Decidable classes of mean-payoff games with imperfect information

Paul Hunter, Guillermo Pérez, Jean-François Raskin

Université Libre de Bruxelles Richmodels SVARM Meeting @ Malta

June, 2013

Outline

- Mean-payoff games
- MPGs with imperfect information
- Visible games

- Class description
- Strategy transfer
- Relevant problems

Results

- 5 Other subclasses
- 6 Conclusions & future work

• $\Sigma = \{a, b\}$ and weights on the edges

- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - \bullet to move token: Player 1 chooses σ and Player 2 chooses edge
 - to win (P1): keep average weight of edges traversed above ${\bf 0}$

- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - \bullet to move token: Player 1 chooses σ and Player 2 chooses edge
 - to win (P1): keep average weight of edges traversed above 0
- Example: choices = a,(1,2), payoff = -1

- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - \bullet to move token: Player 1 chooses σ and Player 2 chooses edge
 - to win (P1): keep average weight of edges traversed above 0
- Example: choices = a,(1,2), payoff = -1

- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - \bullet to move token: Player 1 chooses σ and Player 2 chooses edge
 - to win (P1): keep average weight of edges traversed above ${\bf 0}$

- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - \bullet to move token: Player 1 chooses σ and Player 2 chooses edge
 - to win (P1): keep average weight of edges traversed above 0
- Player 1 only sees colors, Player 2 sees everything

Definition (MPGs)

- Mean-payoff games are 2-player games of infinite duration played on (directed) weighted graphs. ∃ve chooses an action, and ∀dam resolves non-determinism by choosing the next state.
- \exists ve wants to maximize the average weight of the edges traversed (i.e. MP value)
- \forall dam wants to minimize the same value (zero-sum)

Definition (MP value)

Given the transition relation Δ and the weight function $w : \Delta \mapsto \mathbb{Z}$ of a MPG, the MP value is either:

•
$$\overline{MP} = \lim \sup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} w(q_i, \sigma_i, q_{i+1})$$
 or

• MP = lim
$$inf_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}w(q_i,\sigma_i,q_{i+1})$$

Problem (Winner of an MPG)

Given a threshold $\nu \in \mathbb{N}$, the MPG is won by $\exists ve \text{ iff } MP \geq \nu$. W.I.o.g assume $\nu = 0$.

- MPGs are determined, i.e. if ∃ve doesn't have a winning strategy then ∀dam does (and viceversa).
- Positional strategies suffice for either $\forall dam$ or $\exists ve$ to win a MPG.

- MPGs are determined, i.e. if ∃ve doesn't have a winning strategy then ∀dam does (and viceversa).
- Positional strategies suffice for either $\forall dam$ or $\exists ve$ to win a MPG.
- $\Sigma = \{a, b\}$

UNIVERSITÉ

LIBRE DE BRUXELLES

- MPGs are determined, i.e. if ∃ve doesn't have a winning strategy then ∀dam does (and viceversa).
- Positional strategies suffice for either $\forall dam$ or $\exists ve$ to win a MPG.
- $\Sigma = \{a, b\} \exists ve$ has a winning strat: play b in 2 and a in 3

Definition (MPGs with II)

A MPG with imperfect information is played on a weighted graph given with a coloring of the state space that defines equivalence classes of indistinguishable states (observations).

Definition (MPGs with II)

A MPG with imperfect information is played on a weighted graph given with a coloring of the state space that defines equivalence classes of indistinguishable states (observations).

 $\Sigma = \{a, b\}$

Definition (MPGs with II)

A MPG with imperfect information is played on a weighted graph given with a coloring of the state space that defines equivalence classes of indistinguishable states (observations).

 $\Sigma = \{a, b\}$ Neither $\exists ve \text{ nor } \forall dam$ have a winning strategy anymore

Why consider such a model?

- MPGs are natural models for systems where we want to optimize the limit-average usage of a resource.
- Imperfect information arises from the fact that most systems have a limited amount of sensors and input data.

Why consider such a model?

- MPGs are natural models for systems where we want to optimize the limit-average usage of a resource.
- Imperfect information arises from the fact that most systems have a limited amount of sensors and input data.

Theorem (Degorre et al. [2010])

- MPGs with II are no longer "determined"
- MPGs with II may require infinite memory to be won by $\exists ve$
- The problem on MPGs with II is undecidable

Definition (Degorre et al. [2010])

A visible game has weight function w s.t. $w(q_1, \sigma, q_2) = w(q'_1, \sigma', q'_2) = x$ for all transitions $(q_1, \sigma, q_2), (q'_1, \sigma', q'_2) \in \Delta$ having $obs(q_1) = obs(q'_1),$ $obs(q_2) = obs(q'_2)$ and $\sigma = \sigma'.$

Definition (Degorre et al. [2010])

A visible game has weight function w s.t. $w(q_1, \sigma, q_2) = w(q'_1, \sigma', q'_2) = x$ for all transitions $(q_1, \sigma, q_2), (q'_1, \sigma', q'_2) \in \Delta$ having $obs(q_1) = obs(q'_1),$ $obs(q_2) = obs(q'_2)$ and $\sigma = \sigma'$.

Theorem (Degorre et al. [2010])

Deciding if $\exists ve$ has a winning strategy in a visible MPG with II is EXPTIME-complete.

The knowledge of **∃ve**

Definition (Knowledge-based subset construction)

Definition (Knowledge-based subset construction)

• Δ^{K} based on where $\exists ve$ might be

The knowledge of **∃ve**

Definition (Knowledge-based subset construction)

- $\Delta^{\mathcal{K}}$ based on where $\exists ve$ might be
- w^K makes sense only in the context of visible games

Definition

- Simple cycles in G^K are of the form $\rho_K = K_0 \sigma_0 K_1 \sigma_1 \cdots K_n$ where $K_0 = K_n$ and $K_i \neq K_j$ for all 0 < i < j < n.
- Let $\gamma(\rho_{\mathcal{K}}) = \{\pi \mid \pi = q_0 \sigma_0 q_1 \sigma_1 \cdots q_n \text{ s.t. } q_i \in \mathcal{K}_i \text{ for all } i \geq 0\}$
- A cycle ρ_K is positive if:

$$\forall \pi \in \gamma(
ho_{\mathcal{K}}) : w(
ho) \geq 0$$

Definition

A pure MPG with imperfect information induces a knowledge-based subset construction G^{K} with all simple cycles being either positive or negative.

Unfolding a pure game

- unfold G^K, stop when a repeated knowledge set is seen
- 2 label leaves as good or bad

Unfolding a pure game

- unfold G^K, stop when a repeated knowledge set is seen
- 2 label leaves as good or bad
- **3** T^K is finite
- Seachability game on T^K where ∃ve (∀dam) wants to reach good (bad) leaves. Determined!

Strategy transfer

For $\forall dam$ we can only claim a weaker statement:

Theorem

If $\forall dam$ has a winning strategy (WS) in the reachability game on T^K then he can spoil any strategy (S) played by $\exists ve$.

$Outcome(T^{K},WS,S)$

For $\forall dam$ we can only claim a weaker statement:

Theorem

If $\forall dam$ has a winning strategy (WS) in the reachability game on T^K then he can spoil any strategy (S) played by $\exists ve$.

• fix S for $\exists ve$ and WS for $\forall dam$

For $\forall dam$ we can only claim a weaker statement:

Theorem

If $\forall dam$ has a winning strategy (WS) in the reachability game on T^{K} then he can spoil any strategy (S) played by $\exists ve$.

- fix S for <u>∃ve</u> and WS for <u>∀dam</u>
- 2 map WS to a quasistrategy in G

Problem (Deciding the winner)

Does ∃ve have a winning strategy in a given pure MPG with II?

Problem (Class membership)

Is a given MPG with II "pure"?

Deciding if $\exists ve$ has a winning strategy in a given pure MPG with II is EXPTIME-complete.

Proof.

- Hardness follows from pure games being a generalization of visible games.
- For EXPTIME membership we outline an EXPTIME algorithm to decide if ∃ve has a winning strategy in the game.

Remark

 $\exists ve being able to avoid bad leaves in T^K implies she has a winning strategy for a stronger condition.$

Definition (Energy Games)

∃ve wins an energy game played on a weighted graph if, given an initial credit, she can keep her energy level above zero at all times.

Definition (Safety game H)

 \mathcal{F} is a set of functions $f : Q \mapsto [0, 2W \cdot |Q^{K}|] \cup \{\bot\}$ which give the current possible states and energy level. $H = \langle \mathcal{F}, f_{I}, \Sigma, \Delta^{H} \rangle$ where $f_{I}(q_{I}) = W \cdot |Q^{K}|$ and $f_{I}(q) = \bot$ for all $q \neq q_{I}$. All functions with $f_{i}(q) = 0$, for some $q \in Q$ are not safe.

Η

$$\rightarrow f_{l}$$

Definition (Safety game H)

 \mathcal{F} is a set of functions $f : Q \mapsto [0, 2W \cdot |Q^{K}|] \cup \{\bot\}$ which give the current possible states and energy level. $H = \langle \mathcal{F}, f_{I}, \Sigma, \Delta^{H} \rangle$ where $f_{I}(q_{I}) = W \cdot |Q^{K}|$ and $f_{I}(q) = \bot$ for all $q \neq q_{I}$. All functions with $f_{i}(q) = 0$, for some $q \in Q$ are not safe.

Definition (Safety game H)

 \mathcal{F} is a set of functions $f : Q \mapsto [0, 2W \cdot |Q^{K}|] \cup \{\bot\}$ which give the current possible states and energy level. $H = \langle \mathcal{F}, f_{I}, \Sigma, \Delta^{H} \rangle$ where $f_{I}(q_{I}) = W \cdot |Q^{K}|$ and $f_{I}(q) = \bot$ for all $q \neq q_{I}$. All functions with $f_{i}(q) = 0$, for some $q \in Q$ are not safe.

Dec. Classes of MPG-II

IBRE DE BRIIXFILES

ULB

UNIVERSITÉ

Definition (Safety game H)

 \mathcal{F} is a set of functions $f : Q \mapsto [0, 2W \cdot |Q^{K}|] \cup \{\bot\}$ which give the current possible states and energy level. $H = \langle \mathcal{F}, f_{I}, \Sigma, \Delta^{H} \rangle$ where $f_{I}(q_{I}) = W \cdot |Q^{K}|$ and $f_{I}(q) = \bot$ for all $q \neq q_{I}$. All functions with $f_{i}(q) = 0$, for some $q \in Q$ are not safe.

P. Hunter, G. Pérez, J.F. Raskin (ULB)

Dec. Classes of MPG-II

Deciding if an MPG with II is pure is coNEXPTIME-complete.

Proof.

- Membership is straightforward: non-deterministically guess a cycle in G^K, check that it is a simple cycle and that it is neither positive nor negative.
- For hardness we reduce from the SUCCINCT HAMILTONIAN-CYCLE problem.

Definition (Galperin and Wigderson [1983])

 $G = \langle V, E \rangle$ with $m \ge 2^n$ vertices, each labelled with a distinct *n*-bit string. A circuit C_G receives two *n*-bit inputs and outputs 1 if there is an edge. C_G has $r = O(n^k)$ gates.

$$\begin{array}{c}
2n \\
\vdots \\
O(n^k) \text{ gates} \\
0
\end{array} \quad f = 1 \text{ iff } (u, v) \in E$$

Theorem (Exponential blow-up)

Most problems (reducible as a "projection") have an exponential blow-up when the graph is represented succinctly. SUCCINCT HAM-CYCLE is NEXPTIME-complete.

$$2n \begin{bmatrix} 2n \\ \vdots \\ O(n^k) \text{ gates} \end{bmatrix} f = 1 \text{ iff } (u, v) \in E$$

Deciding if an MPG with II is pure is coNEXPTIME-complete.

Proof.

- Membership is straightforward: non-deterministically guess a cycle in G^K, check that it is a simple cycle and that it is neither positive nor negative.
- For hardness we reduce from the SUCCINCT HAMILTONIAN-CYCLE problem.
 - "mixed" simple cycle \Rightarrow simulated 2^N transitions

More general subclasses of MPGs with II for which...

- \exists ve can still force good leaves in T^K , even if unfolding G^K yields good, bad and "undecided" leaves.
 - Class membership: NEXP-h

More general subclasses of MPGs with II for which...

- \exists ve can still force good leaves in T^K , even if unfolding G^K yields good, bad and "undecided" leaves.
 - Class membership: NEXP-h
- **a** all cycles in G^{K} become positive or negative after unfolding them finitely many times.
 - Class membership: ??

More general subclasses of MPGs with II for which...

- \exists ve can still force good leaves in T^K , even if unfolding G^K yields good, bad and "undecided" leaves.
 - Class membership: NEXP-h
- 2 all cycles in G^K become positive or negative after unfolding them finitely many times.
 - Class membership: ??
- the root of T^K can be considered "good" without having all cycles being eventually positive or negative.
 - Class membership: Undecidable

We have...

- A class for which deciding if ∃ve has a winning strategy is EXPTIME-c and determining class membership is coNEXPTIME-c
- ② Considered extensions of this class and the related problems.

We have...

- A class for which deciding if ∃ve has a winning strategy is EXPTIME-c and determining class membership is coNEXPTIME-c
- ② Considered extensions of this class and the related problems.

We're still working on...

- Applying window MPG objectives to the II setting.
- Games with bounded imperfect information. [Puchala and Rabinovich, 2010]
- **③** Related interesting subclasses of MPGs with imperfect information.

- Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., and Torunczyk, S. (2010). Energy and mean-payoff games with imperfect information. In Dawar, A. and Veith, H., editors, <u>CSL</u>, volume 6247 of <u>Lecture Notes in</u> <u>Computer Science</u>, pages 260–274. Springer.
- Galperin, H. and Wigderson, A. (1983). Succinct representations of graphs. Information and Control, 56(3):183–198.
- Puchala, B. and Rabinovich, R. (2010). Parity games with partial information played on graphs of bounded complexity. In <u>Mathematical</u> Foundations of Computer Science 2010, pages 604–615. Springer.

UNIVERSITÉ LIBRE DE BRUXELLES

Undecidability of ATU

Undecidability of ATU

Undecidability of ATU

