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MPGs imperfect information: example

⌃ = {a, b} and weights on the edges
Game

to move token: Player 1 chooses ‡ and Player 2 chooses edge
to win (P1): keep average weight of edges traversed above 0

Player 1 only sees colors, Player 2 sees everything
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Mean-payo� game

Definition (MPGs)
Mean-payo� games are 2-player games of infinite duration played on
(directed) weighted graphs. ÷ve chooses an action, and
’dam resolves non-determinism by choosing the next state.
÷ve wants to maximize the average weight of the edges traversed (i.e.
MP value)
’dam wants to minimize the same value (zero-sum)
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Mean-payo� value

Definition (MP value)
Given the transition relation � and the weight function w : � ‘æ Z of a
MPG, the MP value is either:

MP = lim supnæŒ
1
n

qn≠1
i=0 w(qi , ‡i , qi+1) or

MP = lim infnæŒ
1
n

qn≠1
i=0 w(qi , ‡i , qi+1)

Problem (Winner of an MPG)
Given a threshold ‹ œ N, the MPG is won by ÷ve i� MP Ø ‹. W.l.o.g
assume ‹ = 0.
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MPGs

Theorem
MPGs are determined, i.e. if ÷ve doesn’t have a winning strategy
then ’dam does (and viceversa).
Positional strategies su�ce for either ’dam or ÷ve to win a MPG.

⌃ = {a, b}

÷ve has a winning strat: play b in 2 and a in 3
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MPG with imperfect information

Definition (MPGs with II)
A MPG with imperfect information is played on a weighted graph given
with a coloring of the state space that defines equivalence classes of
indistinguishable states (observations).

⌃ = {a, b}

Neither ÷ve nor ’dam have a winning strategy anymore
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Motivation and properties

Why consider such a model?
MPGs are natural models for systems where we want to optimize the
limit-average usage of a resource.
Imperfect information arises from the fact that most systems have a
limited amount of sensors and input data.

Theorem (Degorre et al. [2010])
MPGs with II are no longer “determined”
MPGs with II may require infinite memory to be won by ÷ve
The problem on MPGs with II is undecidable
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Visible MPGs with II

Definition (Degorre et al. [2010])
A visible game has weight function w s.t. w(q1, ‡, q2) = w(qÕ

1, ‡Õ, qÕ
2) = x

for all transitions (q1, ‡, q2), (qÕ
1, ‡Õ, qÕ

2) œ � having obs(q1) = obs(qÕ
1),

obs(q2) = obs(qÕ
2) and ‡ = ‡Õ.

Theorem (Degorre et al. [2010])
Deciding if ÷ve has a winning strategy in a visible MPG with II is
EXPTIME-complete.
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The knowledge of ÷ve

Definition (Knowledge-based subset construction)

�K based on where ÷ve might be
wK makes sense only in the context of visible games
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Pure games

Definition
Simple cycles in GK are of the form flK = K0‡0K1‡1 · · · Kn where
K0 = Kn and Ki ”= Kj for all 0 < i < j < n.
Let “(flK ) = {fi | fi = q0‡0q1‡1 · · · qn s.t. qi œ Ki for all i Ø 0}
A cycle flK is positive if:

’fi œ “(flK ) : w(fl) Ø 0

Definition
A pure MPG with imperfect information induces a knowledge-based subset
construction GK with all simple cycles being either positive or negative.
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Unfolding a pure game

K0

T K

K0

o0

...

o2

‡0

...

o3

K1

K1

o5

‡0

...

‡1

o5

‡1
1 unfold GK , stop when a

repeated knowledge set is seen
2 label leaves as good or bad

3 T K is finite
4 Reachability game on T K where

÷ve (’dam ) wants to reach
good (bad) leaves. Determined!
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Strategy transfer

Theorem
If ÷ve has a winning strategy in the reachability game on T K then she also
has a winning strategy in G.

K0

w =?

pos
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Strategy transfer

o0

...

o2

‡0

...

o3

o5

⌃

o5

‡1

o5

⌃

o5

‡1

qI

· · · qi

· · ·

qj
· · ·

o0

o5

o5

‡1

⌃⌃

T K

Outcome(T K ,WS,S)Outcome(G ,WS,S)

For ’dam we can only claim a
weaker statement:
Theorem
If ’dam has a winning strategy (WS)
in the reachability game on T K then
he can spoil any strategy (S) played
by ÷ve .

1 fix S for ÷ve and WS for ’dam
2 map WS to a quasistrategy in G
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Relevant problems

Problem (Deciding the winner)
Does ÷ve have a winning strategy in a given pure MPG with II?

Problem (Class membership)
Is a given MPG with II “pure”?
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Does ÷ve win pure G?

Theorem
Deciding if ÷ve has a winning strategy in a given pure MPG with II is
EXPTIME-complete.

Proof.
Hardness follows from pure games being a generalization of visible
games.
For EXPTIME membership we outline an EXPTIME algorithm to
decide if ÷ve has a winning strategy in the game.
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Solving a pure G

Remark
÷ve being able to avoid bad leaves in T K implies she has a winning
strategy for a stronger condition.

Definition (Energy Games)
÷ve wins an energy game played on a weighted graph if, given an initial
credit, she can keep her energy level above zero at all times.
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Solving a pure G via a safety game

Definition (Safety game H)
F is a set of functions f : Q ‘æ [0, 2W · |QK |] fi {‹} which give the
current possible states and energy level. H = È F , fI ,⌃, �H Í where
fI(qI) = W · |QK | and fI(q) = ‹ for all q ”= qI . All functions with
fi(q) = 0, for some q œ Q are not safe.

fI

fbad

fi

H

T K

G
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Is G pure?

Theorem
Deciding if an MPG with II is pure is coNEXPTIME-complete.

Proof.
Membership is straightforward: non-deterministically guess a cycle in
GK , check that it is a simple cycle and that it is neither positive nor
negative.
For hardness we reduce from the SUCCINCT HAMILTONIAN-CYCLE
problem.

“mixed” simple cycle ∆ simulated 2N transitions
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SUCCINCT HAM-CYCLE

Definition (Galperin and Wigderson [1983])
G = ÈV , E Í with m Ø 2n vertices, each labelled with a distinct n-bit
string. A circuit CG receives two n-bit inputs and outputs 1 if there is an
edge. CG has r = O(nk) gates.

O(nk) gates

2n

0

... f = 1 i� (u, v) œ E
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SUCCINCT HAM-CYCLE

Theorem (Exponential blow-up)
Most problems (reducible as a “projection”) have an exponential blow-up
when the graph is represented succinctly. SUCCINCT HAM-CYCLE is
NEXPTIME-complete.

O(nk) gates

2n

0

... f = 1 i� (u, v) œ E
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coNEXP-hardness proof

S

O1

G0 (+N)

G1 (+1) · · · Gk (+1)

Chk (+1)

O2

≠2

N

≠N

≠1

≠1 ≠1

≠1

+1

0

≠1

0
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Relaxing the restriction

More general subclasses of MPGs with II for which. . .

1 ÷ve can still force good leaves in T K , even if unfolding GK yields
good, bad and “undecided” leaves.

Class membership: NEXP-h

2 all cycles in GK become positive or negative after unfolding them
finitely many times.

Class membership: ??
3 the root of T K can be considered “good” without having all cycles

being eventually positive or negative.
Class membership: Undecidable
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3 the root of T K can be considered “good” without having all cycles
being eventually positive or negative.

Class membership: Undecidable
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Wrap-up

We have. . .
1 A class for which deciding if ÷ve has a winning strategy is

EXPTIME-c and determining class membership is coNEXPTIME-c
2 Considered extensions of this class and the related problems.

We’re still working on. . .
1 Applying window MPG objectives to the II setting.
2 Games with bounded imperfect information. [Puchala and Rabinovich,

2010]
3 Related interesting subclasses of MPGs with imperfect information.
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