LTSs

Modelling Object-Oriented Programs
Verification Techniques for Parametrised Parts

Conclusions

Aalto University Outline
School of Science June 17th, 22%:;

Introduction

Aalto University Introduction
School of Science June 17th, 230/;:

Formal Verification

Main Question
Does a given system implementation meet its specification?

Aalto University Introduction
School of Science June 17th, 240/;:

Formal Verification

Main Question
Does a given system implementation meet its specification?

Formally
Sys < Spec?

Aalto University Introduction
School of Science June 17th, 240/;:

Formal Verification

Main Question
Does a given system implementation meet its specification?

Formally
Sys < Spec?

Not natural to object-oriented programs

Aalto University Introduction
School of Science June 17th, 2013
4130

Formal Verification

Main Question
Does a given system implementation meet its specification?

Formally
Sys < Spec?

Not natural to object-oriented programs

Why?

Aalto University Introduction
School of Science June 17th, 2013
4130

Object-Oriented Programs

OO Programs have many natural parameters:

» the number of concurrent threads,
» the number of replicated objects,
» the size of stack = the number of recursions.

Aalto University Introduction
School of Science June 17th, 250/;‘3}

Object-Oriented Programs

OO Programs have many natural parameters:

» the number of concurrent threads,
» the number of replicated objects,
» the size of stack = the number of recursions.

OO Programs are usually not representable as a single
(finite-state) system!

Aalto University Introduction
School of Science June 17th, 250/;:

Parametrised Verification

Main Question
Does a given parametrised system implementation meet its
parametrised specification for every parameter value?

Aalto University Introduction
School of Science June 17th, 250/;2

Parametrised Verification

Main Question
Does a given parametrised system implementation meet its
parametrised specification for every parameter value?

Formally
Sys(i) < Spec(i) for all i € I?

Aalto University Introduction
School of Science June 17th, 250/;3

Parametrised Verification

Main Question
Does a given parametrised system implementation meet its
parametrised specification for every parameter value?

Formally
Sys(i) < Spec(i) for all i € I?

Natural to object-oriented programs!

Aalto University Introduction
School of Science June 17th, 250/;:

Model of Computation

Aalto University Model of Computation
School of Science June 17th, 2013
7/30

Labelled Transition System

Aalto University Model of Computation
School of Science June 17th, 230/;:

Parallel Composition
Hoare-style alphabet-based synchronisation

Aalto University Model of Computation
School of Science June 17th, 2013
9/30

Parallel Composition
Hoare-style alphabet-based synchronisation

Aalto University Model of Computation
School of Science June 17th, 2013
9/30

Parametrised LTSs

Aalto University Parametrised LTSs
School of Science June 17th, 2013
10/30

Parametrised LTS

Parametrised action: ¢(xy, ..., Xk)

» cis a channel

> Xi,...,X, are variables over parametrised types Ty, ...

» Tq,..., Tnhrepresent arbitrary large sets

Parametrised LTS (PLTS)

» An LTS with parametrised actions is a PLTS
» There are also other PLTSs

Aalto University
School of Science

Parametrised LTSs
June 17th, 2013
11/30

Parametrised Parallel Composition

Syntax: || x : P

» x is avariable of atype T
» T={t0,H1,... . tn} wherene€ Z,
» Pis a parametrised LTS

Aalto University Parametrised LTSs
School of Science June 17|h.122%g

Parametrised Parallel Composition

Syntax: || x : P

» x is avariable of atype T
» T={t0,H1,... . tn} wherene€ Z,
» Pis a parametrised LTS

Instance of (|| x : P)when n=3and P = ~o 2% g

Aalto University Parametrised LTSs
School of Science June|7lh.1220/;g

Parametrised Choice

Applied to transitions within parametrised LTSs

Aalto University Parametrised LTSs
School of Science June 17(h.1230/;g

Parametrised Choice

Applied to transitions within parametrised LTSs

Example

Ox :
Parametrised LTS: \OX;M»O

Aalto University Parametrised LTSs
School of Science June 17|h.1230/;g

Parametrised Choice

Applied to transitions within parametrised LTSs

Example

Ox :
Parametrised LTS: \Ox—a(x)>o

a(tl)

Instance when n = 3:

a(t3)

A

Aalto University

Parametrised LTSs
School of Science

June 17th, 2013
13/30

Parametrised Choice

Applied to transitions within parametrised LTSs

Example

Ox :
Parametrised LTS: \Ox—a(x)>o

a(tl)

Instance when n = 3:

a(t3)

A

Aalto University

Parametrised LTSs
School of Science

June 17th, 2013
13/30

PLTS Verification

Theorem (Siirtola & Heljanko 2013)

Trace inclusion problem of two PLTSs, where the
implementation PLTS may involve hiding, is decidable when

» no two variables of the same type occur both in a
parametrised parallel composition and a parametrised
choice and

» the specification PLTS is deterministic.
Otherwise, the problem is undecidable.

Aalto University Parametrised LTSs
School of Science June 17th, 2013
14/30

PLTS Verification

Theorem (Siirtola & Heljanko 2013)

Trace inclusion problem of two PLTSs, where the
implementation PLTS may involve hiding, is decidable when

» no two variables of the same type occur both in a
parametrised parallel composition and a parametrised
choice and

» the specification PLTS is deterministic.
Otherwise, the problem is undecidable.

The technique is implemented in our Bounds tool.

Aalto University Parametrised LTSs
School of Science June 17th, 2013

14/30

Modelling Object-Oriented Programs

School of Science June 17th, 2013

A Aalto University Modelling Object-Oriented Programs
15/30

Specifications

Concurrency related properties

» Mutual exclusion, deadlocks, ...
» Control flow and references to objects must be preserved
» Data can be abstracted away

School of Science June 17th, 2013

Aalto University Modelling Object-Oriented Programs
16/30

Case: Shared Resource System (SRS)

» An arbitrary number of Resource objects is created
» An arbitrary number of User threads is started

» The users should access a resource in a mutually
exclusive way

Aalto University Modelling Object-Oriented Programs
School of Science June 17th, 2013
17/30

Case: Shared Resource System (SRS)

» An arbitrary number of Resource objects is created
» An arbitrary number of User threads is started
» The users should access a resource in a mutually

exclusive way

class User runnable {
run: O => () {
repeat arbitrarily long
while(true) {
pick a resource
Resource r;
while(r = null){

r := SRS.getFirstRes();

while(true)q{
r := r.getNext();
}until(true);
}
lock the resource
synchronised (r){

use the resource
.| (4 AW

class Resource {

pointer to the next resource
Resource nxt;
abstract use method
does not change the structure
use: () => () const(nxt);
returns the next resource
getNext: (Resource) => (){
return(nxt) ;
}
sets the next resource
setNext: () => (Resource r){
nxt := r;
return();

Aalto University T .USe (O
A Schoolof Sciepes +17 (true) ;
1

Modelling Object-Oriented Programs
June 17th, 2013
17/30

Parameters

» A finite set of thread ids (for each runnable class)
» n User-threads Usert, ..., Usern plus the main thread SRS

School of Science June 17th, 2013

A Aalto University Modelling Object-Oriented Programs
18/30

Parameters

» A finite set of thread ids (for each runnable class)

» n User-threads UserT, ..., Usern plus the main thread SRS
» A finite set of objects ids (for each class)

» m Resource objects Res1, ..., Resm

Aalto University Modelling Object-Oriented Programs
School of Science June 17th, 12230/;3

Parameters

» A finite set of thread ids (for each runnable class)

» n User-threads UserT, ..., Usern plus the main thread SRS
» A finite set of objects ids (for each class)

» m Resource objects Res1, ..., Resm
» A finite ordered set of stack positions

» Only two levels of nested method calls in the example
» Two stack positions: s1 < s2

Aalto University Modelling Object-Oriented Programs
A School of Science June 17th, 1230/23

Actions

Each method call/operation is represented as two actions

Example
Method call: o.setValue(v)
Actions: begSetValue(t, s, 0, v)

endSetValue(t, s, 0, v)
» tis the id of the thread that makes the call
» s denotes the next stack position

School of Science June 17th, 2013

Aalto University Modelling Object-Oriented Programs
19/30

LTSs |

A control flow LTS Ctrl(u, s) for each runnable object v and
stack position s

1ts
I = begUserRun(u,s1) -> User72
User72 = [true] tau -> User76(rNull)
[1 [true] tau -> User99
User76(r) = [r = rNull] tau -> User78(r)
[1 ['r = rNull]l tau -> User88(r)
User78(r) = begSrsGetFirstRes(u,s2,m) -> User78e(r)
User78e(r) = [lr: endSrsGetFirstRes(u,s2,m,r) -> User79(r)
User79(r) = [true] tau -> User81(r)
[1 [truel tau -> User76(r)
User81(r) = begResGetNext(u,s2,r) -> User8le(r)
User8le(r) = []r2: endResGetNext(u,s2,r,r2) -> User79(r2)
User88(r) = resSync(u,sl,r) -> User91(r)
User91(r) = [true] tau -> User93(r)
[1 [truel tau -> User96(r)
User93(r) = begResUse(u,s2,r) -> User93b(r)
User93b(r) = endResUse(u,s2,r) -> User91(r)
User96(r) = resUnsync(u,sl,r) -> User72(r)
User99 = endUserRun(u,s1) -> STP
-Fm'l'

School of Science June 17th, 2013

A Aalto University Modelling Object-Oriented Programs

20/30

LTSs Il

An LTS MemVar(r, v;) for each member variable v, of each
object r

1ts
I(r2) = [lu,s: begResNxtGet(u,s,r) -> I(r2)
[T [Qu,s: endResNxtGet(u,s,r,r2) -> I(r2)
[T [Qu,s,r2: begResNxtSet(u,s,r,r2) -> I(r2)
[1 [Ju,s: endResNxtSet(u,s,r) -> I(r2)
from I(rNull)

Aalto University Modelling Object-Oriented Programs
School of Science June 17th, 2013
21/30

LTSs Il

An LTS MemVar(r, v;) for each member variable v, of each
object r

1ts
I(r2) = [lu,s: begResNxtGet(u,s,r) -> I(r2)
[T [Qu,s: endResNxtGet(u,s,r,r2) -> I(r2)
[T [Qu,s,r2: begResNxtSet(u,s,r,r2) -> I(r2)
[1 [Ju,s: endResNxtSet(u,s,r) -> I(r2)
from I(rNull)

An LTS New(r) for each object r (to guarantee unique creation)

1ts
I = [Ju,s: endResNew(u,s,r) -> STP
from I

Aalto University Modelling Object-Oriented Programs
A School of Science June!‘llh.;ﬂ/;g

LTSs Il

An LTS Sync(c) for each class ¢ (with synchronised methods)

1ts
I = [Ir: resSync(u,s,r) -> Si(r)
[1 [Ir: resSync(u2,s0,r) -> S2(r)
S1(r) = resUnsync(u,s,r) -> I
[1 [Ir2: ['r=r2] resSync(u2,s0,r2) -> Si(r)
[1 [Ir2: ['r=r2] resUnsync(u2,s0,r2) -> Si(r)
S2(r) = resUnsync(u2,s0,r) -> I
[1 [Ir2: ['r=r2] resSync(u,s,r2) -> S2(r)
[1 [r2: [!'r=r2] resUnsync(u,s,r2) -> S2(r)
from I

Aalto University Modelling Object-Oriented Programs
School of Science June 17th, 2013
22/30

Parametrised Implementation LTS

Compose all the parts in parallel

(|| uys: Ctrl(u,s)) || (|| r,vr : MemVar(r, v;))
| (Il r: New(r)) || (Il ¢: Sync(c))

» U ranges over thread ids

» Sranges over stack positions

» r ranges over objects

» Vv, ranges over member variables of the object r

» cranges over classes with synchronised methods

School of Science June 17th, 2013

A Aalto University Modelling Object-Oriented Programs
23/30

Verification Techniques for Parametrised Parts

Aalto University ificati i for ised Parts
School of Science June 17th, 2013
24/30

Dealing with Objects

Data independence (Lazi¢ 1999)

» a cut-off/threshold for the number of replicated objects
» in our case, 113 resources is sufficient
» the cut-off of 113 resource can be pushed down to 3

Aalto University for Parts
School of Science June 17th, 2013
25/30

Dealing with Objects

Data independence (Lazi¢ 1999)

» a cut-off/threshold for the number of replicated objects
» in our case, 113 resources is sufficient
» the cut-off of 113 resource can be pushed down to 3

Limitation
Abstraction is needed:
» a member variable may change its value independently

» a call to a new operator may give an existing object

Aalto University ificati i for ised Parts
School of Science June 17th, 2013
25/30

Dealing with Threads

Precongruence reduction (Siirtola & Kortelainen 2009)

» a cut-off/threshold for the number of concurrent threads
» in our case, 2 users is sufficient

Aalto University for Parts
School of Science June 17th, 2013
26/30

Dealing with Threads

Precongruence reduction (Siirtola & Kortelainen 2009)

» a cut-off/threshold for the number of concurrent threads
» in our case, 2 users is sufficient

Limitation
The same as above: abstraction is needed.

Aalto University for Parts
School of Science June 17th, 2013
26/30

Dealing with Stack

Behavioural fixed point (BFP) method (Valmari & Tienari
1991)

» the control flow from the viewpoint of any two threads and
any two stack positions (= behavioural fixed point)

» strictly linear topology — totally ordered topology

» with the BFP method, a cut-off/threshold for the number of
stack positions (Siirtola 2010)

» not needed in our example (no real recursion)

Aalto University ificati i for ised Parts
School of Science June 17th, 2013

27/30

Dealing with Stack

Behavioural fixed point (BFP) method (Valmari & Tienari
1991)

» the control flow from the viewpoint of any two threads and
any two stack positions (= behavioural fixed point)

» strictly linear topology — totally ordered topology

» with the BFP method, a cut-off/threshold for the number of
stack positions (Siirtola 2010)

» not needed in our example (no real recursion)

Limitation
Fixed point may not exist

Aalto University ificati i for ised Parts
School of Science June 17th, 2013

27/30

Verification of SRS

» The instances up to 2 users and 3 resources were found to
be correctly synchronised

» Hence, SRS is correctly synchronised for any number of
users and resources

Aalto University ificati i for ised Parts
School of Science June 17th, 2013

28/30

Conclusions

Aalto University Conclusions
School of Science June 17th, 2013
29/30

Conclusions

» Object-oriented programs are naturally modelled as
parametrised systems

» There exists techniques and tools for the verification of
such models

Aalto University Conclusions
School of Science June 17th, 2013
30/30

	Introduction
	Model of Computation
	Parametrised LTSs
	Modelling Object-Oriented Programs
	Verification Techniques for Parametrised Parts
	Conclusions

