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Verification-Condition (VC) based software verification

The idea

Start with programs annotated with assertions
1. Generate FOL VCs su�cient to establish assertions
2. Prove VCs

Example tools

Boogie, Why3
I Support C, C#, Java and Ada
I Use provers Z3, Alt-Ergo, CVC4

Context of reported work

I Altran’s SPARK-Ada verification tool-set

I Victor SMT solver interface

I Z3



Axiom uses

1. Giving properties of specification relations and functions
I E.g. a permutation relation for a sorting program

2. Providing hints to automatic provers
I VCs intractable or undecidable in general

I
Involve quantifiers and non-linear arithmetic

I Addressing the 1-5% of VCs not automatically proved
I

Check by hand

I
Use interactive prover

I
Add axiom for proof step automatic prover is missing



Problems with using axioms

I Can introduce inconsistencies
I Then have risk of prover claiming false VCs to be true

I Costly to create and maintain
I Takes 15 mins – 1+ days to write an axiom
I Axioms can need revisiting when programs change



Checking axiom properties

VCs of form S ^ U ^ H ) C

with S : system-provided axioms H: hypotheses
U: user-provided axioms u

1

, . . . , un C : conclusions

Automatic proof attempted of goals of following kinds:

Kind Goal shape Description
S-incon S ) ? Are system axioms inconsistent?
U-incon S ^ U ) ? Are user axioms inconsistent?
u-incon S ^ ui ) ? Is user axiom ui inconsistent?
u-taut S ) ui Is user axiom ui a tautology?
u-deriv S ^ (U \ {ui}) ) ui Is user axiom ui derivable from

other user axioms?

Unsat cores used to identify formulas involved in proofs



Finding minimal axiom sets

I Unused axioms common as provers get better

I Iteratively tried removing user-provided axioms while ensuring
provability of VCs unchanged



Industrial Case Studies

Tokeneer ID Station

I Commissioned by NSA to evaluate SPARK

I 10k lines decls and executable code, 2k lines annotations

I 7k VCs, 107 user-provided axioms

Arithmetic on Integers and Floats

I Part of an industrial evaluation of SPARK

I Library of 30 functions and procedures

I 25 user-provided axioms concerning float-to-integer
conversions



Inconsistent hint axiom 1

I Detected by u-incon check

B1 and Op = Op_1 -> B2

may_be_deduced_from

[ St = St_1 or (St = St_2 or St = St_3),

St_1 <> St_2,

St_1 <> St_3,

St_2 <> St_3,

St = St_1 or St = St_2 -> B1 and (B3 and Op = Op_2),

Op_1 <> Op_2,

St = S_3 -> not B1 ].



Inconsistent hint axiom 2

I Not detected by u-incon check

I Considered suspicious since it failed u-taut check

X - (Y - 1) * 100 <= 200 -> Y + 1 = (X - 1) div 100 + 1

may_be_deduced_from

[ 100 < X - (Y - 1) * 100,

goal(checktype(X, integer)),

goal(checktype(Y, integer)) ] .

I Incorrect abstraction of VC subgoal unproved by Altran prover

I VC proved by Z3



Axiom inter-relationships

I Detected with u-deriv check and unsat core report

With
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I For Tokeneer, 25 inter-relationships found among 107 axioms



Minimal axiom set discovery

50 of 107 Tokeneer user axioms found redundant

I 40 prover hints

I 3 unused property axioms

I 7 were property axioms subsumed by others



Mutually-inconsistent property axioms

c0 : 8x : R. x  k � 1 ) ceil(x)  x + 1

c1 : 8x : R. x  k � 1 ) ceil(x)  k

c2 : 8x : R. x  k � 1 ) x  ceil(x)

c3 : 8x : R. x  k � 1 ) �k  ceil(x)

Here k is the largest floating point number

I U-incon check identified that c0 and c3 were contradictory

I Z3 missed a similar U-incon check on axioms for floor function

I Inconsistency picked up in u-deriv check where conclusion was
not part of unsat core



Related work

I VCC - Boogie front-end for C
I Can try to prove control points unreachable
I Sometimes due to inconsistencies in axioms

I Why3
I Can find minimal axiom sets

I K. Y. Ahn and E. Denney (2012)

For axiom 8x . A(x) ) B(x)
I Yices SMT solver finds satisfying assignments for A(x)
I QuickCheck tries to find x such that ¬B(x)

Used on aerospace flight code at NASA



Conclusions

I Automatic auditing of user-provided axioms can be useful

I Current/future work
I Auditing real industrial examples

I Persuading Altran & customers to audit during axiom
development

I Assisting switch from Altran’s prover to SMT solvers


