
Auditing User-provided Axioms

in Software Verification Conditions

Paul Jackson1, Florian Schanda2 and Angela Wallenburg2

1. University of Edinburgh

2. Altran UK (Praxis)

Rich Model Toolkit COST Action Meeting
Malta

17th June 2013

Verification-Condition (VC) based software verification

The idea

Start with programs annotated with assertions
1. Generate FOL VCs su�cient to establish assertions
2. Prove VCs

Example tools

Boogie, Why3
I Support C, C#, Java and Ada
I Use provers Z3, Alt-Ergo, CVC4

Context of reported work

I Altran’s SPARK-Ada verification tool-set

I Victor SMT solver interface

I Z3

Axiom uses

1. Giving properties of specification relations and functions
I E.g. a permutation relation for a sorting program

2. Providing hints to automatic provers
I VCs intractable or undecidable in general

I
Involve quantifiers and non-linear arithmetic

I Addressing the 1-5% of VCs not automatically proved
I

Check by hand

I
Use interactive prover

I
Add axiom for proof step automatic prover is missing

Problems with using axioms

I Can introduce inconsistencies
I Then have risk of prover claiming false VCs to be true

I Costly to create and maintain
I Takes 15 mins – 1+ days to write an axiom
I Axioms can need revisiting when programs change

Checking axiom properties

VCs of form S ^ U ^ H) C

with S : system-provided axioms H: hypotheses
U: user-provided axioms u

1

, . . . , un C : conclusions

Automatic proof attempted of goals of following kinds:

Kind Goal shape Description
S-incon S) ? Are system axioms inconsistent?
U-incon S ^ U) ? Are user axioms inconsistent?
u-incon S ^ ui) ? Is user axiom ui inconsistent?
u-taut S) ui Is user axiom ui a tautology?
u-deriv S ^ (U \ {ui})) ui Is user axiom ui derivable from

other user axioms?

Unsat cores used to identify formulas involved in proofs

Finding minimal axiom sets

I Unused axioms common as provers get better

I Iteratively tried removing user-provided axioms while ensuring
provability of VCs unchanged

Industrial Case Studies

Tokeneer ID Station

I Commissioned by NSA to evaluate SPARK

I 10k lines decls and executable code, 2k lines annotations

I 7k VCs, 107 user-provided axioms

Arithmetic on Integers and Floats

I Part of an industrial evaluation of SPARK

I Library of 30 functions and procedures

I 25 user-provided axioms concerning float-to-integer
conversions

Inconsistent hint axiom 1

I Detected by u-incon check

B1 and Op = Op_1 -> B2

may_be_deduced_from

[St = St_1 or (St = St_2 or St = St_3),

St_1 <> St_2,

St_1 <> St_3,

St_2 <> St_3,

St = St_1 or St = St_2 -> B1 and (B3 and Op = Op_2),

Op_1 <> Op_2,

St = S_3 -> not B1].

Inconsistent hint axiom 2

I Not detected by u-incon check

I Considered suspicious since it failed u-taut check

X - (Y - 1) * 100 <= 200 -> Y + 1 = (X - 1) div 100 + 1

may_be_deduced_from

[100 < X - (Y - 1) * 100,

goal(checktype(X, integer)),

goal(checktype(Y, integer))] .

I Incorrect abstraction of VC subgoal unproved by Altran prover

I VC proved by Z3

Axiom inter-relationships

I Detected with u-deriv check and unsat core report

With
A
1

: e(s)) ¬w(s)

A
2

: (e(s) _ p(s))) ¬w(s)

A
7

: p(s)) ¬w(s)

found
A
2

) A
1

A
1

^ A
7

) A
2

A
2

) A
7

I For Tokeneer, 25 inter-relationships found among 107 axioms

Minimal axiom set discovery

50 of 107 Tokeneer user axioms found redundant

I 40 prover hints

I 3 unused property axioms

I 7 were property axioms subsumed by others

Mutually-inconsistent property axioms

c0 : 8x : R. x k � 1) ceil(x) x + 1

c1 : 8x : R. x k � 1) ceil(x) k

c2 : 8x : R. x k � 1) x ceil(x)

c3 : 8x : R. x k � 1) �k ceil(x)

Here k is the largest floating point number

I U-incon check identified that c0 and c3 were contradictory

I Z3 missed a similar U-incon check on axioms for floor function

I Inconsistency picked up in u-deriv check where conclusion was
not part of unsat core

Related work

I VCC - Boogie front-end for C
I Can try to prove control points unreachable
I Sometimes due to inconsistencies in axioms

I Why3
I Can find minimal axiom sets

I K. Y. Ahn and E. Denney (2012)

For axiom 8x . A(x)) B(x)
I Yices SMT solver finds satisfying assignments for A(x)
I QuickCheck tries to find x such that ¬B(x)

Used on aerospace flight code at NASA

Conclusions

I Automatic auditing of user-provided axioms can be useful

I Current/future work
I Auditing real industrial examples

I Persuading Altran & customers to audit during axiom
development

I Assisting switch from Altran’s prover to SMT solvers

