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✦ Backward*Repeated*Reachability

N = (⌃,Q, �, I, F)

Chapter 2. Preliminaries 35

Symmetrically, the following forward fixed point computes the set of

states of an FSM which can be reached from an initial state in zero or more

steps.

Definition 2.3.16 (Forward BFS). Let M = hQ, � , I,!, F i be an FSM.

The forwards-reachable states of M , denoted F⇤(M), are defined as follows:

F0(M) = I

Fi(M) = Fi�1(M) [ post(Fi�1(M))

F⇤(M) = LFP(� X · post(X) [ I) = post⇤(I)

We call cycling state a state of an FSM which belongs to a non-trivial

cycle (a cycle of length at least 1). The following nested backward fixed

point computes the set of final states which can reach a cycling final state

in zero steps or more.

Definition 2.3.17 (Repeated Backward BFS). Let M = hQ, � , I,!, F i
be an FSM. The repeatedly backward-reachable final states of M , denoted

BB⇤(M), are defined as follows:

BB0(M) = F

BBi(M) = F \ pre+(BBi�1(M))

BB⇤(M) = GFP(� X · pre+(X) \ F )

Finally, the following nested forward fixed point computes the set of final

states which are (i) reachable from an initial state in zero steps or more,

and (ii) reachable from a final cycling state in zero steps or more.

Definition 2.3.18 (Repeated Forward BFS). Let M = hQ, � , I,!, F i
be an FSM. The repeatedly forward-reachable final states of M , denoted

FF⇤(M), are defined as follows:

FF0 = F \ post⇤(I)
FFi = F \ post+(FFi�1)

FF⇤ = GFP(� X · post+(X) \ F \ post⇤(I))

We can now formalize how these fixed point algorithms relate to the

emptiness decision problems for NFA and NBA.

Language'Emp1ness

L(N) = ; i↵ BB⇤ \ I = ;
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Symmetrically, the following forward fixed point computes the set of

states of an FSM which can be reached from an initial state in zero or more

steps.

Definition 2.3.16 (Forward BFS). Let M = hQ, � , I,!, F i be an FSM.

The forwards-reachable states of M , denoted F⇤(M), are defined as follows:

F0(M) = I

Fi(M) = Fi�1(M) [ post(Fi�1(M))

F⇤(M) = LFP(� X · post(X) [ I) = post⇤(I)

We call cycling state a state of an FSM which belongs to a non-trivial

cycle (a cycle of length at least 1). The following nested backward fixed

point computes the set of final states which can reach a cycling final state

in zero steps or more.

Definition 2.3.17 (Repeated Backward BFS). Let M = hQ, � , I,!, F i
be an FSM. The repeatedly backward-reachable final states of M , denoted

BB⇤(M), are defined as follows:

BB0(M) = F

BBi(M) = F \ pre+(BBi�1(M))

BB⇤(M) = GFP(� X · pre+(X) \ F )

Finally, the following nested forward fixed point computes the set of final

states which are (i) reachable from an initial state in zero steps or more,

and (ii) reachable from a final cycling state in zero steps or more.

Definition 2.3.18 (Repeated Forward BFS). Let M = hQ, � , I,!, F i
be an FSM. The repeatedly forward-reachable final states of M , denoted

FF⇤(M), are defined as follows:

FF0 = F \ post⇤(I)
FFi = F \ post+(FFi�1)

FF⇤ = GFP(� X · post+(X) \ F \ post⇤(I))

We can now formalize how these fixed point algorithms relate to the

emptiness decision problems for NFA and NBA.

Language'Emp1ness

L(N) = ; i↵ BB⇤ \ I = ;

54 3.4. Fixed Points on the Lattice of Antichains

Lemma 3.4.7. For every FSM M , i 2 N, we have that "bFi(M) = Fi(M).

Proof. We proceed by induction. Since ⌫b is compatible with I we know

that I is upward-closed. Hence "bF0(M) =
x

?bIc = I = F0(M). Let i 2 N
0

and let us assume that for every j 2 N such that 0  j < i we have

that "bFj(M) = Fj(M). By Lemma 3.3.2 and the induction hypothesis we

know that dpost(bFi�1(M)) =
j

post("bFi�1(M))
k

= bpost(Fi�1(M))c and that

bFi�1(M) = bFi�1(M)c. From the definition of bFi(M) we have therefore that:

"bFi(M) =
x

?

�⌅

Fi�1(M)
⇧ t ⌅

post(Fi�1(M))
⇧�

=
x

?

⌅

Fi�1(M)
⇧ [ x

?

⌅

post(Fi�1(M))
⇧

= Fi�1(M) [ post(Fi�1(M))

= Fi(M)

Corollary 3.4.8 (Forward NFA Emptiness with Minimal Antichains). For

every NFA A = hQ,⌃, I,!, F i, we have that "bF⇤ \ F = ? iff F⇤ \ F = ?
iff L(A) = ?.

We now proceed to adapt the doubly nested fixed points of Defini-

tion 2.3.17 and Definition 2.3.18 to antichains. We begin with the backward

repeated breadth-first search fixed point. Like the simple backward fixed

point of Definition 3.4.3, it is evaluated on the lattice of maximal antichains

of sets of states, and assumes the usage of a forward simulation preorder

that is compatible with the set of final states.

Definition 3.4.9 (Repeated Backward BFS with Maximal Antichains). Let

M = hQ,⌃, I,!, F i be an FSM, and let �f ✓ Q⇥Q be a forward simulation

of M that is compatible with F . The backward nested antichain fixed point

of M , denoted cBB
⇤
(M), is defined as follows:

cBB
0

(M) = dF e (�f)

cBB
i

(M) = dF e u cpre+(cBB
i�1

(M)) (�f)

cBB
⇤
(M) = GFP(�X · dF e u cpre+(X)) (�f)
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�N : QN ! 2QN

Chapter 2. Preliminaries 33

• � 0 = 2Q ⇥ 2Q;

• � = {({�
0

}� ?)};

• ! =
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�
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� �
1

�

; �
2

� �
2

✓ �
2

o

;

• � 0 = 2Q ⇥ {?}.

Lemma 2.3.12. (Correctness of MH Construction) For any ABA � , the

Miyano Hayashi construction NBA � 0 = MH(� ) is such that � (� 0) = � (� ).

2.3.5 Fixed Points for Automata Emptiness

In this thesis, we develop new algorithms for the emptiness of alternating

automata based on the translations to non-deterministic automata. To de-

cide the emptiness of non-deterministic automata, one must either find an

accepting and initial path, or find an accepting and initial lasso path. When

non-deterministic automata are given explicitly, a classical and optimal so-

lution for these path-finding problems is to use depth-first search and nested

depth-first search [HPY96], which are both linear-time algorithms. In this

thesis however, we consider algorithms which solve the emptiness problem

using breadth-first search (BFS, for short) and repeated breadth-first search.

This class of algorithms enjoy elegant descriptions in terms of fixed points

of monotonic functions that contain state space operators.

In the context of finite state machines, we call a state space operator any

monotonic function of the form � : 2Q 7! 2Q, where � is the set of states of

the FSM. The operators that we use in this thesis are pre, post, cpre, and
cpost.

Definition 2.3.13 (Statespace operators for FSM). Let � = h� � � � � � !
� � i be a finite state machine. We define the following state space operators:

D. �N
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Lemma 6 Let G b e a n a c c ep t i n g r u n , a n d l et G � b e a n o n - em p t y s u b - g r a p h o f G w i t h n o G ver t i c es a n d
o n l y i n fi n i t e p a t h s . T h en , t h er e i s s o m e n o d e i n G � t h a t c a n n o t a c c es s a n y B n o d e.

P R O O F . C o n s i d e r, b y c o n t ra d i c t i o n , t h a t t h e re i s n o s u c h n o d e i n G � = (V � , E � ), o r e q u i v a l e n t l y , t h a t a l l
v e rt i c e s i n G � c a n a c c e s s a B n o d e :

f o r a l l � q , l � � V � , t h e re i s s o m e � q � , l � � � V � w i t h q � � B a n d � q , l � � �
E � � q � , l � � .

T h e n , e v e ry n o d e c a n b e a s s o c i a t e d w i t h a re a c h a b l e B a n d a p a t h t o t h i s B re a c h a b l e n o d e . W e u s e
n ex t(� q , l � ) f o r t h i s p a t h .

T h e n u s i n g i n d u c t i o n d e fi n e , s t a rt i n g f ro m a n a rb i t ra ry n o d e � q , l � � V � , a n i n fi n i t e p a t h i n G � t h a t
v i s i t s B n o d e s i n fi n i t e l y o f t e n b y c o n c a t e n a t i n g t h e p a t h s re t u rn e d b y n ex t . L e t u s c a l l p o n e s u c h p a t h .

S i n c e p(0 ) = � q , l � i s a n o d e o f G � , a n d c o n s e q u e n t l y a n o d e o f G , p(0 ) i s re a c h a b l e f ro m s o m e i n i t i a l
n o d e b y p o i n t 3 i n t h e d e fi n i t i o n o f a ru n . L e t pp re b e a fi n i t e p a t h i n G f ro m a n o d e � q 0 , 0 � � V . T h e p a t h
pp re p i s a t ra c e i n G t h a t v i s i t s G n o d e s fi n i t e l y o f t e n ( o n l y n o d e s i n pp re c a n p o s s i b l y b e G n o d e s ) a n d B
n o d e s i n fi n i t e l y o f t e n i n p . T h i s t ra c e c o n t ra d i c t s t h a t G i s a n a c c e p t i n g ru n . ⇤

N o w , w e c a n re l a t e e x i s t e n c e o f o d d - ra n k i n g s w i t h a c c e p t i n g w o rd s o f a n A S W � 1 � a u t o m a t o n :

Lemma 7 G i s a n a c c ep t i n g r u n o f A i f a n d o n l y i f t h er e i s a n o d d S � 1 � - r a n k i n g f o r G .

3 . 2 F r o m A l t er n at i n g S t r eet t � 1 � i n t o N B W

B a s e d o n L e m m a 2 6 , w e d e s c ri b e n o w a ra n k i n g c o n s t ru c t i o n t h a t p ro v i d e s , g i v e n a n A S W � 1 � , a n e q u i v -
a l e n t N B W .

D efi n i t i o n 8 ( S t r eet C o n s t r u c t i o n ) G i ven a n A S W � 1 � a u t o m a t o n A : � S, Q A , I A ,dA ,{� B , G � }� w e c o n -
s t r u c t a n N B W S(A ) = N : � S, Q N , I N ,dN , F N � a s f o l l o w s :

• Q N c o n t a i n s el em en t s o f t h e f o r m (S , O , f , o k ) w h er e S � Q A i s a s u b s et o f s t a t es o f A , O � S , o k
i s a B o o l ea n , a n d f : S � [2 n ] i s a f u n c t i o n t h a t s a t i s fi es :
Q 1 . i f q � B t h en f (q ) i s e ven .
Q 2 . i f O �= /0 t h en o k = f a l s e.

• I N c o n t a i n s a l l t h o s e (M , O , f , o k ) � Q N w h er e
I 1 . M i s a m i n i m a l m o d el o f I A , O = {q � M | q /� G a n d f (q ) i s e ven } a n d o k = f a l s e.

• F N = {(S , O , f , o k ) | o k = t r u e}.

• dN : Q N � S � 2 Q N , s u c h t h a t (S � , O � , f � , o k � ) � dN ((S , O , f , o k ), a ) w h en e ver t h er e i s o n e m i m i m a l
m o d el M q o f dA (q , a ) f o r ea c h q � S s a t i s f y i n g :
D 1 . S � = � q � S M q ,
D 2 . f � (p ) ≤ m i n { f (q ) | q � p r ed (p ) \ G } w h er e p r ed (p ) = {q � S | p � M q } d en o t es t h e s et o f

p r ed ec es s o r s o f a g i ven p � S � .
D 3 . O � i s g i ven a s f o l l o w s . Let p � S �

\ G , w e h a ve
– I f o k = t r u e t h en p � O � i f f f � (p ) i s e ven .
– I f o k = f a l s e t h en p � O � i f f f � (p ) = f (q ) f o r s o m e q � (p r ed (p ) � O ).
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Lemma 6 Let G be an accepting run, and let G 0 be a non-empty sub-graph of G with no G vertices and
only infinite paths. Then, there is some node in G 0 that cannot access any B node.

PROOF. Consider, by contradiction, that there is no such node in G 0 = (V 0,E 0), or equivalently, that all
vertices in G 0 can access a B node:

for all hq, li 2V 0, there is some hq0, l0i 2V 0 with q0 2 B and hq, li !⇤

E 0

hq0, l0i .

Then, every node can be associated with a reachable B and a path to this B reachable node. We use
next(hq, li) for this path.

Then using induction define, starting from an arbitrary node hq, li 2 V 0, an infinite path in G 0 that
visits B nodes infinitely often by concatenating the paths returned by next. Let us call p one such path.

Since p(0) = hq, li is a node of G 0, and consequently a node of G , p(0) is reachable from some initial
node by point 3 in the definition of a run. Let ppre be a finite path in G from a node hq0,0i 2V . The path
pprep is a trace in G that visits G nodes finitely often (only nodes in ppre can possibly be G nodes) and B
nodes infinitely often in p . This trace contradicts that G is an accepting run. ⇤

Now, we can relate existence of odd-rankings with accepting words of an ASWh1i automaton:

Lemma 7 G is an accepting run of A if and only if there is an odd Sh1i-ranking for G .

3.2 From Alternating Streetth1i into NBW

Based on Lemma 26, we describe now a ranking construction that provides, given an ASWh1i, an equiv-
alent NBW.

Definition 8 (Street Construction) Given an ASWh1i automaton A : hS,QA , IA ,dA ,{hB,Gi}i we con-
struct an NBW S(A ) = N : hS,QN , IN ,dN ,FNi as follows:

• QN contains elements of the form (S,O, f ,ok) where S ✓ QA is a subset of states of A , O ✓ S, ok
is a Boolean, and f : S ! [2n] is a function that satisfies:

Q1. if q 2 B then f (q) is even.
Q2. if O 6= /0 then ok = false.

• IN contains all those (M,O, f ,ok) 2 QN where

I1. M is a minimal model of IA , O = {q 2 M | q /2 G and f (q) is even} and ok = false.

• FN = {(S,O, f ,ok) | ok = true}.

• dN : QN ⇥S ! 2QN , such that (S0,O0, f 0,ok0) 2 dN((S,O, f ,ok),a) whenever there is one mimimal
model Mq of dA (q,a) for each q 2 S satisfying:

D1. S0 = [q2SMq,
D2. f 0(p)  min{ f (q) | q 2 pred(p) \G} where pred(p) = {q 2 S | p 2 Mq} denotes the set of

predecessors of a given p 2 S0.
D3. O0 is given as follows. Let p 2 S0 \G, we have

– If ok = true then p 2 O0 iff f 0(p) is even.
– If ok = false then p 2 O0 iff f 0(p) = f (q) for some q 2 (pred(p)\O).



I. M is a minimal model of IN

StreeP*Construc'on A = (⌃,Q, �, I, F)

N = (⌃,QN , �N , IN , FN )

(S ,O, f , ok) (M,O, f , ok)

J. Samborski-Forlese & C. Sánchez 5

Lemma 6 Let G be an accepting run, and let G 0 be a non-empty sub-graph of G with no G vertices and
only infinite paths. Then, there is some node in G 0 that cannot access any B node.

PROOF. Consider, by contradiction, that there is no such node in G 0 = (V 0,E 0), or equivalently, that all
vertices in G 0 can access a B node:

for all hq, li 2V 0, there is some hq0, l0i 2V 0 with q0 2 B and hq, li !⇤

E 0

hq0, l0i .

Then, every node can be associated with a reachable B and a path to this B reachable node. We use
next(hq, li) for this path.

Then using induction define, starting from an arbitrary node hq, li 2 V 0, an infinite path in G 0 that
visits B nodes infinitely often by concatenating the paths returned by next. Let us call p one such path.

Since p(0) = hq, li is a node of G 0, and consequently a node of G , p(0) is reachable from some initial
node by point 3 in the definition of a run. Let ppre be a finite path in G from a node hq0,0i 2V . The path
pprep is a trace in G that visits G nodes finitely often (only nodes in ppre can possibly be G nodes) and B
nodes infinitely often in p . This trace contradicts that G is an accepting run. ⇤

Now, we can relate existence of odd-rankings with accepting words of an ASWh1i automaton:

Lemma 7 G is an accepting run of A if and only if there is an odd Sh1i-ranking for G .

3.2 From Alternating Streetth1i into NBW

Based on Lemma 26, we describe now a ranking construction that provides, given an ASWh1i, an equiv-
alent NBW.

Definition 8 (Street Construction) Given an ASWh1i automaton A : hS,QA , IA ,dA ,{hB,Gi}i we con-
struct an NBW S(A ) = N : hS,QN , IN ,dN ,FNi as follows:

• QN contains elements of the form (S,O, f ,ok) where S ✓ QA is a subset of states of A , O ✓ S, ok
is a Boolean, and f : S ! [2n] is a function that satisfies:

Q1. if q 2 B then f (q) is even.
Q2. if O 6= /0 then ok = false.

• IN contains all those (M,O, f ,ok) 2 QN where

I1. M is a minimal model of IA , O = {q 2 M | q /2 G and f (q) is even} and ok = false.

• FN = {(S,O, f ,ok) | ok = true}.

• dN : QN ⇥S ! 2QN , such that (S0,O0, f 0,ok0) 2 dN((S,O, f ,ok),a) whenever there is one mimimal
model Mq of dA (q,a) for each q 2 S satisfying:

D1. S0 = [q2SMq,
D2. f 0(p)  min{ f (q) | q 2 pred(p) \G} where pred(p) = {q 2 S | p 2 Mq} denotes the set of

predecessors of a given p 2 S0.
D3. O0 is given as follows. Let p 2 S0 \G, we have

– If ok = true then p 2 O0 iff f 0(p) is even.
– If ok = false then p 2 O0 iff f 0(p) = f (q) for some q 2 (pred(p)\O).



StreeP*Construc'on A = (⌃,Q, �, I, F)

N = (⌃,QN , �N , IN , FN )

(S ,O, f , ok) (M,O, f , ok)

{(S ,O, f , ok) | ok = true}



StreeP*Construc'on A = (⌃,Q, �, I, F)

N = (⌃,QN , �N , IN , FN )

(S ,O, f , ok) (M,O, f , ok)

{(S ,O, f , ok) | ok = true}

�N : QN ! 2QN



StreeP*Construc'on A = (⌃,Q, �, I, F)

N = (⌃,QN , �N , IN , FN )

(S ,O, f , ok) (M,O, f , ok)

{(S ,O, f , ok) | ok = true}

�N : QN ! 2QN

J. Samborski-Forlese & C. Sánchez 5

Lemma 6 Let G be an accepting run, and let G 0 be a non-empty sub-graph of G with no G vertices and
only infinite paths. Then, there is some node in G 0 that cannot access any B node.

PROOF. Consider, by contradiction, that there is no such node in G 0 = (V 0,E 0), or equivalently, that all
vertices in G 0 can access a B node:

for all hq, li 2V 0, there is some hq0, l0i 2V 0 with q0 2 B and hq, li !⇤

E 0

hq0, l0i .

Then, every node can be associated with a reachable B and a path to this B reachable node. We use
next(hq, li) for this path.

Then using induction define, starting from an arbitrary node hq, li 2 V 0, an infinite path in G 0 that
visits B nodes infinitely often by concatenating the paths returned by next. Let us call p one such path.

Since p(0) = hq, li is a node of G 0, and consequently a node of G , p(0) is reachable from some initial
node by point 3 in the definition of a run. Let ppre be a finite path in G from a node hq0,0i 2V . The path
pprep is a trace in G that visits G nodes finitely often (only nodes in ppre can possibly be G nodes) and B
nodes infinitely often in p . This trace contradicts that G is an accepting run. ⇤

Now, we can relate existence of odd-rankings with accepting words of an ASWh1i automaton:

Lemma 7 G is an accepting run of A if and only if there is an odd Sh1i-ranking for G .

3.2 From Alternating Streetth1i into NBW

Based on Lemma 26, we describe now a ranking construction that provides, given an ASWh1i, an equiv-
alent NBW.

Definition 8 (Street Construction) Given an ASWh1i automaton A : hS,QA , IA ,dA ,{hB,Gi}i we con-
struct an NBW S(A ) = N : hS,QN , IN ,dN ,FNi as follows:

• QN contains elements of the form (S,O, f ,ok) where S ✓ QA is a subset of states of A , O ✓ S, ok
is a Boolean, and f : S ! [2n] is a function that satisfies:

Q1. if q 2 B then f (q) is even.
Q2. if O 6= /0 then ok = false.

• IN contains all those (M,O, f ,ok) 2 QN where

I1. M is a minimal model of IA , O = {q 2 M | q /2 G and f (q) is even} and ok = false.

• FN = {(S,O, f ,ok) | ok = true}.

• dN : QN ⇥S ! 2QN , such that (S0,O0, f 0,ok0) 2 dN((S,O, f ,ok),a) whenever there is one mimimal
model Mq of dA (q,a) for each q 2 S satisfying:

D1. S0 = [q2SMq,
D2. f 0(p)  min{ f (q) | q 2 pred(p) \G} where pred(p) = {q 2 S | p 2 Mq} denotes the set of

predecessors of a given p 2 S0.
D3. O0 is given as follows. Let p 2 S0 \G, we have

– If ok = true then p 2 O0 iff f 0(p) is even.
– If ok = false then p 2 O0 iff f 0(p) = f (q) for some q 2 (pred(p)\O).



StreeP*Construc'on A = (⌃,Q, �, I, F)

N = (⌃,QN , �N , IN , FN )

(S ,O, f , ok) (M,O, f , ok)

{(S ,O, f , ok) | ok = true}

�N : QN ! 2QN

J. Samborski-Forlese & C. Sánchez 5

Lemma 6 Let G be an accepting run, and let G 0 be a non-empty sub-graph of G with no G vertices and
only infinite paths. Then, there is some node in G 0 that cannot access any B node.

PROOF. Consider, by contradiction, that there is no such node in G 0 = (V 0,E 0), or equivalently, that all
vertices in G 0 can access a B node:

for all hq, li 2V 0, there is some hq0, l0i 2V 0 with q0 2 B and hq, li !⇤

E 0

hq0, l0i .

Then, every node can be associated with a reachable B and a path to this B reachable node. We use
next(hq, li) for this path.

Then using induction define, starting from an arbitrary node hq, li 2 V 0, an infinite path in G 0 that
visits B nodes infinitely often by concatenating the paths returned by next. Let us call p one such path.

Since p(0) = hq, li is a node of G 0, and consequently a node of G , p(0) is reachable from some initial
node by point 3 in the definition of a run. Let ppre be a finite path in G from a node hq0,0i 2V . The path
pprep is a trace in G that visits G nodes finitely often (only nodes in ppre can possibly be G nodes) and B
nodes infinitely often in p . This trace contradicts that G is an accepting run. ⇤

Now, we can relate existence of odd-rankings with accepting words of an ASWh1i automaton:

Lemma 7 G is an accepting run of A if and only if there is an odd Sh1i-ranking for G .

3.2 From Alternating Streetth1i into NBW

Based on Lemma 26, we describe now a ranking construction that provides, given an ASWh1i, an equiv-
alent NBW.

Definition 8 (Street Construction) Given an ASWh1i automaton A : hS,QA , IA ,dA ,{hB,Gi}i we con-
struct an NBW S(A ) = N : hS,QN , IN ,dN ,FNi as follows:

• QN contains elements of the form (S,O, f ,ok) where S ✓ QA is a subset of states of A , O ✓ S, ok
is a Boolean, and f : S ! [2n] is a function that satisfies:

Q1. if q 2 B then f (q) is even.
Q2. if O 6= /0 then ok = false.

• IN contains all those (M,O, f ,ok) 2 QN where

I1. M is a minimal model of IA , O = {q 2 M | q /2 G and f (q) is even} and ok = false.

• FN = {(S,O, f ,ok) | ok = true}.

• dN : QN ⇥S ! 2QN , such that (S0,O0, f 0,ok0) 2 dN((S,O, f ,ok),a) whenever there is one mimimal
model Mq of dA (q,a) for each q 2 S satisfying:

D1. S0 = [q2SMq,
D2. f 0(p)  min{ f (q) | q 2 pred(p) \G} where pred(p) = {q 2 S | p 2 Mq} denotes the set of

predecessors of a given p 2 S0.
D3. O0 is given as follows. Let p 2 S0 \G, we have

– If ok = true then p 2 O0 iff f 0(p) is even.
– If ok = false then p 2 O0 iff f 0(p) = f (q) for some q 2 (pred(p)\O).

J. Samborski-Forlese & C. Sánchez 5

Lemma 6 Let G be an accepting run, and let G 0 be a non-empty sub-graph of G with no G vertices and
only infinite paths. Then, there is some node in G 0 that cannot access any B node.

PROOF. Consider, by contradiction, that there is no such node in G 0 = (V 0,E 0), or equivalently, that all
vertices in G 0 can access a B node:

for all hq, li 2V 0, there is some hq0, l0i 2V 0 with q0 2 B and hq, li !⇤

E 0

hq0, l0i .

Then, every node can be associated with a reachable B and a path to this B reachable node. We use
next(hq, li) for this path.

Then using induction define, starting from an arbitrary node hq, li 2 V 0, an infinite path in G 0 that
visits B nodes infinitely often by concatenating the paths returned by next. Let us call p one such path.

Since p(0) = hq, li is a node of G 0, and consequently a node of G , p(0) is reachable from some initial
node by point 3 in the definition of a run. Let ppre be a finite path in G from a node hq0,0i 2V . The path
pprep is a trace in G that visits G nodes finitely often (only nodes in ppre can possibly be G nodes) and B
nodes infinitely often in p . This trace contradicts that G is an accepting run. ⇤

Now, we can relate existence of odd-rankings with accepting words of an ASWh1i automaton:

Lemma 7 G is an accepting run of A if and only if there is an odd Sh1i-ranking for G .

3.2 From Alternating Streetth1i into NBW

Based on Lemma 26, we describe now a ranking construction that provides, given an ASWh1i, an equiv-
alent NBW.

Definition 8 (Street Construction) Given an ASWh1i automaton A : hS,QA , IA ,dA ,{hB,Gi}i we con-
struct an NBW S(A ) = N : hS,QN , IN ,dN ,FNi as follows:

• QN contains elements of the form (S,O, f ,ok) where S ✓ QA is a subset of states of A , O ✓ S, ok
is a Boolean, and f : S ! [2n] is a function that satisfies:

Q1. if q 2 B then f (q) is even.
Q2. if O 6= /0 then ok = false.

• IN contains all those (M,O, f ,ok) 2 QN where

I1. M is a minimal model of IA , O = {q 2 M | q /2 G and f (q) is even} and ok = false.

• FN = {(S,O, f ,ok) | ok = true}.

• dN : QN ⇥S ! 2QN , such that (S0,O0, f 0,ok0) 2 dN((S,O, f ,ok),a) whenever there is one mimimal
model Mq of dA (q,a) for each q 2 S satisfying:

D1. S0 = [q2SMq,
D2. f 0(p)  min{ f (q) | q 2 pred(p) \G} where pred(p) = {q 2 S | p 2 Mq} denotes the set of

predecessors of a given p 2 S0.
D3. O0 is given as follows. Let p 2 S0 \G, we have

– If ok = true then p 2 O0 iff f 0(p) is even.
– If ok = false then p 2 O0 iff f 0(p) = f (q) for some q 2 (pred(p)\O).



StreeP*Construc'on A = (⌃,Q, �, I, F)

N = (⌃,QN , �N , IN , FN )

(S ,O, f , ok) (M,O, f , ok)

{(S ,O, f , ok) | ok = true}

�N : QN ! 2QN

J. Samborski-Forlese & C. Sánchez 5

Lemma 6 Let G be an accepting run, and let G 0 be a non-empty sub-graph of G with no G vertices and
only infinite paths. Then, there is some node in G 0 that cannot access any B node.

PROOF. Consider, by contradiction, that there is no such node in G 0 = (V 0,E 0), or equivalently, that all
vertices in G 0 can access a B node:

for all hq, li 2V 0, there is some hq0, l0i 2V 0 with q0 2 B and hq, li !⇤

E 0

hq0, l0i .

Then, every node can be associated with a reachable B and a path to this B reachable node. We use
next(hq, li) for this path.

Then using induction define, starting from an arbitrary node hq, li 2 V 0, an infinite path in G 0 that
visits B nodes infinitely often by concatenating the paths returned by next. Let us call p one such path.

Since p(0) = hq, li is a node of G 0, and consequently a node of G , p(0) is reachable from some initial
node by point 3 in the definition of a run. Let ppre be a finite path in G from a node hq0,0i 2V . The path
pprep is a trace in G that visits G nodes finitely often (only nodes in ppre can possibly be G nodes) and B
nodes infinitely often in p . This trace contradicts that G is an accepting run. ⇤

Now, we can relate existence of odd-rankings with accepting words of an ASWh1i automaton:

Lemma 7 G is an accepting run of A if and only if there is an odd Sh1i-ranking for G .

3.2 From Alternating Streetth1i into NBW

Based on Lemma 26, we describe now a ranking construction that provides, given an ASWh1i, an equiv-
alent NBW.

Definition 8 (Street Construction) Given an ASWh1i automaton A : hS,QA , IA ,dA ,{hB,Gi}i we con-
struct an NBW S(A ) = N : hS,QN , IN ,dN ,FNi as follows:

• QN contains elements of the form (S,O, f ,ok) where S ✓ QA is a subset of states of A , O ✓ S, ok
is a Boolean, and f : S ! [2n] is a function that satisfies:

Q1. if q 2 B then f (q) is even.
Q2. if O 6= /0 then ok = false.

• IN contains all those (M,O, f ,ok) 2 QN where

I1. M is a minimal model of IA , O = {q 2 M | q /2 G and f (q) is even} and ok = false.

• FN = {(S,O, f ,ok) | ok = true}.

• dN : QN ⇥S ! 2QN , such that (S0,O0, f 0,ok0) 2 dN((S,O, f ,ok),a) whenever there is one mimimal
model Mq of dA (q,a) for each q 2 S satisfying:

D1. S0 = [q2SMq,
D2. f 0(p)  min{ f (q) | q 2 pred(p) \G} where pred(p) = {q 2 S | p 2 Mq} denotes the set of

predecessors of a given p 2 S0.
D3. O0 is given as follows. Let p 2 S0 \G, we have

– If ok = true then p 2 O0 iff f 0(p) is even.
– If ok = false then p 2 O0 iff f 0(p) = f (q) for some q 2 (pred(p)\O).

J. Samborski-Forlese & C. Sánchez 5

Lemma 6 Let G be an accepting run, and let G 0 be a non-empty sub-graph of G with no G vertices and
only infinite paths. Then, there is some node in G 0 that cannot access any B node.

PROOF. Consider, by contradiction, that there is no such node in G 0 = (V 0,E 0), or equivalently, that all
vertices in G 0 can access a B node:

for all hq, li 2V 0, there is some hq0, l0i 2V 0 with q0 2 B and hq, li !⇤

E 0

hq0, l0i .

Then, every node can be associated with a reachable B and a path to this B reachable node. We use
next(hq, li) for this path.

Then using induction define, starting from an arbitrary node hq, li 2 V 0, an infinite path in G 0 that
visits B nodes infinitely often by concatenating the paths returned by next. Let us call p one such path.

Since p(0) = hq, li is a node of G 0, and consequently a node of G , p(0) is reachable from some initial
node by point 3 in the definition of a run. Let ppre be a finite path in G from a node hq0,0i 2V . The path
pprep is a trace in G that visits G nodes finitely often (only nodes in ppre can possibly be G nodes) and B
nodes infinitely often in p . This trace contradicts that G is an accepting run. ⇤

Now, we can relate existence of odd-rankings with accepting words of an ASWh1i automaton:

Lemma 7 G is an accepting run of A if and only if there is an odd Sh1i-ranking for G .

3.2 From Alternating Streetth1i into NBW

Based on Lemma 26, we describe now a ranking construction that provides, given an ASWh1i, an equiv-
alent NBW.

Definition 8 (Street Construction) Given an ASWh1i automaton A : hS,QA , IA ,dA ,{hB,Gi}i we con-
struct an NBW S(A ) = N : hS,QN , IN ,dN ,FNi as follows:

• QN contains elements of the form (S,O, f ,ok) where S ✓ QA is a subset of states of A , O ✓ S, ok
is a Boolean, and f : S ! [2n] is a function that satisfies:

Q1. if q 2 B then f (q) is even.
Q2. if O 6= /0 then ok = false.

• IN contains all those (M,O, f ,ok) 2 QN where

I1. M is a minimal model of IA , O = {q 2 M | q /2 G and f (q) is even} and ok = false.

• FN = {(S,O, f ,ok) | ok = true}.

• dN : QN ⇥S ! 2QN , such that (S0,O0, f 0,ok0) 2 dN((S,O, f ,ok),a) whenever there is one mimimal
model Mq of dA (q,a) for each q 2 S satisfying:

D1. S0 = [q2SMq,
D2. f 0(p)  min{ f (q) | q 2 pred(p) \G} where pred(p) = {q 2 S | p 2 Mq} denotes the set of

predecessors of a given p 2 S0.
D3. O0 is given as follows. Let p 2 S0 \G, we have

– If ok = true then p 2 O0 iff f 0(p) is even.
– If ok = false then p 2 O0 iff f 0(p) = f (q) for some q 2 (pred(p)\O).

J. Samborski-Forlese & C. Sánchez 5

Lemma 6 Let G be an accepting run, and let G 0 be a non-empty sub-graph of G with no G vertices and
only infinite paths. Then, there is some node in G 0 that cannot access any B node.

PROOF. Consider, by contradiction, that there is no such node in G 0 = (V 0,E 0), or equivalently, that all
vertices in G 0 can access a B node:

for all hq, li 2V 0, there is some hq0, l0i 2V 0 with q0 2 B and hq, li !⇤

E 0

hq0, l0i .

Then, every node can be associated with a reachable B and a path to this B reachable node. We use
next(hq, li) for this path.

Then using induction define, starting from an arbitrary node hq, li 2 V 0, an infinite path in G 0 that
visits B nodes infinitely often by concatenating the paths returned by next. Let us call p one such path.

Since p(0) = hq, li is a node of G 0, and consequently a node of G , p(0) is reachable from some initial
node by point 3 in the definition of a run. Let ppre be a finite path in G from a node hq0,0i 2V . The path
pprep is a trace in G that visits G nodes finitely often (only nodes in ppre can possibly be G nodes) and B
nodes infinitely often in p . This trace contradicts that G is an accepting run. ⇤

Now, we can relate existence of odd-rankings with accepting words of an ASWh1i automaton:

Lemma 7 G is an accepting run of A if and only if there is an odd Sh1i-ranking for G .

3.2 From Alternating Streetth1i into NBW

Based on Lemma 26, we describe now a ranking construction that provides, given an ASWh1i, an equiv-
alent NBW.

Definition 8 (Street Construction) Given an ASWh1i automaton A : hS,QA , IA ,dA ,{hB,Gi}i we con-
struct an NBW S(A ) = N : hS,QN , IN ,dN ,FNi as follows:

• QN contains elements of the form (S,O, f ,ok) where S ✓ QA is a subset of states of A , O ✓ S, ok
is a Boolean, and f : S ! [2n] is a function that satisfies:

Q1. if q 2 B then f (q) is even.
Q2. if O 6= /0 then ok = false.

• IN contains all those (M,O, f ,ok) 2 QN where

I1. M is a minimal model of IA , O = {q 2 M | q /2 G and f (q) is even} and ok = false.

• FN = {(S,O, f ,ok) | ok = true}.

• dN : QN ⇥S ! 2QN , such that (S0,O0, f 0,ok0) 2 dN((S,O, f ,ok),a) whenever there is one mimimal
model Mq of dA (q,a) for each q 2 S satisfying:

D1. S0 = [q2SMq,
D2. f 0(p)  min{ f (q) | q 2 pred(p) \G} where pred(p) = {q 2 S | p 2 Mq} denotes the set of

predecessors of a given p 2 S0.
D3. O0 is given as follows. Let p 2 S0 \G, we have

– If ok = true then p 2 O0 iff f 0(p) is even.
– If ok = false then p 2 O0 iff f 0(p) = f (q) for some q 2 (pred(p)\O).

J. Samborski-Forlese & C. Sánchez 5

Lemma 6 Let G be an accepting run, and let G 0 be a non-empty sub-graph of G with no G vertices and
only infinite paths. Then, there is some node in G 0 that cannot access any B node.

PROOF. Consider, by contradiction, that there is no such node in G 0 = (V 0,E 0), or equivalently, that all
vertices in G 0 can access a B node:

for all hq, li 2V 0, there is some hq0, l0i 2V 0 with q0 2 B and hq, li !⇤

E 0

hq0, l0i .

Then, every node can be associated with a reachable B and a path to this B reachable node. We use
next(hq, li) for this path.

Then using induction define, starting from an arbitrary node hq, li 2 V 0, an infinite path in G 0 that
visits B nodes infinitely often by concatenating the paths returned by next. Let us call p one such path.

Since p(0) = hq, li is a node of G 0, and consequently a node of G , p(0) is reachable from some initial
node by point 3 in the definition of a run. Let ppre be a finite path in G from a node hq0,0i 2V . The path
pprep is a trace in G that visits G nodes finitely often (only nodes in ppre can possibly be G nodes) and B
nodes infinitely often in p . This trace contradicts that G is an accepting run. ⇤

Now, we can relate existence of odd-rankings with accepting words of an ASWh1i automaton:

Lemma 7 G is an accepting run of A if and only if there is an odd Sh1i-ranking for G .

3.2 From Alternating Streetth1i into NBW

Based on Lemma 26, we describe now a ranking construction that provides, given an ASWh1i, an equiv-
alent NBW.

Definition 8 (Street Construction) Given an ASWh1i automaton A : hS,QA , IA ,dA ,{hB,Gi}i we con-
struct an NBW S(A ) = N : hS,QN , IN ,dN ,FNi as follows:

• QN contains elements of the form (S,O, f ,ok) where S ✓ QA is a subset of states of A , O ✓ S, ok
is a Boolean, and f : S ! [2n] is a function that satisfies:

Q1. if q 2 B then f (q) is even.
Q2. if O 6= /0 then ok = false.

• IN contains all those (M,O, f ,ok) 2 QN where

I1. M is a minimal model of IA , O = {q 2 M | q /2 G and f (q) is even} and ok = false.

• FN = {(S,O, f ,ok) | ok = true}.

• dN : QN ⇥S ! 2QN , such that (S0,O0, f 0,ok0) 2 dN((S,O, f ,ok),a) whenever there is one mimimal
model Mq of dA (q,a) for each q 2 S satisfying:

D1. S0 = [q2SMq,
D2. f 0(p)  min{ f (q) | q 2 pred(p) \G} where pred(p) = {q 2 S | p 2 Mq} denotes the set of

predecessors of a given p 2 S0.
D3. O0 is given as follows. Let p 2 S0 \G, we have

– If ok = true then p 2 O0 iff f 0(p) is even.
– If ok = false then p 2 O0 iff f 0(p) = f (q) for some q 2 (pred(p)\O).
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4.1 Streett Simulation Relations

Let A be a ASWh1i automaton, and S(A ) its corresponding NBW. Given a forward alternating simula-
tion ⌧ for A we define a relation � in S(A ) and we will show that it is a forward simulation compatible
with final states.

Definition 22 (Streett Simulation Relation) The Streett simulation relation � on S(A ) ✓ QN ⇥QN is
defined as (S2,O2, f2,ok2)� (S1,O1, f1,ok1) whenever:

� S1. for all q2 2 S2 \G there is a q1 2 S1 with q2 ⌧ q1.
� S2. for all q2 2 S2 \G there is a q1 2 S1 with q2 ⌧ q1 and f1(q1) f2(q2).
� S3. for all q2 2 O2 there is a q1 2 O1 with q2 ⌧ q1 and f1(q1) f2(q2).
� S4. ok2 if and only if ok1.

Lemma 23 The Streett simulation relation � is a forward simulation in S(A ) compatible with final
states.

PROOF. To prove that � is a forward simulation in S(A ) we need to show that for arbitrary states Q1 :
(S1,O1, f1,ok1), Q2 : (S2,O2, f2,ok2) with Q2 � Q1, for every possible a-successor Q3 : (S3,O3, f3,ok3)
of Q1 there is an a-successor Q4 : (S4,O4, f4,ok4) of Q2 with Q4 � Q3.

Let Q1 and Q2 be with Q2 � Q1, and let Q3 be an arbitrary a-successor of Q1. We use g13 : S1 ! 2S3

for the map that gives, for q1 2 S1 the minimal model Mq1 2 d (q1,a) used to produce Q3.

• STEP 1: Choosing pairs q2 ⌧ q1:
From O2 ⌧ O1 there is a map h21 : O2 ! O1 that provides, for every q2 2 O2, an element h21(q2) 2 O1
with q2 ⌧ h21(q2). From S2 ⌧ S1, we can complete the map h21 to the whole set S2 by choosing
h21 : S2 \O2 ! S1 such that for every q2 2 S2, an element h21(q2) 2 S1 with q2 ⌧ h(q2). By the
assumption that Q2 � Q1, and (ii) we know that either

JSF: Why (ii)?

q2 2 G or f1(h21(q2)) f2(q2). This is depicted in Fig. 1(a).

• STEP 2: Building S4:
By Q2 � Q1 and (iii) of the definition of alternating forward simulation, we define the map g24 that
assigns to each q2 2 S2 a set of states of S(A ) such that:

g24(q2)⌧ g13(h21(q2)) .

The set S4 is
S

q22S2
g24(q2). This is represented in Fig. 1(c).
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Figure 1: The steps in the proof
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Summary

✦ An1chains'is'a'very'cleaver'model'checking'technique.

✦ Applied'successfully'to'LTL'model'checking,'outperforming'

tradi1onal'approaches.

✦ Showed'the'existence'of'simula1on'preorders'on'our'more'

complex'StreeX'construc1on.

✦ Similar'results'for'our'Rabin'construc1on.

✦ Future'guidelines:

✦ Similar'results'for'other'interes1ng'acceptance'condi1ons'(like'Hesitant).

✦ Implement'an1chains'for'RLTL'(and'possibly'for'PSL)'and'integrate'into'NuSMV.


