Simulation Relations for Rich Acceptance Conditions

César Sánchez ${ }^{1,2}$ and Julian Samborski-Forlese ${ }^{1}$
${ }^{1}$ IMDEA Software Institute, Madrid, Spain
${ }^{2}$ Institute for Information Security, CSIC, Spain

Rich Model Toolkit COST Action Meeting. Malta 2013. June 16 ${ }^{\text {th }}, 2013$.

Quick Model Checking Intro

Antichain-based Model Checking [Raskin06]

LTL \longrightarrow ABW $\xrightarrow{\text { MH }}$ NBW

Antichain-based Model Checking [Raskin06]

LTL \longrightarrow ABW $\xrightarrow{\text { MH }}$ NBW

Antichain-based Model Checking [Raskin06]

LTL \longrightarrow ABW $\xrightarrow{\text { MH }}$ NBW

Antichain-based Model Checking [Raskin06]

$\mathrm{LTL} \longrightarrow \mathrm{ABW} \xrightarrow{\mathrm{MH}}$ NBW

Antichain-based Model Checking [Raskin06]

LTL \longrightarrow ABW $\xrightarrow{\text { MH }}$ NBW

Antichain-based Model Checking [Raskin06]

\downarrow Exploits simulation preorders that exist by-construction.

Antichain-based Model Checking [Raskin06]

\uparrow Exploits simulation preorders that exist by-construction.

- For the Miyano-Hayashi construction the simulation relation is easy: $[\subseteq, \subseteq]$.

LTL \longrightarrow ABW $\xrightarrow{\text { MH }}$ NBW

Antichain-based Model Checking [Raskin06]

\uparrow Exploits simulation preorders that exist by-construction.

- For the Miyano-Hayashi construction the simulation relation is easy: $[\subseteq, \subseteq]$.
\downarrow But, MH does not work for more complex logics.

Antichain-based Model Checking [Raskin06]

\uparrow Exploits simulation preorders that exist by-construction.
\downarrow For the Miyano-Hayashi construction the simulation relation is easy: $[\subseteq, \subseteq]$.

- But, MH does not work for more complex logics.

Antichain-based Model Checking [Raskin06]

\uparrow Exploits simulation preorders that exist by-construction.

- For the Miyano-Hayashi construction the simulation relation is easy: $[\subseteq, \subseteq]$.
- But, MH does not work for more complex logics.

Antichain-based Model Checking [Raskin06]

\uparrow Exploits simulation preorders that exist by-construction.
\downarrow For the Miyano-Hayashi construction the simulation relation is easy: $[\subseteq, \subseteq]$.

- But, MH does not work for more complex logics.

Antichain-based Model Checking [Raskin06]

\uparrow Exploits simulation preorders that exist by-construction.

- For the Miyano-Hayashi construction the simulation relation is easy: $[\subseteq, \subseteq]$.
- But, MH does not work for more complex logics.

Antichain-based Model Checking [Raskin06]

\uparrow Exploits simulation preorders that exist by-construction.
\downarrow For the Miyano-Hayashi construction the simulation relation is easy: $[\subseteq, \subseteq]$.

- But, MH does not work for more complex logics.
\uparrow Original antichain-based algorithms cannot be applied to model checking extensions of LTL.

Our Goal

Develop antichain-based algorithms for extensions of LTL

Acceptance Conditions

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

\downarrow Finite words

$$
+F \subseteq Q
$$

$$
\operatorname{trace}(\pi) \text { ends in } F
$$

Acceptance Conditions

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

\downarrow Finite words

+ $F \subseteq Q$
trace (π) ends in F
- Infinite words
- Büch
$F \subseteq Q$
$\inf (\pi) \cap F \neq \emptyset$
+ coBüchi
$F \subseteq Q$
$\inf (\pi) \cap F=\emptyset$
* Parity
$Q \rightarrow\{0 . . k\} \quad \max (F(\inf (\pi)))$ is even
$+\operatorname{Street}\langle 1\rangle \quad(B, G) \quad$ if $\inf (\pi) \cap B \neq \emptyset$ then $\inf (\pi) \cap G \neq \emptyset$
- Rabin $\langle 1\rangle \quad(B, G)$
$\inf (\pi) \cap B \neq \emptyset$ and $\inf (\pi) \cap G \neq \emptyset$

Acceptance Conditions

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

\downarrow Finite words

+ $F \subseteq Q$
$\operatorname{trace}(\pi)$ ends in F
\checkmark Infinite words
+ Büchi $\quad F \subseteq Q \quad \inf (\pi) \cap F \neq \emptyset$
- coBüchi
$F \subseteq Q \quad \inf (\pi) \cap F=\emptyset$
+ Parity $Q \rightarrow\{0 . . k\} \quad \max (F(\inf (\pi)))$ is even
$+\operatorname{Street}\langle 1\rangle \quad(B, G) \quad$ if $\inf (\pi) \cap B \neq \emptyset$ then $\inf (\pi) \cap G \neq \emptyset$
+ Rabin $\langle 1\rangle \quad(B, G) \quad \inf (\pi) \cap B \neq \emptyset$ and $\inf (\pi) \cap G \neq \emptyset$

Simulation Preorders on FSM $\mathcal{N}=(\Sigma, Q, \delta, I, F)$
\uparrow Forward Simulation $\quad \leq_{\mathfrak{f}} \subseteq Q \times Q$

Simulation Preorders on FSM $\quad \mathcal{N}=(\Sigma, Q, \delta, I, F)$

- Forward Simulation $\quad \leq_{\mathrm{f}} \subseteq Q \times Q$

Simulation Preorders on FSM $\quad \mathcal{N}=(\Sigma, Q, \delta, I, F)$
\downarrow Forward Simulation $\quad \leq_{\mathfrak{f}} \subseteq Q \times Q$

$$
\begin{aligned}
& q_{1} \xrightarrow{\sigma} q_{3} \\
& \stackrel{\rightharpoonup}{V}
\end{aligned}
$$

$$
q_{2}
$$

Simulation Preorders on FSM $\mathcal{N}=(\Sigma, Q, \delta, I, F)$

\uparrow Forward Simulation $\quad \leq_{\mathfrak{f}} \subseteq Q \times Q$

$$
\begin{aligned}
& q_{1} \xrightarrow{\sigma} q_{3} \\
& \stackrel{\rightharpoonup}{\sqrt{1}} \\
& q_{2} \xrightarrow{\sigma} q_{4}
\end{aligned}
$$

Simulation Preorders on FSM $\mathcal{N}=(\Sigma, Q, \delta, I, F)$

\downarrow Forward Simulation $\quad \leq_{\mathrm{f}} \subseteq Q \times Q$

$$
\begin{aligned}
& q_{1} \xrightarrow{\sigma} q_{3} \\
& \stackrel{H}{V} \quad \stackrel{H}{V} \\
& q_{2} \xrightarrow{\sigma} q_{4}
\end{aligned}
$$

Simulation Preorders on FSM $\mathcal{N}=(\Sigma, Q, \delta, I, F)$

\downarrow Forward Simulation $\quad \leq_{f} \subseteq Q \times Q$

$$
\begin{array}{cc}
q_{1} \xrightarrow{\sigma} & q_{3} \\
\dot{\sqrt{1}} & \\
q_{2} \xrightarrow{+} & \sigma
\end{array}
$$

q_{2} forward simulates q_{1}

Emptiness and Model Checking $\quad \mathcal{N}=(\Sigma, Q, \delta, I, F)$

Emptiness and Model Checking $\quad \mathcal{N}=(\Sigma, Q, \delta, I, F)$

- Backward Repeated Reachability

$$
\begin{aligned}
& \mathrm{BB}^{*}(M)=\operatorname{GFP}\left(X \cdot \operatorname{pre}^{+}(X) \cap F\right) \\
& \qquad \mathcal{L}(\mathcal{N})=\emptyset \text { iff } \mathrm{BB}^{*} \cap I=\emptyset
\end{aligned}
$$

Emptiness and Model Checking $\quad \mathcal{N}=(\Sigma, Q, \delta, I, F)$

- Backward Repeated Reachability

$$
\begin{aligned}
& \operatorname{BB}^{*}(M)=\operatorname{GFP}\left(X \cdot \operatorname{pre}^{+}(X) \cap F\right) \\
& \qquad \mathcal{L}(\mathcal{N})=\emptyset \text { iff } \mathrm{BB}^{*} \cap I=\emptyset
\end{aligned}
$$

- Symbolic Backward Repeated Reachability

$$
\widehat{\mathrm{BB}}^{*}(M)=\operatorname{GFP}\left(\lambda X \cdot\lceil F\rceil \sqcap \widehat{\mathrm{pre}}^{+}(X)\right)
$$

MH Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

MH Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\mathcal{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}\right)
$$

MH Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\mathcal{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}\right)
$$

MH Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\mathcal{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}\right)
$$

I. M is a minimal model of $I_{\mathcal{N}}$

MH Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\mathcal{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}^{(S, O)}\right.
$$

MH Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\begin{aligned}
& \delta_{\mathcal{N}}: Q_{N} \rightarrow 2^{Q_{N}} \\
& (S, O) \\
& \mathcal{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}\right) \\
& (S, \emptyset)
\end{aligned}
$$

Streett Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

Streett Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\mathcal{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}\right)
$$

Streett Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\mathcal{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}\right)
$$

Q 1. if $\| \quad B$ then $f(\eta)$ is e en.
Q2. if $O \neq \emptyset$ then $o k=$ false.

Streett Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\mathbf{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}\right)
$$

I. M is a minimal model of $I_{\mathcal{N}}$
$O=\{q \in M \mid q \notin G$ and $f(q)$ is even $\}$ and $o k=$ false.

Streett Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\mathcal{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}\right)
$$

Streett Construction $\mathcal{A}=(\Sigma, Q, \delta, I, F)$

$$
\begin{aligned}
& (S, O, f, o k) \\
& \mathbf{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N},}^{\left.\delta_{\mathcal{N}}: Q_{\mathcal{N}}, F_{\mathcal{N}}\right)}(M, O, f, o k)\right. \\
& \{(S, O, f, o k) \mid o k=t r u e\}
\end{aligned}
$$

Streett Construction $\mathcal{A}=(\Sigma, Q, \delta, I, F)$

$$
\begin{aligned}
& (S, O, f, o k) \\
& \mathbf{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N}}, I_{\mathcal{N}}, F_{\mathcal{N}}\right) \\
& \{(S, O, f, o k) \mid o k=t r u e\}
\end{aligned}
$$

D1. $S^{\prime}=\cup_{q \in S} M_{q}$,

Streett Construction

$$
\mathcal{A}=(\Sigma, Q, \delta, I, F)
$$

$$
\begin{aligned}
& (S, O, f, o k) \\
& \mathbf{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N},}^{\left.\delta_{\mathcal{N}}: Q_{\mathcal{N}}, F_{\mathcal{N}}\right)}(M, O, f, o k)\right. \\
& \{(S, O, f, o k) \mid o k=t r u e\}
\end{aligned}
$$

D1. $S^{\prime}=\cup_{q \in S} M_{q}$,
D2. $f^{\prime}(p) \leq \min \{f(q) \mid q \in \operatorname{pred}(p) \backslash G\}$

Streett Construction $\mathcal{A}=(\Sigma, Q, \delta, I, F)$

$$
\begin{aligned}
& (S, O, f, o k) \\
& \mathbf{N}=\left(\Sigma, Q_{\mathcal{N}}, \delta_{\mathcal{N},}^{\delta_{\mathcal{N}}: Q_{\mathcal{N}} \rightarrow 2^{Q_{\mathcal{N}}}}(M, O, f, o k)\right. \\
& \{(S, O, f, o k) \mid o k=\text { true }\}
\end{aligned}
$$

D1. $S^{\prime}=\cup_{q \in S} M_{q}$,
D2. $f^{\prime}(p) \leq \min \{f(q) \mid q \in \operatorname{pred}(p) \backslash G\}$
D3. O^{\prime} is given as follows. Let $p \in S^{\prime} \backslash G$, we have

- If ok $=$ true then $p \in O^{\prime}$ iff $f^{\prime}(p)$ is even.
- If ok $=$ false then $p \in O^{\prime}$ iff $f^{\prime}(p)=f(q)$ for some $q \in(\operatorname{pred}(p) \cap O)$.

Our Contribution

Definition (Streett Simulation Relation) The Streett simulation relation
\preceq on $\mathrm{S}(\mathscr{A}) \subseteq Q_{N} \times Q_{N}$ is defined as $\left(S_{2}, O_{2}, f_{2}, o k_{2}\right) \preceq\left(S_{1}, O_{1}, f_{1}, o k_{1}\right)$ whenever:

- S1. for all $q_{2} \in S_{2} \cap G$ there is a $q_{1} \in S_{1}$ with $q_{2} \ll q_{1}$.
- S2. for all $q_{2} \in S_{2} \cap \bar{G}$ there is a $q_{1} \in S_{1}$ with $q_{2} \ll q_{1}$ and $f_{1}\left(q_{1}\right) \leq f_{2}\left(q_{2}\right)$.
- S3. for all $q_{2} \in O_{2} \quad$ there is a $q_{1} \in O_{1}$ with $q_{2} \ll q_{1}$ and $f_{1}\left(q_{1}\right) \leq f_{2}\left(q_{2}\right)$.
$-\mathbf{S 4}$. $o k_{2}$ if and only if $o k_{1}$.

Our Contribution

Definition (Streett Simulation Relation) The Streett simulation relation
\preceq on $\mathrm{S}(\mathscr{A}) \subseteq Q_{N} \times Q_{N}$ is defined as $\left(S_{2}, O_{2}, f_{2}, o k_{2}\right) \preceq\left(S_{1}, O_{1}, f_{1}, o k_{1}\right)$ whenever:

- S1. for all $q_{2} \in S_{2} \cap G$ there is a $q_{1} \in S_{1}$ with $q_{2} \ll q_{1}$.
- S2. for all $q_{2} \in S_{2} \cap \bar{G}$ there is a $q_{1} \in S_{1}$ with $q_{2} \ll q_{1}$ and $f_{1}\left(q_{1}\right) \leq f_{2}\left(q_{2}\right)$.
- S3. for all $q_{2} \in O_{2} \quad$ there is a $q_{1} \in O_{1}$ with $q_{2} \ll q_{1}$ and $f_{1}\left(q_{1}\right) \leq f_{2}\left(q_{2}\right)$.
$-\mathbf{S 4}$. $o k_{2}$ if and only if $o k_{1}$.

Lemma The Streett simulation relation \preceq is a forward simulation on $\mathrm{S}(\mathscr{A})$ compatible with final states.

Summary

- Antichains is a very cleaver model checking technique.
\uparrow Applied successfully to LTL model checking, outperforming traditional approaches.
\uparrow Showed the existence of simulation preorders on our more complex Streett construction.
- Similar results for our Rabin construction.
\downarrow Future guidelines:
* Similar results for other interesting acceptance conditions (like Hesitant).
* Implement antichains for RLTL (and possibly for PSL) and integrate into NuSMV.

