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A typical control system

i n i t i a l i z e ( ) ;
wh i l e ( t r u e ) {

l oop body ( ) ;
w a i t f o r n e x t c l o c k t i c k ( ) ;

}

The WCET (worst-case execution time) of loop body() must be less than
the period of the clock (- safety margin).
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Usual approach

1 Run an abstract interpretation / static analysis for e.g. pointer
analysis, indirect control flow, value ranges.

2 Use results of 1. to perform cache / pipeline analysis over model of
architecture.

3 Derive WCET for each basic block of the program.

4 Reassemble WCET for whole program by integer linear programming
(ILP) using maximal iteration counts (1.) and block WCET (3.).

In this talk: discuss 4. and improvements.
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Setting up integer linear programming

Along an execution: x↵� count of times it goes through control edge
↵ ! �

A B C

Q

D E

“Kirchho↵’s circuit law”: x
aq

+ x

bq

+ x

cq

= x

qd

+ x

qe

Combine with inequalities from value range analysis on loop counters, e.g.
x

aq

 10.
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Solving ILP

Total time is bounded by T =
P

↵,� T↵�x↵� where T↵� is “local WCET”
for block ↵ ! �.

Maximize T subject to the Kirchho↵ and bound constraints.

Example: OTAWA tool from IRIT

Note: for the above simple constraints, ILP=LP.

Possibility of adding more refined constraints, e.g. 2x
AB

+ x

BC

= 100.
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Loop-free programs

In typical control applications:

one main big control loop

smaller internal loops, with syntactically constant bounds (e.g.
for ( int i=0; i<100; i++) { ... })

Solution: unroll internal loops and get a loop-free program for WCET

(NB: the Astrée static analyzer roughly does the same for proving safety)
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The ILP approach on loop-free programs

(Without additional constraints:)
amounts to finding the longest path in a DAG from initial to final control
state.

No need for LP/ILP, a simple linear-time graph traversal is su�cient.

How about semantic constraints?
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Semantic constraints

A control application typically has some invariants such as “modes A and
B are exclusive”
(e.g. in avionics “take-o↵ mode and landing mode are exclusive”)

But application code may look like:

i f ( t a k e o f f mode ) {
/⇤ A ⇤/

}
. . .
i f ( l and ing mode ) {

/⇤ B ⇤/
}

Syntactic WCET will count T
A

+ T

B

+ T

rest

taking into account the semantics: max(T
A

,T
B

) + T

rest

.
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Bounded model-checking for WCET

Take program P , precondition F

pre

, postcondition F

post

SMT-solving:
Solve F

pre

^ JPK ^ F

post

, solution is an execution trace ⌧

⌧ has Booleans x
ab

2 {0, 1}, maximize T

⇤ =
P

T

ab

x

ab

Optimization modulo SMT
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Binary search

Maintain an interval [l , h] containing T

⇤ (initialize l = 0 and h = some
upper bound)

test whether there exists a trace of total time B � l+h

2

halve [l , h] accordingly and restart until l = h

Sounds simple, no?
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A really simple example

b

1

, . . . , b
n

unconstrainted nondeterministic choices

i f (b
1

) { /⇤ t im i ng 2 ⇤/ } e l s e { /⇤ t im i ng 3⇤/ }
i f (b

1

) { /⇤ t im i ng 3 ⇤/ } e l s e { /⇤ t im i ng 2⇤/ }
. . .
i f (b

n

) { /⇤ t im i ng 2 ⇤/ } e l s e { /⇤ t im i ng 3⇤/ }
i f (b

n

) { /⇤ t im i ng 3 ⇤/ } e l s e { /⇤ t im i ng 2⇤/ }

“Obviously” all traces take time 5n.
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Proving optimality is costly
Proving that there is no trace longer than B = 5n
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Why such high cost for diamonds?

(Recall: the property to prove is “trivial” by human inspection.)

Formula x

1

= ite(b
1

, 2, 3) ^ y

1

= ite(b
1

, 3, 2) ^ · · · ^ x

n

=
ite(b

n

, 2, 3) ^ y

n

= ite(b
n

, 3, 2) ^ x

1

+ y

1

+ · · ·+ x

n

+ y

n

� 5n

A SMT-solver based on “DPLL(T)” enumerates a Boolean choice tree
over b

1

, . . . , b
n

, cutting branches when encountering inconsistent
numerical constraints.

What are the possibly inconsistent numerical constraints here?

All of the form
x

1

? ^ y

1

? ^ . . . x
n

? ^ y

n

? ^ x

1

+ y

1

+ · · ·+ x

n

+ y

n

� 5n.

Thus of size 2n + 1.
2n of them. The solver has to prove them inconsistent one by one.
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Binary search with such high costs
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Tolerable away from the optimum, but cost grows exponential close to the
optimum.
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Solutions?

Diamond formulas are a known issue with DPLL(T); solutions proposed by
Cotton and McMillan, but implemented in no mainstream tool.

Instead of solving it in the SMT-solver, fix it in the encoding.
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A remark

Human remark: “but obviously x

i

+ y

i

= 5 for any i”

If these constraints are added to the SMT formula, the problem becomes
trivial.

x

i

+ y

i

 5 is implied by the original formula
“Normal” SMT solvers don’t it because they do not invent predicates.
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Our solution

Distinguish “blocks” in the program.

Compute upper bound B

i

on WCET for each block i (recursive call or
rougher bound)

Add these bounds to the SMT formula encoding the program
(x

1

+ · · ·+ x

5

 B

1

, x
6

+ · · ·+ x

10

 B

2

, etc.)

Do binary search

Experimentation in progress!

On early examples, adding “cuts” cut SMT time from “nonterminating
after one night” to “a few seconds”.
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Cut

The new constraints

are implied by the original problem

but not syntactically present in it

speed up the computation

In operation research, such constraints are referred to as cuts.
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Perspectives and Variants

Counterexample refinement loop for ILP (Pascal Raymond)

Generalization to static analysis outside of WCET (Julien Henry + DM)

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 19 / 20



Gratuitous announcements

Static analysis tool (generates SMT formulas and invariants out of
LLVM): http://pagai.forge.imag.fr

ERC project http://stator.imag.fr (postdoc positions)

Polyhedra library http://verasco.imag.fr/wiki/VPL

(constraint-only, compares favorably to Parma and Apron)
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