To Encode or to Propagate? The Best Choice for Each Constraint in SAT

I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, P. Stuckey

Rich Model Toolkit COST Action Meeting 16 June 2013 Malta

Overview

- Motivation: solving constraints with SAT technology
 - Eager Approach: SAT encodings
 - Lazy Approach: SMT/propagators
- Choosing Right: Related Work and Contributions
- Experimental Results
- Conclusions and Future Work

Motivation

- Goal: solving systems of constraints with SAT tools
- Applications:
 - Many in scheduling, timetabling, planning, etc.
 - Also in constraint-based program analysis/synthesis

Motivation

Goal: solving systems of constraints with SAT tools

Applications:

- Many in scheduling, timetabling, planning, etc.
- Also in constraint-based program analysis/synthesis
- Why using SAT? (cf. Linear/Constraint Programming)
 - SAT tech outperforms other tools on real-world problems with a single, fully automatic variable selection strategy!
 - Hence problem solving is essentially declarative

Motivation

Goal: solving systems of constraints with SAT tools

Applications:

- Many in scheduling, timetabling, planning, etc.
- Also in constraint-based program analysis/synthesis
- Why using SAT? (cf. Linear/Constraint Programming)
 - SAT tech outperforms other tools on real-world problems with a single, fully automatic variable selection strategy!
 - Hence problem solving is essentially declarative
- However, propositional logic is a very low-level language for complex constraints

Cardinality and PB Constraints

Example: limited-resource problems

- Some tasks $\{1, 2, ..., n\}$ must be carried out
- Tasks require some (limited) resources
- Solution Variable $a_{i,t}$ is true if task *i* is active at time *t*

Cardinality and PB Constraints

Example: limited-resource problems

- Some tasks $\{1, 2, ..., n\}$ must be carried out
- Tasks require some (limited) resources
- Solution Variable $a_{i,t}$ is true if task *i* is active at time *t*
- **Constraint:** There are no more active tasks than machines:

 $a_{1,t} + a_{2,t} + \ldots + a_{n,t} \le 20$

In general, cardinality cons. are of the form $\sum_{i=1}^{n} x_i \leq k$

Cardinality and PB Constraints

Example: limited-resource problems

- Some tasks $\{1, 2, ..., n\}$ must be carried out
- Tasks require some (limited) resources
- Solution Variable $a_{i,t}$ is true if task *i* is active at time *t*
- **Constraint:** There are no more active tasks than machines:

 $a_{1,t} + a_{2,t} + \ldots + a_{n,t} \le 20$

In general, cardinality cons. are of the form $\sum_{i=1}^{n} x_i \leq k$

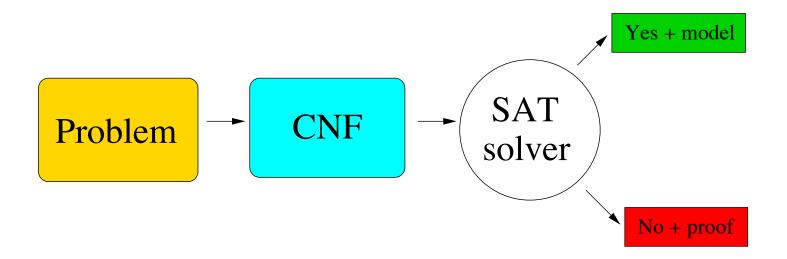
Constraint: The max number of workers is not exceeded:

 $3a_{1,t} + 4a_{2,t} + \ldots + 10a_{n,t} \le 50$

In general, pseudo-Boolean (PB) cons. are of the form $\sum_{i=1}^{n} a_i x_i \leq k$

SAT Encodings

- Express constraint *C* with (CNF) formula *F* (the encoding) s.t.
 - For each solution to C there is a model of F
 - For each model of *F* there is a solution to *C*



SAT Encodings of Cardinality Constraints (1)

- **•** Example: for a cardinality constraint $\sum_{i=1}^{n} x_i < k$ we have:
 - Naive encoding.
 - Variables: the same x_1, \ldots, x_n
 - Clauses: $\overline{x_{i_1}} \lor \ldots \lor \overline{x_{i_k}}$ for all $1 \le i_1 < \ldots < i_k \le n$
 - This is $\binom{n}{k}$ clauses!

SAT Encodings of Cardinality Constraints (1)

- Example: for a cardinality constraint $\sum_{i=1}^{n} x_i < k$ we have:
 - Naive encoding.
 - Variables: the same x_1, \ldots, x_n
 - Clauses: $\overline{x_{i_1}} \lor \ldots \lor \overline{x_{i_k}}$ for all $1 \le i_1 < \ldots < i_k \le n$
 - This is $\binom{n}{k}$ clauses!
 - Sorting network encoding.

Build a circuit that sorts (say, decreasingly) *n* bits with inputs x_1, \ldots, x_n and outputs new variables y_1, \ldots, y_n

- Variables: x_1, \ldots, x_n and gates of the circuit
- Clauses: Tseitin encoding of the circuit + unit clause $\overline{y_k}$
- Can be done with $O(n \log^2(n))$ clauses and new vars!

SAT Encodings of Cardinality Constraints (2)

Only first k outputs suffice:
 cardinality networks just use O(n log²(k)) clauses, vars

SAT Encodings of Cardinality Constraints (2)

- Only first k outputs suffice:
 cardinality networks just use O(n log²(k)) clauses, vars
- In the following: cardinality networks used for encoding cardinality constraints (among most robust, efficient encodings for these constraints)

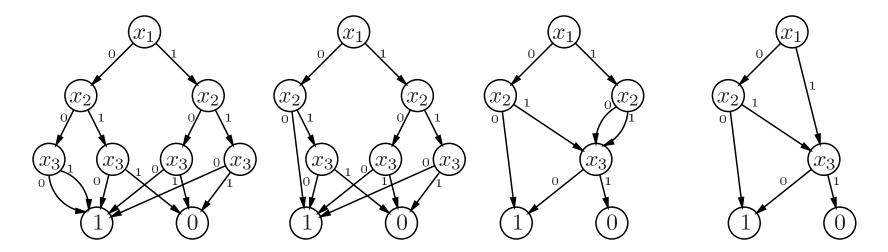
SAT Encodings of PB Constraints (1)

- Several encodings exist
 - Unary/binary adder circuits
 - Sorting networks
 - BDD's

SAT Encodings of PB Constraints (1)

- Several encodings exist
 - Unary/binary adder circuits
 - Sorting networks
 - BDD's
- Example of encoding $2x_1 + 3x_2 + 5x_3 \le 6$ with a BDD:

Construct the (RO)BDD wrt. ordering $x_1 \succ x_2 \succ x_3$...



... and relate truth values of parents and children according to selector variables

SAT Encodings of PB Constraints (2)

- In the encoding of $\sum_{i=1}^{n} a_i x_i \leq k$ with BDD's:
 - Variables: x_1, \ldots, x_n and one for each node of the BDD
 - Clauses: if *n* is a node with selector variable *x* and true and false children *t* and *f*, express

 $x \to (n \leftrightarrow t) \qquad \overline{x} \to (n \leftrightarrow f)$

Linear number of clauses/variables in the size of the BDD

SAT Encodings of PB Constraints (2)

- In the encoding of $\sum_{i=1}^{n} a_i x_i \leq k$ with BDD's:
 - Variables: x_1, \ldots, x_n and one for each node of the BDD
 - Clauses: if *n* is a node with selector variable *x* and true and false children *t* and *f*, express

 $x \to (n \leftrightarrow t) \qquad \overline{x} \to (n \leftrightarrow f)$

- Linear number of clauses/variables in the size of the BDD
- There are families of PB constraints for which no ordering of variables yields polynomial-size BDD-based encodings ... but this rarely occurs in practice

SAT Encodings of PB Constraints (2)

- In the encoding of $\sum_{i=1}^{n} a_i x_i \leq k$ with BDD's:
 - Variables: x_1, \ldots, x_n and one for each node of the BDD
 - Clauses: if *n* is a node with selector variable *x* and true and false children *t* and *f*, express

 $x \to (n \leftrightarrow t) \qquad \overline{x} \to (n \leftrightarrow f)$

- Linear number of clauses/variables in the size of the BDD
- There are families of PB constraints for which no ordering of variables yields polynomial-size BDD-based encodings ... but this rarely occurs in practice
- In the following:
 BDD's used for encoding PB constraints (among most efficient encodings in practice)

Pros and Cons of SAT Encodings

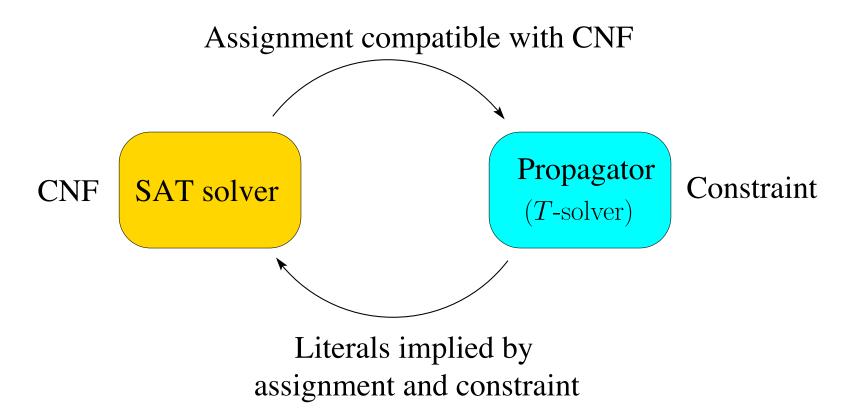
- Encodings introduce auxiliary variables that:
 - ✓ yield smaller formulations,
 - ✓ may produce more general/shorter lemmas,
 - \checkmark can be used for case splitting,
 - **X** but make search space larger

Pros and Cons of SAT Encodings

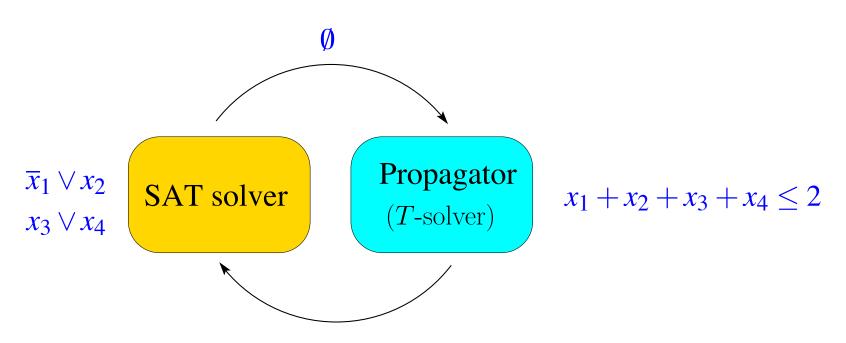
- Encodings introduce auxiliary variables that:
 - ✓ yield smaller formulations,
 - may produce more general/shorter lemmas,
 - \checkmark can be used for case splitting,
 - **X** but make search space larger
- **×** Encodings impractical if problem has many/large constraints

Instead of eagerly encoding the constraint, deal with it lazily

- Instead of eagerly encoding the constraint, deal with it lazily
- **DPLL**(*T*) approach for solving $CNF \land Constraint$:



• Example: $\bar{x}_1 \lor x_2$, $x_3 \lor x_4$, $x_1 + x_2 + x_3 + x_4 \le 2$



Example: $\overline{x}_1 \lor x_2$, $x_3 \lor x_4$, $x_1 + x_2 + x_3 + x_4 \le 2$ x_1^d $\overline{x}_1 \lor x_2$ $x_3 \lor x_4$ SAT solver $x_1 \lor x_2 + x_3 + x_4 \le 2$ $x_1 + x_2 + x_3 + x_4 \le 2$

Decide

Example: $\overline{x}_1 \lor x_2$, $x_3 \lor x_4$, $x_1 + x_2 + x_3 + x_4 \le 2$ $x_1^d x_2$ $\overline{x}_1 \lor x_2$ $x_3 \lor x_4$ SAT solver (T-solver) $x_1 + x_2 + x_3 + x_4 \le 2$

UnitPropagate

Example: $\bar{x}_1 \lor x_2$, $x_3 \lor x_4$, $x_1 + x_2 + x_3 + x_4 \le 2$ $x_1^{\mathsf{d}} x_2 \overline{x}_3 \overline{x}_4$ Propagator $\overline{x}_1 \lor x_2$ SAT solver $x_1 + x_2 + x_3 + x_4 < 2$ (T-solver) $x_3 \lor x_4$ $\overline{x}_3, \overline{x}_4$ **T-Propagate**

Example: $\bar{x}_1 \lor x_2$, $x_3 \lor x_4$, $x_1 + x_2 + x_3 + x_4 \le 2$ $x_1^{\mathsf{d}} x_2 \overline{x}_3 \overline{x}_4$ Propagator $\begin{array}{c|c} \overline{x}_1 \lor x_2 \\ x_3 \lor x_4 \end{array}$ SAT solver $x_1 + x_2 + x_3 + x_4 < 2$ (T-solver)Explanation of \overline{x}_3 : $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ Explanation of \overline{x}_4 : $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_4$ **Conflict!** $\frac{x_3 \lor x_4 \quad \overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_4}{\overline{x}_1 \lor \overline{x}_2 \lor x_3} \quad \overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$ $\overline{x}_1 \lor \overline{x}_2 \qquad \qquad \overline{x}_1 \lor x_2$

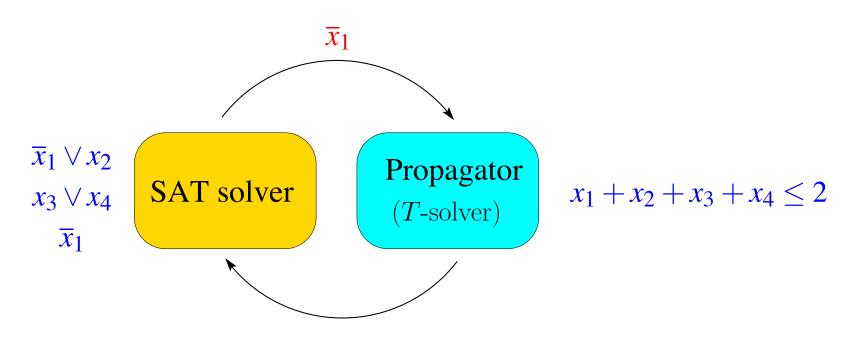
To Encode or to Propagate? The Best Choice for Each Constraint in SAT - p.12/23

 \overline{x}_1

• Example: $\overline{x}_1 \lor x_2$, $x_3 \lor x_4$, $x_1 + x_2 + x_3 + x_4 \le 2$ $x_1^d x_2 \overline{x}_3 \overline{x}_4$ $\overline{x}_1 \lor x_2$ $x_3 \lor x_4$ \overline{x}_1 SAT solver \overline{x}_1 $x_1 + x_2 + x_3 + x_4 \le 2$

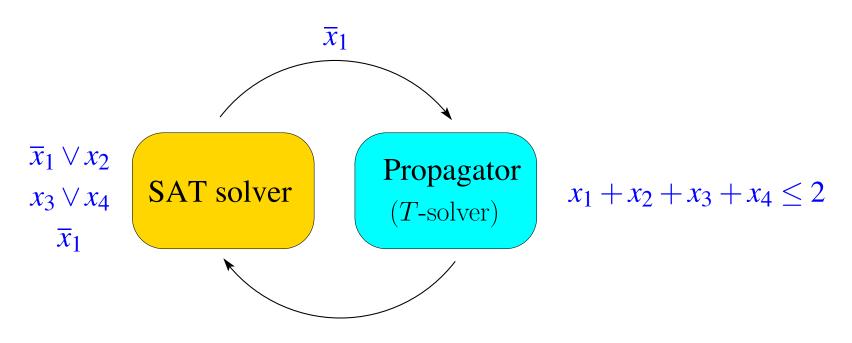
Learn

■ Example: $\overline{x}_1 \lor x_2$, $x_3 \lor x_4$, $x_1 + x_2 + x_3 + x_4 \le 2$



Backjump

• Example: $\overline{x}_1 \lor x_2$, $x_3 \lor x_4$, $x_1 + x_2 + x_3 + x_4 \le 2$



- •••
- SAT solver requires that the propagator:
 - Detects lits implied by partial assignment and constraint
 - Gives explanations of propagated lits for conflict analysis

Propagator for Cardinality Constraints

- Consider the constraint $x_1 + ... + x_n \le k$
- Let us count no. of true literals, i.e., the size of $A_1 = \{i \mid x_i = 1\}$

Propagator for Cardinality Constraints

- Consider the constraint $x_1 + ... + x_n \le k$
- Let us count no. of true literals, i.e., the size of $A_1 = \{i \mid x_i = 1\}$
- If $|A_1| \ge k$, let $E \subseteq A_1$ such that |E| = k
- For any $j \notin E$, literal \overline{x}_j can be propagated
- Explanation: clause

 $\bigvee_{i_s\in E}\overline{x}_{i_s}\vee\overline{x}_j$

Propagator for Cardinality Constraints

- Consider the constraint $x_1 + ... + x_n \le k$
- Let us count no. of true literals, i.e., the size of $A_1 = \{i \mid x_i = 1\}$
- If $|A_1| \ge k$, let $E \subseteq A_1$ such that |E| = k
- For any $j \notin E$, literal \overline{x}_j can be propagated
- Explanation: clause

$$\bigvee_{i_s\in E} \overline{x}_{i_s}\vee \overline{x}_j$$

- Note that explanations are the clauses of the naive encoding
- In general, SMT can be seen as lazily producing an encoding (without auxiliary variables)

Propagator for PB Constraints

- Consider the constraint $a_1x_1 + ... + a_nx_n \le k$ with $a_i \ge 0$
- Let us count the weighted sum $a_1x_1 + \ldots + a_nx_n$ for true lits, i.e.
 in $A_1 = \{i \mid x_i = 1\}$

Propagator for PB Constraints

- Consider the constraint $a_1x_1 + ... + a_nx_n \le k$ with $a_i \ge 0$
- Let us count the weighted sum $a_1x_1 + ... + a_nx_n$ for true lits, i.e. in $A_1 = \{i \mid x_i = 1\}$
- Assume there are $E \subseteq A_1$ and $j \notin E$ s.t. $a_j + \sum_{i \in E} a_i > k$ Literal \overline{x}_j can then be propagated
- Explanation: clause

 $\bigvee_{i_s\in E} \overline{x}_{i_s}\vee \overline{x}_j$

Propagator for PB Constraints

- Consider the constraint $a_1x_1 + ... + a_nx_n \le k$ with $a_i \ge 0$
- Let us count the weighted sum $a_1x_1 + ... + a_nx_n$ for true lits, i.e. in $A_1 = \{i \mid x_i = 1\}$
- Assume there are $E \subseteq A_1$ and $j \notin E$ s.t. $a_j + \sum_{i \in E} a_i > k$ Literal \overline{x}_j can then be propagated
- Explanation: clause

 $\bigvee_{i_s\in E} \overline{x}_{i_s} \vee \overline{x}_j$

 Again, explanations correspond to clauses of a naive encoding (generalization of the case of cardinality constraints)

SMT and SAT Encodings Are Complementary

 Comparison of SMT / SAT encoding (using same underlying SAT solver Barcelogic)

Benchmark suite		SMT at least	SAT enc. at least
		1.5x faster	1.5x faster
Tomography	(many card. cons.)	86.49%	5.93%
PB evaluation	(many PB/card. cons.)	43.49%	7.02%
RCPSP	(many PB cons.)	46.62%	0.69%
MSU4	(few card. cons.)	15.39%	39.37%
DES	(1 large card. cons.)	0.28%	92.06%

SMT and SAT Encodings Are Complementary

 Comparison of SMT / SAT encoding (using same underlying SAT solver Barcelogic)

Benchmark suite		SMT at least	SAT enc. at least
		1.5x faster	1.5x faster
Tomography	(many card. cons.)	86.49%	5.93%
PB evaluation	(many PB/card. cons.)	43.49%	7.02%
RCPSP	(many PB cons.)	46.62%	0.69%
MSU4	(few card. cons.)	15.39%	39.37%
DES	(1 large card. cons.)	0.28%	92.06%

Related Work

Conflict-Directed Lazy Decomposition: [Abío & Stuckey, CP'12]

- Goal: to get the best of SAT encodings and SMT
- Basic idea:
 - Start off with a full SMT approach for each constraint
 - On the fly, partially encode only *active* parts of constraints
 - Active = would appear in explanations in conflict analysis

Related Work

Conflict-Directed Lazy Decomposition: [Abío & Stuckey, CP'12]

- Goal: to get the best of SAT encodings and SMT
- Basic idea:
 - Start off with a full SMT approach for each constraint
 - On the fly, partially encode only *active* parts of constraints
 - Active = would appear in explanations in conflict analysis
 - **•** Thus:
 - Very active constraints end up completely encoded
 - Little active constraints are handled with SMT

Related Work

Conflict-Directed Lazy Decomposition: [Abío & Stuckey, CP'12]

- Goal: to get the best of SAT encodings and SMT
- Basic idea:
 - **Start off** with a full **SMT** approach for each constraint
 - On the fly, partially encode only *active* parts of constraints
 - Active = would appear in explanations in conflict analysis
 - **•** Thus:
 - Very active constraints end up completely encoded
 - Little active constraints are handled with SMT
 - So far only available for encodings allowing partial decomposition (non-trivial):
 - cardinality network encoding for cardinality cons.
 - BDD encoding for PB cons.

Our Contribution: Pros of SMT (1)

- When is SMT effective?
- Often, while searching for solutions, constraints only
 - block the current solution candidate very few times (generate very few explanations)

or

- they do it almost always in the same way (generate few different explanations)
- Generating these explanations can be much more effective than encoding all constraints from the beginning

Our Contribution: Pros of SMT (2)

- Table below shows % of benchmark instances where at least half the constraints have a given % of repeated explanations
- Recall: in Tomography, PB evaluation, RCPSP better is SMT; in MSU4, DES better are SAT encodings

	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Suite	0-5%	5-10%	10-20%	20-40%	40-60%	60-80%	80-95%	95-100%
Tomography	0	0	0	0	0	0	100	0
PB evaluation	6.2	0	0	0	0	0.6	14.2	51.7
RCPSP	0	0	0	0	0	5.5	54.4	1.6
MSU4	66.9	11.0	19.9	12.4	2.8	0.9	0.2	0
DES	21.4	29.8	35.2	13.6	0	0	0	0

Our Contribution: Cons of SMT

- When is SMT not so effective?
- Sometimes some bottleneck constraints end up generating an exponential number of explanations, equivalent to a naive SAT encoding with no auxiliary variables

Our Contribution: Cons of SMT

- When is SMT not so effective?
- Sometimes some bottleneck constraints end up generating an exponential number of explanations, equivalent to a naive SAT encoding with no auxiliary variables

• Example: in $\begin{cases} x_1 + \ldots + x_n < n/2 \\ x_1 + \ldots + x_n \ge n/2 \end{cases}$

SMT forced to produce all explanations of the form

 $\overline{x_{i_1}} \vee \overline{x_{i_2}} \vee \ldots \vee \overline{x_{i_{n/2}}}$

and

 $x_{i_1} \vee x_{i_2} \vee \ldots$

Our Contribution: Cons of SMT

- When is SMT not so effective?
- Sometimes some bottleneck constraints end up generating an exponential number of explanations, equivalent to a naive SAT encoding with no auxiliary variables

• Example: in $\begin{cases} x_1 + \ldots + x_n < n/2 \\ x_1 + \ldots + x_n \ge n/2 \end{cases}$

SMT forced to produce all explanations of the form

 $\overline{x_{i_1}} \vee \overline{x_{i_2}} \vee \ldots \vee \overline{x_{i_{n/2}}}$

and

$$x_{i_1} \vee x_{i_2} \vee \ldots$$

A polynomial-sized encoding for such a bottleneck constraint (possibly with auxiliary variables) may be better

Our Contribution: Getting the Best

- We implemented an SMT solver equipped with the ability of encoding on the fly:
 - cardinality constraints with cardinality networks
 - PB constraints with BDD's
- Encoding is irreversible (once a constraint is encoded, its propagator is off forever) and not partial (all or nothing)
- When to encode a constraint? When SMT is producing too many different explanations:

Our Contribution: Getting the Best

- We implemented an SMT solver equipped with the ability of encoding on the fly:
 - cardinality constraints with cardinality networks
 - PB constraints with BDD's
- Encoding is irreversible (once a constraint is encoded, its propagator is off forever) and not partial (all or nothing)
- When to encode a constraint? When SMT is producing too many different explanations:
 - If number of generated explanations gets close to (> 50 %) the number of clauses of the compact SAT encoding

Our Contribution: Getting the Best

- We implemented an SMT solver equipped with the ability of encoding on the fly:
 - cardinality constraints with cardinality networks
 - PB constraints with BDD's
- Encoding is irreversible (once a constraint is encoded, its propagator is off forever) and not partial (all or nothing)
- When to encode a constraint? When SMT is producing too many different explanations:
 - If number of generated explanations gets close to (> 50 %) the number of clauses of the compact SAT encoding
 - More than X % of the explanations are new and more than Y explanations have already been generated; for us, X = 70 and Y = 5000

Experimental Results

	No. solved instances within < 600 secs.				
Suite	SMT	Encoding	LD	New	
Tomography	2021	1932	1918	2021	
PB evaluation	414	414	416	415	
RCPSP	272	175	228	271	
MSU4	4767	5677	5674	5679	
DES	1452	4228	4019	4166	

- No. of problems New solves close to best option for each suite
- Comparable, often better, results than lazy decomposition (LD) but much simpler and more widely applicable!

Conclusions and Future Work

- Paper accepted at CP'13. To appear soon.
- It is unnecessary to consider partial encodings: just encode on the fly the few really active constraints entirely
- The method is widely applicable: unlike lazy decomposition, not just for constraints for which partial encodings are known
- **•** Future work:
 - Consider other kinds of constraints (alldifferent, ...)
 - Explore other adaptive strategies

Thank you!