
Death by a thousand cuts
(worst-case execution time by bounded model checking)

David Monniaux

CNRS / VERIMAG

June 17, 2013

Joint work with Julien Henry, Claire Mäıza and Diego Caminha

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 1 / 20

A typical control system

i n i t i a l i z e () ;
wh i l e (t r u e) {

l oop body () ;
w a i t f o r n e x t c l o c k t i c k () ;

}

The WCET (worst-case execution time) of loop body() must be less than
the period of the clock (- safety margin).

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 2 / 20

Usual approach

1 Run an abstract interpretation / static analysis for e.g. pointer
analysis, indirect control flow, value ranges.

2 Use results of 1. to perform cache / pipeline analysis over model of
architecture.

3 Derive WCET for each basic block of the program.

4 Reassemble WCET for whole program by integer linear programming
(ILP) using maximal iteration counts (1.) and block WCET (3.).

In this talk: discuss 4. and improvements.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 3 / 20

Setting up integer linear programming

Along an execution: x↵� count of times it goes through control edge
↵ ! �

A B C

Q

D E

“Kirchho↵’s circuit law”: x
aq

+ x

bq

+ x

cq

= x

qd

+ x

qe

Combine with inequalities from value range analysis on loop counters, e.g.
x

aq

 10.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 4 / 20

Solving ILP

Total time is bounded by T =
P

↵,� T↵�x↵� where T↵� is “local WCET”
for block ↵ ! �.

Maximize T subject to the Kirchho↵ and bound constraints.

Example: OTAWA tool from IRIT

Note: for the above simple constraints, ILP=LP.

Possibility of adding more refined constraints, e.g. 2x
AB

+ x

BC

= 100.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 5 / 20

Loop-free programs

In typical control applications:

one main big control loop

smaller internal loops, with syntactically constant bounds (e.g.
for (int i=0; i<100; i++) { ... })

Solution: unroll internal loops and get a loop-free program for WCET

(NB: the Astrée static analyzer roughly does the same for proving safety)

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 6 / 20

The ILP approach on loop-free programs

(Without additional constraints:)
amounts to finding the longest path in a DAG from initial to final control
state.

No need for LP/ILP, a simple linear-time graph traversal is su�cient.

How about semantic constraints?

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 7 / 20

Semantic constraints

A control application typically has some invariants such as “modes A and
B are exclusive”
(e.g. in avionics “take-o↵ mode and landing mode are exclusive”)

But application code may look like:

i f (t a k e o f f mode) {
/⇤ A ⇤/

}
. . .
i f (l and ing mode) {

/⇤ B ⇤/
}

Syntactic WCET will count T
A

+ T

B

+ T

rest

taking into account the semantics: max(T
A

,T
B

) + T

rest

.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 8 / 20

Bounded model-checking for WCET

Take program P , precondition F

pre

, postcondition F

post

SMT-solving:
Solve F

pre

^ JPK ^ F

post

, solution is an execution trace ⌧

⌧ has Booleans x
ab

2 {0, 1}, maximize T

⇤ =
P

T

ab

x

ab

Optimization modulo SMT

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 9 / 20

Binary search

Maintain an interval [l , h] containing T

⇤ (initialize l = 0 and h = some
upper bound)

test whether there exists a trace of total time B � l+h

2

halve [l , h] accordingly and restart until l = h

Sounds simple, no?

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 10 / 20

A really simple example

b

1

, . . . , b
n

unconstrainted nondeterministic choices

i f (b
1

) { /⇤ t im i ng 2 ⇤/ } e l s e { /⇤ t im i ng 3⇤/ }
i f (b

1

) { /⇤ t im i ng 3 ⇤/ } e l s e { /⇤ t im i ng 2⇤/ }
. . .
i f (b

n

) { /⇤ t im i ng 2 ⇤/ } e l s e { /⇤ t im i ng 3⇤/ }
i f (b

n

) { /⇤ t im i ng 3 ⇤/ } e l s e { /⇤ t im i ng 2⇤/ }

“Obviously” all traces take time 5n.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 11 / 20

Proving optimality is costly
Proving that there is no trace longer than B = 5n

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 12 14 16 18 20 22

tim
e

(s
)

n

Z3 3.2
Z3 4.3.1

MathSAT 5.2.6
SMTInterpol

~ 2.22^n

Cost exponential in n.
David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 12 / 20

Why such high cost for diamonds?

(Recall: the property to prove is “trivial” by human inspection.)

Formula x

1

= ite(b
1

, 2, 3) ^ y

1

= ite(b
1

, 3, 2) ^ · · · ^ x

n

=
ite(b

n

, 2, 3) ^ y

n

= ite(b
n

, 3, 2) ^ x

1

+ y

1

+ · · ·+ x

n

+ y

n

� 5n

A SMT-solver based on “DPLL(T)” enumerates a Boolean choice tree
over b

1

, . . . , b
n

, cutting branches when encountering inconsistent
numerical constraints.

What are the possibly inconsistent numerical constraints here?

All of the form
x

1

? ^ y

1

? ^ . . . x
n

? ^ y

n

? ^ x

1

+ y

1

+ · · ·+ x

n

+ y

n

� 5n.

Thus of size 2n + 1.
2n of them. The solver has to prove them inconsistent one by one.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 13 / 20

Why such high cost for diamonds?

(Recall: the property to prove is “trivial” by human inspection.)

Formula x

1

= ite(b
1

, 2, 3) ^ y

1

= ite(b
1

, 3, 2) ^ · · · ^ x

n

=
ite(b

n

, 2, 3) ^ y

n

= ite(b
n

, 3, 2) ^ x

1

+ y

1

+ · · ·+ x

n

+ y

n

� 5n

A SMT-solver based on “DPLL(T)” enumerates a Boolean choice tree
over b

1

, . . . , b
n

, cutting branches when encountering inconsistent
numerical constraints.

What are the possibly inconsistent numerical constraints here?
All of the form
x

1

? ^ y

1

? ^ . . . x
n

? ^ y

n

? ^ x

1

+ y

1

+ · · ·+ x

n

+ y

n

� 5n.

Thus of size 2n + 1.

2n of them. The solver has to prove them inconsistent one by one.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 13 / 20

Why such high cost for diamonds?

(Recall: the property to prove is “trivial” by human inspection.)

Formula x

1

= ite(b
1

, 2, 3) ^ y

1

= ite(b
1

, 3, 2) ^ · · · ^ x

n

=
ite(b

n

, 2, 3) ^ y

n

= ite(b
n

, 3, 2) ^ x

1

+ y

1

+ · · ·+ x

n

+ y

n

� 5n

A SMT-solver based on “DPLL(T)” enumerates a Boolean choice tree
over b

1

, . . . , b
n

, cutting branches when encountering inconsistent
numerical constraints.

What are the possibly inconsistent numerical constraints here?
All of the form
x

1

? ^ y

1

? ^ . . . x
n

? ^ y

n

? ^ x

1

+ y

1

+ · · ·+ x

n

+ y

n

� 5n.

Thus of size 2n + 1.
2n of them. The solver has to prove them inconsistent one by one.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 13 / 20

Binary search with such high costs

 0.01

 0.1

 1

 10

 100

 90 92 94 96 98 100

tim
e

(s
)

B

Z3 3.2
~ 1/2^(B-90)

Tolerable away from the optimum, but cost grows exponential close to the
optimum.
David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 14 / 20

Solutions?

Diamond formulas are a known issue with DPLL(T); solutions proposed by
Cotton and McMillan, but implemented in no mainstream tool.

Instead of solving it in the SMT-solver, fix it in the encoding.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 15 / 20

Solutions?

Diamond formulas are a known issue with DPLL(T); solutions proposed by
Cotton and McMillan, but implemented in no mainstream tool.

Instead of solving it in the SMT-solver, fix it in the encoding.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 15 / 20

A remark

Human remark: “but obviously x

i

+ y

i

= 5 for any i”

If these constraints are added to the SMT formula, the problem becomes
trivial.

x

i

+ y

i

 5 is implied by the original formula
“Normal” SMT solvers don’t it because they do not invent predicates.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 16 / 20

Our solution

Distinguish “blocks” in the program.

Compute upper bound B

i

on WCET for each block i (recursive call or
rougher bound)

Add these bounds to the SMT formula encoding the program
(x

1

+ · · ·+ x

5

 B

1

, x
6

+ · · ·+ x

10

 B

2

, etc.)

Do binary search

Experimentation in progress!

On early examples, adding “cuts” cut SMT time from “nonterminating
after one night” to “a few seconds”.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 17 / 20

Cut

The new constraints

are implied by the original problem

but not syntactically present in it

speed up the computation

In operation research, such constraints are referred to as cuts.

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 18 / 20

Perspectives and Variants

Counterexample refinement loop for ILP (Pascal Raymond)

Generalization to static analysis outside of WCET (Julien Henry + DM)

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 19 / 20

Gratuitous announcements

Static analysis tool (generates SMT formulas and invariants out of
LLVM): http://pagai.forge.imag.fr

ERC project http://stator.imag.fr (postdoc positions)

Polyhedra library http://verasco.imag.fr/wiki/VPL

(constraint-only, compares favorably to Parma and Apron)

David Monniaux (CNRS / VERIMAG) Death by a thousand cuts June 17, 2013 20 / 20

http://pagai.forge.imag.fr
http://stator.imag.fr
http://verasco.imag.fr/wiki/VPL

