

Simulation Relations for Rich Acceptance Conditions

César Sánchez^{1,2} and Julian Samborski-Forlese¹

¹IMDEA Software Institute, Madrid, Spain ²Institute for Information Security, CSIC, Spain

Rich Model Toolkit COST Action Meeting. Malta 2013. June 16th, 2013.

Quick Model Checking Intro

Exploits simulation preorders that exist by-construction.

- Exploits simulation preorders that exist by-construction.
- For the Miyano-Hayashi construction the simulation relation is easy: [⊆,⊆].

- + Exploits simulation preorders that exist by-construction.
- For the Miyano-Hayashi construction the simulation relation is easy: [⊆,⊆].
- + But, MH does not work for more complex logics.

- Exploits simulation preorders that exist by-construction.
- For the Miyano-Hayashi construction the simulation relation is easy: [⊆,⊆].
- But, MH does not work for more complex logics.

- Exploits simulation preorders that exist by-construction.
- For the Miyano-Hayashi construction the simulation relation is easy: [⊆,⊆].
- But, MH does not work for more complex logics.

- + Exploits simulation preorders that exist by-construction.
- For the Miyano-Hayashi construction the simulation relation is easy: [⊆,⊆].
- + But, MH does not work for more complex logics.

- Exploits simulation preorders that exist by-construction.
- For the Miyano-Hayashi construction the simulation relation is easy: [⊆,⊆].
- But, MH does not work for more complex logics.

- + Exploits simulation preorders that exist by-construction.
- For the Miyano-Hayashi construction the simulation relation is easy: [⊆,⊆].
- + But, MH does not work for more complex logics.
- Original antichain-based algorithms cannot be applied to model checking extensions of LTL.

$$\mathsf{RLTL} \longrightarrow \mathsf{ASW} \longrightarrow \mathsf{NBW}$$

Our Goal

Develop antichain-based algorithms for extensions of LTL

Acceptance Conditions

$$\mathcal{A} = (\Sigma, Q, \delta, I, F)$$

Finite words

• $F \subseteq Q$ $trace(\pi)$ ends in F

Acceptance Conditions

 $\mathcal{A} = (\Sigma, Q, \delta, I, F)$

- Finite words
 - $F \subseteq Q$ $trace(\pi)$ ends in F

Infinite words

- Büchi $F \subseteq Q$ $inf(\pi) \cap F \neq \emptyset$
- coBüchi F ⊆ Q inf(π) ∩ F = ∅
- Parity $Q \rightarrow \{0..k\}$ $max(F(inf(\pi)))$ is even
- Street(1) (B,G) if $inf(\pi) \cap B \neq \emptyset$ then $inf(\pi) \cap G \neq \emptyset$
- Rabin(1) (B,G) $inf(\pi) \cap B \neq \emptyset$ and $inf(\pi) \cap G \neq \emptyset$

Acceptance Conditions

 $\mathcal{A} = (\Sigma, Q, \delta, I, F)$

- Finite words
 - $F \subseteq Q$ $trace(\pi)$ ends in F

Infinite words

+	Büchi	$F \subseteq Q$	$inf(\pi) \cap F \neq \emptyset$
+	coBüchi	$F \subseteq Q$	$inf(\pi) \cap F = \emptyset$
+	Parity	$Q \rightarrow \{0k\}$	$max(F(inf(\pi)))$ is even
+	Street $\langle 1 \rangle$	(B,G)	if $inf(\pi) \cap B \neq \emptyset$ then $inf(\pi) \cap G \neq \emptyset$
+	Rabin $\langle 1 \rangle$	(B,G)	$inf(\pi) \cap B \neq \emptyset$ and $inf(\pi) \cap G \neq \emptyset$

$$\mathcal{N} = (\Sigma, Q, \delta, I, F)$$

$$\mathcal{N} = (\Sigma, Q, \delta, I, F)$$

$$\mathcal{N} = (\Sigma, Q, \delta, I, F)$$

$$\mathcal{N} = (\Sigma, Q, \delta, I, F)$$

$$\mathcal{N} = (\Sigma, Q, \delta, I, F)$$

$$\mathcal{N} = (\Sigma, Q, \delta, I, F)$$

• Forward Simulation $\leq_{f} \subseteq Q \times Q$

 q_2 forward simulates q_1

Emptiness and Model Checking $\mathcal{N} = (\Sigma, Q, \delta, I, F)$

Emptiness and Model Checking $\mathcal{N} = (\Sigma, Q, \delta, I, F)$

Backward Repeated Reachability

 $\mathsf{BB}^*(M) = \mathsf{GFP}(X \cdot \mathsf{pre}^+(X) \cap F)$

Language Emptiness

$$\mathcal{L}(\mathcal{N}) = \emptyset \text{ iff } \mathsf{BB}^* \cap I = \emptyset$$

Emptiness and Model Checking $\mathcal{N} = (\Sigma, Q, \delta, I, F)$

Backward Repeated Reachability

 $\mathsf{BB}^*(M) = \mathsf{GFP}(X \cdot \mathsf{pre}^+(X) \cap F)$

Language Emptiness

$$\mathcal{L}(\mathcal{N}) = \emptyset \text{ iff } \mathsf{BB}^* \cap I = \emptyset$$

Symbolic Backward Repeated Reachability

$$\widehat{\mathsf{BB}}^*(M) = \mathsf{GFP}(\lambda X \cdot \lceil F \rceil \ \sqcap \ \widehat{\mathsf{pre}}^+(X)) \qquad (\preceq_{\mathsf{f}})$$

$\mathcal{A} = (\Sigma, Q, \delta, I, F)$

 $\mathcal{A} = (\Sigma, Q, \delta, I, F)$

$\mathcal{N} = (\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}})$

 $\mathcal{A} = (\Sigma, Q, \delta, I, F)$

(S, O) $\mathcal{N} = (\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}})$

 $\mathcal{A} = (\Sigma, Q, \delta, I, F)$

(S, O) (M, \emptyset) $\mathcal{N} = (\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}})$

I. *M* is a minimal model of I_N

 $\mathcal{A} = (\Sigma, Q, \delta, I, F)$

(S, O) (M, \emptyset) $\mathcal{N} = (\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}})$ (S, \emptyset)

$$\mathbf{D}.\ \delta_{\mathcal{N}} = \begin{cases} \langle (\begin{array}{ccc} 1 & \varnothing \end{array}) & \sigma & (\begin{array}{ccc} 2 & 2 \\ \end{array} & \rangle \rangle & \left| \begin{array}{ccc} 1 & \stackrel{\sigma}{\leadsto} & 2 \\ \end{array} \right\rangle & \cup \\ \langle (\begin{array}{cccc} 1 & 1 \neq \varnothing \end{array}) & \sigma & (\begin{array}{cccc} 2 & 2 \\ \end{array} & \rangle & \rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\leadsto} & 2 \\ \end{array} \right\rangle & \frac{\sigma}{\gg} & 2 & 2 \\ \end{array} & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\leadsto} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \frac{\sigma}{\gg} & 2 & 2 \\ \end{array} & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} & 2 \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} \\ \end{array} \right\rangle & \left| \begin{array}{cccc} 1 & \stackrel{\sigma}{\Longrightarrow} \\ \end{array} \right\rangle$$

$\mathcal{A} = (\Sigma, Q, \delta, I, F)$

 $\mathcal{A} = (\Sigma, Q, \delta, I, F)$

$\mathcal{N} = (\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}})$

 $\mathcal{A} = (\Sigma, Q, \delta, I, F)$

(S, O, f, ok) $\mathcal{N} = (\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}})$

Q 1. if q B then f(q) is e en. Q2. if $O \neq \emptyset$ then ok = false.

$$\mathcal{A} = (\Sigma, Q, \delta, I, F)$$

$$(S, O, f, ok) \qquad (M, O, f, ok)$$
$$\mathcal{N} = (\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}})$$

I. *M* is a minimal model of I_N $O = \{q \in M \mid q \notin G \text{ and } f(q) \text{ is even}\}$ and ok = false.

 $\mathcal{A} = (\Sigma, Q, \delta, I, F)$

(S, O, f, ok)(M, O, f, ok) $\mathcal{N} = (\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}})$ $\{(S, O, f, ok) \mid ok = true\}$

D1. $S' = \bigcup_{q \in S} M_q$,

D1. $S' = \bigcup_{q \in S} M_q$, **D2.** $f'(p) \le \min\{f(q) \mid q \in pred(p) \setminus G\}$

D1. $S' = \bigcup_{q \in S} M_q$,

- **D2.** $f'(p) \leq \min\{f(q) \mid q \in pred(p) \setminus G\}$
- **D3**. O' is given as follows. Let $p \in S' \setminus G$, we have
 - If ok = true then $p \in O'$ iff f'(p) is even.
 - If ok = false then $p \in O'$ iff f'(p) = f(q) for some $q \in (pred(p) \cap O)$.

Our Contribution

Definition (Streett Simulation Relation) *The Streett simulation relation* \preceq on $S(\mathscr{A}) \subseteq Q_N \times Q_N$ *is defined as* $(S_2, O_2, f_2, ok_2) \preceq (S_1, O_1, f_1, ok_1)$ *whenever:*

- **S1**. for all $q_2 \in S_2 \cap G$ there is a $q_1 \in S_1$ with $q_2 \ll q_1$.

- **S2**. *for all* $q_2 \in S_2 \cap \overline{G}$ *there is a* $q_1 \in S_1$ *with* $q_2 \ll q_1$ *and* $f_1(q_1) \leq f_2(q_2)$.
- -**S3**. *for all* $q_2 ∈ O_2$ *there is a* $q_1 ∈ O_1$ *with* $q_2 \ll q_1$ *and* $f_1(q_1) ≤ f_2(q_2)$.
- **S4**. *ok*₂ *if and only if ok*₁.

Our Contribution

Definition (Streett Simulation Relation) *The Streett simulation relation* \preceq on $S(\mathscr{A}) \subseteq Q_N \times Q_N$ *is defined as* $(S_2, O_2, f_2, ok_2) \preceq (S_1, O_1, f_1, ok_1)$ *whenever:*

- **S1**. for all $q_2 \in S_2 \cap G$ there is a $q_1 \in S_1$ with $q_2 \ll q_1$.

- **S2**. for all $q_2 \in S_2 \cap \overline{G}$ there is a $q_1 \in S_1$ with $q_2 \ll q_1$ and $f_1(q_1) \leq f_2(q_2)$.
- -**S3**. *for all* $q_2 ∈ O_2$ *there is a* $q_1 ∈ O_1$ *with* $q_2 \ll q_1$ *and* $f_1(q_1) ≤ f_2(q_2)$.
- **S4**. *ok*₂ *if and only if ok*₁.

Lemma The Streett simulation relation \leq is a forward simulation on $S(\mathscr{A})$ compatible with final states.

Summary

- Antichains is a very cleaver model checking technique.
- Applied successfully to LTL model checking, outperforming traditional approaches.
- Showed the existence of simulation preorders on our more complex Streett construction.
- Similar results for our Rabin construction.
- Future guidelines:
 - Similar results for other interesting acceptance conditions (like Hesitant).
 - Implement antichains for RLTL (and possibly for PSL) and integrate into NuSMV.