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1IMDEA Software Institute

2Technical University of Madrid (UPM)

3Spanish Research Council (CSIC)

4Elasticbox

COST Rich Model Toolkit Workshop, Malta, June 16-17, 2013

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 1 / 80



Outline

Part I The Ciao approach to Analysis and verification
of Constraint Logic Programs

The programming language
The analysis, verification, and testing model

Part II The Ciao approach to Analysis and verification
of other paradigms
using Constraint Logic Programs as IR

CLP (Horn Clauses) as intermediate representation
User-defined resource analysis/verif. of Java bytecode
Energy analysis/verification of (Xmos) C programs

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 2 / 80



Outline

Part I The Ciao approach to Analysis and verification
of Constraint Logic Programs

The programming language
The analysis, verification, and testing model

Part II The Ciao approach to Analysis and verification
of other paradigms
using Constraint Logic Programs as IR

CLP (Horn Clauses) as intermediate representation
User-defined resource analysis/verif. of Java bytecode
Energy analysis/verification of (Xmos) C programs

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 3 / 80



Logic and constraint programming: Mid-90’s:

Prolog/CLPs (dynamic), Mercury (static), Ciao (combination).
Static analysis (abstract interpretation) maturing (aliasing, modes,
data sizes, execution cost, .... scalability, incrementality, ...)

The Ciao approach [CP′94,AADEBUG′97,ICLP′99,...]

Start from a small, but very extensible (LP-based) kernel
– a language-building language.
Build gradually extensions in layers on top of it.
Incorporating the most useful features from different prog. paradigms.

Offer the best of the dynamic and static language approaches.
I Provide the flexibility of dynamic languages,

F Dynamic typing, dynamic load, dynamic program modification,
meta-programming, top level, call (eval), scripts, ...

I But with guaranteed safety and efficiency.
F Assertion checking, modules, itf files, separate/incr. compilation, small

executables, embeddability, high-performance, ...

Support the programmer with a great environment.
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Ciao Enablers
Module system design:

I Allows separating dynamic and static code.
I Allows global analysis, separate/incremental compilation.

Syntactic and semantic extension mechanism (packages):
I All language features are in libraries (loaded, combined per module):

F Predicates, functions, higher order, constraints, objects, ...
F Tabling, other search rules, ASP, ... concurrency, parallelism.
F Full ISO-Prolog support –also via a library.

The Ciao assertions model
I Optional assertions, expressing rich (possibly undecidable) properties.
I Integrated verification/certification, testing, diagnosis (in comp. loop).
I Use throughout of safe approx. (abstract interpretation), “best effort.”

Compile-time and run-time technology:
I Analysis, partial evaluation, profiling, ...
I Several back ends (including Javascript)
I Also bytecode (abstract machine written in Ciao dialect, specializable)

High performance through optimization, not language restriction.

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 5 / 80



Extension: Constraint Logic Programming

Natural extension of LP: very general relations between variables
allowed (beyond Herbrand term equality).

Execution inserts new constraints in the constraint store (CS).

Constraint solver checks consistency of CS.

Example
p(X,Y) :-

X #> 5,

X #< 2.

p(X,Y) :-

X #>= 2,

Y #=< 2,

X #= Y.

?- p(X,Y).

X = 2, Y = 2

1. p(X,Y) CS=�

3. X #<2.

2. X #>5, X #<2. CS=�

CS={X>5}

CS={X>5, X<2}4. fail.

5. X #≥2, Y #≤2, X#=Y.

6. Y #≤2, X#=Y.

7. X#=Y.

8. true.

CS=�

CS={X≥2}

CS={X≥2, Y≤2}

CS={X=2, Y=2}
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Extension: Tabling (OLDT resolution)

Properties:
I Conservative extension of Prolog/SLD.
I Avoids recomputations.
I Better termination properties; easier to reason about termination.

F Ensures termination for “bounded term size” programs.
F In other cases, less dependent on clause / subgoal order.

Applications:
I Deductive databases.
I Natural language (left recursive grammars).
I Fixpoint: program analysis, reachability analysis. . .
I Well Founded Semantics:

F A predicate can be defined based on its negation.
F Semantic web reasoning.

I . . .
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CLP+Tabling

Early work:
I Theoretical; deductive databases, bottom-up deduction.

Goal-directed, top-down poses interesting questions.
I Existing approaches in LP: XSB, TCHR, Ciao TCLP.
I Still evolving.

Some issues:
I Checking applicability of calls and previous solutions: entailment

(vs., e.g., call variant or call abstraction)
Goal Answers

X > 3 ∧ Y = 1
{X > 3} p(X, Y) X > 3 ∧ Y = 2

X > 5 ∧ Y = 3

What can we say about
{X > 4} p(X, Y)?

I Answers to new (subsumed) calls: conj. of input + answer constraints.
Goal Answers

X > 4 ∧ X > 3 ∧ Y = 1 ≡ X > 4 ∧ Y = 1
{X > 4} p(X, Y) X > 4 ∧ X > 3 ∧ Y = 2 ≡ X > 4 ∧ Y = 2

X > 4 ∧ X > 5 ∧ Y = 3 ≡ X > 5 ∧ Y = 3

I Non subsumed calls: cannot use stored answer constraint safely.
I Useful to project constraint store on call variables.
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Tabled CLP applications
Some Experiments with Timed Automata

UPPAAL is a fast tool built specifically for TA verification:
I Developed since 1999.

Ciao is a general-purpose, multi-paradigm language.

Ciao TCLP UPPAAL

Fisher 2 0 0

Fisher 3 12 1

Fisher 4 270 44

Fisher 5 10 576 4 514

Tried to select comparable UPPAAL and Ciao options.

Additionally: in Ciao, full programming power.
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Demo: properties, types, predicates, functions, higher order,

constraints, breadth-first search, tabling, ...
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The Assertion Language

[BDD+97, PBH97, HPB99, PBH00b, MLGH09]

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

(optimized)

PREPROCESSOR

Assertions optional, can be added at any time. Provide partial spec.
Sets of pre/post/global triples (+ “status” field, documentation, ...).
Used everywhere, for many purposes (incl. doc gen., foreign itf).
System makes it worthwhile for the programmer to include them.
Part of the programming language and “runnable.”

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 11 / 80



The Analyses (will return to them)

+
(optimized)

Comparator
(Incl. VCgen)

Normalizer
& Lib Itf.

Assertion

Analysis
Info
[[P]]

Program
P

:− trust

I

Builtins/
Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code
certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

PREPROCESSOR

Modular, parametric, polyvariant abstract interpretation.
Accelerated, incremental fixpoint.
Properties:

I Shapes, data sizes, sharing/aliasing, CHA, determinacy, exceptions,
termination, ...

I Resources (time, memory, energy, ...), (user-defined) resources.

[MLNH07] [MH92, BGH99, PH96, HPMS00, NMLH07][MGH94, BCHP96, PH00, BdlBH+01, PCPH06, PCPH08]

[MH89, MH91, DLGH97, VB02, BLGH04, LGBH05, NBH06, MSHK07] [MLH08, MKSH08, MMLH+08, MHKS08, MKH09, LGBH10, MLLH08]

[DLH90, LGHD94, LGHD96, DLGHL94, DLGHL97, NMLGH07, MLGCH08, NMLH08, NMLH09, LGDB10, SLBH13, LKSGL13, SLH13]
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Integrated Static/Dynamic Debugging and Verification

[BDD+97, HPB99, PBH00c, PBH00a, HPBLG03, HALGP05, PCPH06, PCPH08, MLGH09]

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

(optimized)

PREPROCESSOR

Definition Sufficient condition
P is prt. correct w.r.t. Iα if α([[P]]) ≤ Iα [[P]]α+ ≤ Iα
P is complete w.r.t. Iα if Iα ≤ α([[P]]) Iα ≤ [[P]]α=

P is incorrect w.r.t. Iα if α([[P]]) 6≤ Iα [[P]]α= 6≤ Iα, or
[[P]]α+ ∩ Iα = ∅ ∧ [[P]]α 6= ∅

P is incomplete w.r.t. Iα if Iα 6≤ α([[P]]) Iα 6≤ [[P]]α+
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Integrated Static/Dynamic Debugging and Verification

[BDD+97, HPB99, PBH00c, PBH00a, HPBLG03, HALGP05, PCPH06, PCPH08, MLGH09]

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion
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Program

P
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Static

possible
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:− check

:− false

:− checked

:− texec

:− check

:− test

(optimized)

PREPROCESSOR

Based throughout on the notion of safe approximation (abstraction).

Run-time checks generated for parts of asserts. not verified statically.
Diagnosis (for both static and dynamic errors).
Comparison not always trivial: e.g., resource debugging/certification

I Need to compare functions.
I “Segmented” answers.
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Demo: assertions, static errors (types, data sizes, procedure cost,

non-determinacy, ...), run-time check generation, certification, unit tests...
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Abstraction-based Certification, Abstraction-Carrying Code

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

+(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

PREPROCESSOR

(optimized)

PRODUCER CONSUMER

[[P]]α = Analysis = lfp(analysis step)
Certificate ⊂ [[P]]α
Certificate →
Safety Policy

Checker = analysis step

Interesting extensions: reduced certificates, incrementality, ...

[APH05, HALGP05, AAPH06]
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Integration of Testing

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checkedPREPROCESSOR

:− texec

(optimized)

:− check

:− test

Many interactions within the integrated framework:

(Unit) tests are part of the assertion language:
:- test Pred [:Precond] [=>Postcond] [+CompExecProps].

Parts of unit tests that can be verified at compile-time are deleted.
Unit testing uses the run-time assertion-checking machinery.
Unit tests also provide test cases for the run-time checks.

I Assertions checked by unit testing, even if not conceived as tests.

[MLGH09]
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Optimization

+
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(Incl. VCgen)
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:− check
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PREPROCESSOR

(optimized)

Source-level optimizations:
I Partial evaluation, (multiple) (abstract) specialization, ...

Low-level optimizations (e.g., dynamic check elimination, unboxing):
I Use of specialized instructions.
I Optimized native code generation.

→ obtaining close-to-C performance for declarative languages (Ciao).
Parallelization. Granularity control.

[GH91, PH97, PH03, PHG99, PAH06] [PH99, MBdlBH99, BGH99, CCH08, MKSH08] [MCH04, CMM+06]
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Discussion: The Ciao Approach [AADEBUG’97, etc.]

Approaches prior to Ciao had what we perceived as limitations:
I limited the properties which may appear in specifications, or
I checked specifications only at run-time or only at compile-time, or
I were not automatic, or required assertions for all predicates, or . . .

The Ciao approach – solution to static/dynamic conundrum, which:
I Integrates automatic compile-time and run-time checking of assertions.
I Allows using assertions in only some parts of the program.
I Deals safely with complex properties (beyond, e.g., traditional types).

Allows “modern” (agile/extreme/...) programming, “Scripts to Ps:”

I Develop program and specifications gradually, not necessarily in sync.
I Both can be incomplete (including types).

F Temporarily use spec (including tests) as implementation.

I Go from types, to more complex assertions, to full specifications.

Assertion language design is important: many roles, used throughout.
Assertions, properties in source language; “seamless integration.”
Performance through optimization, not language restriction.
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Discussion: Comparison with Classical Types

“Traditional” Types Ciao Assertion-based Model
“Properties” limited by decidability Much more general property language
May need to limit prog. lang. No need to limit prog. lang.
“Untypable” programs rejected Run-time checks introduced
(Almost) Decidable Decidable + Undecidable(approximated)
Expressed in a different language Expressed in the source language
Types must be defined Types can be defined or inferred
Assertions are only of type “check” “check”, “trust”, ...
Type signatures & assertions different Type signatures are assertions

Some key issues:
Safe / Sound approximation Suitable assertion language
Abstract Interpretation Powerful abstract domains

Works best when properties and assertions can be expressed in the
source language (i.e., source lang. supports predicates, constraints).

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 19 / 80



Outline

Part I The Ciao approach to Analysis and verification
of Constraint Logic Programs

The programming language
The analysis, verification, and testing model

Part II The Ciao approach to Analysis and verification
of other paradigms
using Constraint Logic Programs as IR

CLP (Horn Clauses) as intermediate representation
User-defined resource analysis/verif. of Java bytecode
Energy analysis/verification of (Xmos) C programs

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 20 / 80



Intermediate Representation: (Constraint) Horn Clauses
[MLNH07]

Transformation Analysis

Java parser 

javac

soot + Ciao
transform.

xobjdump
Sizes and 

Prog. Point Info
Pre/Post pairs

Sets of 

(Horn clauses)

IR − CFG
Ciao Source

...

Resource Model

Resource Usage

Java Source

Java Bytecode

Xcore assembly

Shape

...

Sharing

CHA

Fixpoint
algorithm

(AI−based)

XC Source

Resource Info.

Allows supporting multiple languages / paradigms.

Used for all analyses: aliasing, CHA/shape/types, data sizes / resources, etc.

Based on “blocks:” each block represented as a Horn clause.
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IR Issues: IR Level Trade-offs

XC	  source	  code	  

LLVM	  

XC	  Assembly	  

LLVM	  Code	  Generator	  
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Inform
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Op;mized	  LLVM	  

Hardware	  

Layer	  1	  

Layer	  2	  

Layer	  3	  Energy	  
Model	  

Analysis	  

Analysis	  Transform	  
to	  Ciao	  IR	  

Analysis	  

Transform	  
to	  Ciao	  IR	  

Transform	  
to	  Ciao	  IR	  

Energy	  
Model	  ?	  
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IR Issues: Approaches to Performing the Transformation

The transformation (akin to Abstract Compilation):

I Source: Program P in LP + (possibly abstract) Semantics of LP

I Target: A (C) Horn Clause program capturing the semantics of P

Some approaches to performing the transformation:

I Direct transformation into block-based intermediate representation.
F More control but correctness proof more indirect.
F Used in the following (translation to a Ciao program).
F Can add assertions to help analysis (sizes, metrics, resource models, ..).

I Partial evaluation of instrumented interpreters + slicing.
F Systematic construction from small- and big-step semantics.
F Correctness proof more direct.
F Less automatic?

Some evidence that the two approaches can produce similar results.

Cf. John Gallagher’s talk!
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Generating the Intermediate Representation

Specifics for Java:
I Control flow graph construction from bytecode representation.
I Elimination of stack variables.
I Conversion to three-address statements.

I Explicit representation of this and ret as extra block parameters.

Specifics for XC:
I Control flow graph construction from ISA (or LLVM IR) representation.
I Resolving branching to predicates with multiple clauses.

I Inferring block parameters.

Some common tasks:
I Generation of block-based CFG.
I SSA transformation (e.g., splitting of input/output param).
I Conversion of loops into recursions among blocks.
I Branching, cases, dynamic dispatch → blocks w/same signature.

I Conversion to horn clauses.
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Java Example 1: sending SMSs

p u b l i c c l a s s C e l l P h o n e {

v o i d sendSms ( SmsPacket smsPk ,
Encoder enc ,

Stream stm ) {
i f ( smsPk != n u l l ) {
stm . send (

enc . fo rmat ( smsPk . sms ) ) ;
sendSms ( smsPk . next , enc , stm ) ;
}}}

c l a s s SmsPacket{
S t r i n g sms ;
SmsPacket n e x t ;
}

a b s t r a c t c l a s s Stream{
@Cost ({ ” c e n t s ” , ”2∗ s i z e ( data ) ” })
n a t i v e v o i d send ( S t r i n g data ) ;

}

i n t e r f a c e Encoder {
S t r i n g format ( S t r i n g data ) ;
}

c l a s s TrimEncoder implements Encoder {
@Cost ({ ” c e n t s ” , ”0” })
@Size ( ” s i z e ( r e t )<= s i z e ( s ) ” )
p u b l i c S t r i n g format ( S t r i n g s ){

r e t u r n s . t r i m ( ) ;
}}

c l a s s UnicodeEncoder implements Encoder {
@Cost ({ ” c e n t s ” , ”0” })
@Size ( ” s i z e ( r e t )<=6∗ s i z e ( s ) ” )
p u b l i c S t r i n g format ( S t r i n g s ){

r e t u r n j a v a . n e t . URLEncoder . encode ( s ) ;
}}
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Java Example 1: sending SMSs – IR

Builtin.gtf(r1,next,r8)

CellPhone.sendSms(r0,r8,r2,r3,r9,r10)

Builtin.stf(r1,next,r10,r1_1)

Builtin.stf(r1_1,sms,r7,r4)

Encoder.format(r2, r6, r7)

Stream.send(r3,r7,void)

Stream.send(r0,r1,r2)

Encoder.format(r0,r1,r2)

Builtin.asg(r3,r2)

java.net.URLEncoder.encode(r1,r3)

Encoder.format(r0,r1,r2)

java.lang.String.trim(r1,r3)

Builtin.asg(r3,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

@Cost({"cents","0"}) @Cost({"cents","0"})

@Cost({"cents","2*size(r1)"})

@Size("size(r2)<=size(r1)") @Size("size(r2)<=6*size(r1)")

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.ne(r1,null,void)

Builtin.gtf(r1,sms,r6)

Builtin.asg(r4,r5)

Builtin.eq(r1,null,void)

Builtin.asg(null,r5)

Internal representation: basic block → Horn clause.

Annotations (since Java 1.5) are preserved in the bytecode so they
can be carried over to our IR.
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Java Example 2: Factorial

@Resources ({ R e s o u r c e . STEPS})
p u b l i c c l a s s Fact
{

p u b l i c i n t f a c t o r i a l ( i n t n ) {
i f ( n == 0)

r e t u r n 1 ;
e l s e

r e t u r n n ∗ f a c t o r i a l ( n − 1 ) ;
}

}

@Resource("STEPS")

Builtin.eq(void, N,0)

Builtin.asg_int(Ret,I3)

Fact.factorial(Ret,This,N)

Builtin.ne_int(void,N,0)

Builtin.sub(I1,N,1)

Fact.factorial(I2, This, I1)

Builtin.mul(I3,N,I2)

Fact.factorial(Ret,This,N)

Builtin.asg(Ret,1)

Source code → Basic blocks.
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Java Example 2: Factorial

@Resource("STEPS")

Builtin.eq(void, N,0)

Builtin.asg_int(Ret,I3)

Fact.factorial(Ret,This,N)

Builtin.ne_int(void,N,0)

Builtin.sub(I1,N,1)

Fact.factorial(I2, This, I1)

Builtin.mul(I3,N,I2)

Fact.factorial(Ret,This,N)

Builtin.asg(Ret,1)

:- entry ’Fact.factorial’/3:var*atm*num.

:- resource ’STEPS’.

’Fact.factorial’(Ret, This, N):-

eq_int(void,N,int,0,int),

asg_int(Ret,int,1,int).

’Fact.factorial’(Ret, This, N):-

ne_int(void,N,int,0,int),

sub(I1,int,N,int,1,int),

Fact.factorial(I2,This,I1),

mul(I3, int,N,int,I2,int),

asg_int(Ret,int,I3,int).

Intermediate representation: basic block → Horn clause.

Annotations (since Java 1.5) are preserved in the bytecode so they
can be carried over to our IR.
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Xcore Example: Control Flow Graph (CFG)

<fact>:

0x01: entsp (u6) 0x2

0x02: stw (ru6) r0, sp[0x1]

0x03: ldw (ru6) r1, sp[0x1]

0x04: ldc (ru6) r0, 0x0

0x05: lss (3r) r0, r0, r1

0x06: bf (ru6) r0, 0x1 <0x08>

0x07: bu (u6) 0x2 <0x10>

0x08: mkmsk (rus) r0, 0x1

0x09: retsp (u6) 0x2

0x10: ldw (ru6) r0, sp[0x1]

0x11: sub (2rus) r0, r0, 0x1

0x12: bl (u10) -0xc <fact>

0x13: ldw (ru6) r1, sp[0x1]

0x14: mul (l3r) r0, r1, r0

0x15: retsp (u6) 0x2

→Interpreter→

0x01start 0x02 0x03 0x04

0x050x06

0x08

0x09

0x07

0x10

0x11

0x12

0x13

0x14

0x15

return edge

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 29 / 80



Block Representation

Basic block

A basic block is a maximal sequence S of consecutive nodes G in CFG,
starting from node n and ending in node m such that:

(∀k ∈ S/{n,m}. outEdges(k) = 1 ∧ inEdges(k) = 1) ∧
outEdges(n) = 1 ∧ inEdges(m) = 1

Initial block starts from the entry node.

Dead code elimination.
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Xcore Example: Block Representation

<fact>

0x01: entsp (u6) 0x2

0x02: stw (ru6) r0, sp[0x1]

0x03: ldw (ru6) r1, sp[0x1]

0x04: ldc (ru6) r0, 0x0

0x05: lss (3r) r0, r0, r1

0x06: bf (ru6) r0, 0x1 <0x08>

0x07: bu (u6) 0x2 <0x10>

0x10: ldw (ru6) r0, sp[0x1]

0x11: sub (2rus) r0, r0, 0x1

0x12: bl (u10) -0xc <fact>

0x13: ldw (ru6) r1, sp[0x1]

0x14: mul (l3r) r0, r1, r0

0x15: retsp (u6) 0x2

0x08: mkmsk (rus) r0, 0x1

0x09: retsp (u6) 0x2

0x01start 0x02 0x03 0x04

0x050x06

0x08

0x09

0x07

0x10

0x11

0x12

0x13

0x14

0x15

return edge
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Xcore Example: Block Representation

fact :-

0x01: entsp(0x2)

0x02: stw(r0, sp[0x1])

0x03: ldw(r1, sp[0x1])

0x04: ldc(r0, 0x0)

0x05: lss(r0, r0, r1)

0x06: bf(r0 , 0x1 <0x08 >)

branch(bf0 , bf1)

bf1 :-

0x07: bu(0x2 <0x10 >)

0x10: ldw(r0, sp[0x1])

0x11: sub(r0, r0, 0x1)

0x12: bl(-0xc <fact >)

call(fact)

0x13: ldw(r1, sp[0x1])

0x14: mul(r0, r1, r0)

0x15: retsp(0x2)

bf0 :-

0x08: mkmsk(r0, 0x1)

0x09: retsp(0x2)

factstart

bf0bf1

Figure: Block Control Flow Graph

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 32 / 80



Xcore Example: Horn Clause IR

0x01start 0x02 0x03 0x04

0x050x06

0x08

0x09

0x07

0x10

0x11

0x12

0x13

0x14

0x15

return edge

:- entry fact/2 : int * var.

fact(R0,R0_3):-

entsp(0x2),

stw(R0,Sp0x1),

ldw(R1,Sp0x1),

ldc(R0_1,0x0),

lss(R0_2,R0_1,R1),

bf(R0_2,_),

bf01(R0_2,Sp0x1,R0_3,R1_1).

bf01(1,Sp0x1,R0_4,R1):-

bu(_),

ldw(R0_1,Sp0x1),

sub(R0_2,R0_1,0x1),

bl(_),

fact(R0_2,R0_3),

ldw(R1,Sp0x1),

mul(R0_4,R1,R0_3),

retsp(0x2).

bf01(0,Sp0x1,R0,R1):-

mkmsk(R0,0x1),

retsp(0x2).
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Fixpoint-based Analyzers

AnalysisTransformation

soot + Ciao

transform.

javac

Java parser 

Java Source

Ciao Source

Java Bytecode

Fixpoint
algorithm

(AI−based) ...

Resource Info.

Sizes and 

Prog. Point Info
Pre/Post pairs

Sets of 

(Horn clauses)

Resource Usage

IR − CFG

Shape

...

Sharing

CHA

[MH92, BGH99, PH96, HPMS00, NMLH07] [MGH94, BCHP96, PH00, BdlBH+01, PCPH06, PCPH08]

[MH89, MH91, DLGH97, VB02, BLGH04, LGBH05, NBH06, MSHK07]

[MLH08, MKSH08, MMLH+08, MHKS08, MKH09, LGBH10, MLLH08] [SLBH13, LKSGL13, SLH13]
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Efficient, Parametric Fixpoint Algorithm

Generic framework for implementing analyses: given abstract domain,
computes lfp(SαP ) = [[P]]α, s.t. [[P]]α safely approximates [[P]].

It maintains and computes as a result (simplified):
I A call-answer table: with (multiple) entries {block : λin 7→ λout}.

F Exit states for calls to block satisfying precond λin meet postcond λout .

I A dependency arc table: {A : λinA ⇒ B : λinB}.
F Answers for call A : λinA depend on the answers for B : λinB :

(if exit for B : λinB changes, exit for A : λinA possibly also changes).
F Dep(B : λinB ) = the set of entries depending on B : λinB .

Characteristics:
I Precision: context-sensitivity / multivariance, prog. point info, ...
I Efficiency: memoization, dependency tracking, SCCs, base cases, ...
I Genericity: abstract domains are plugins, configurable, widening, ...
I Handles mutually recursive methods.
I Modular and incremental.
I Handles library calls, externals, ...

Essentially efficient, incremental, (abstract) OLDT resolution.
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CFG traversal

Blocks are nodes; edges are invocations.

Top-down traversal of this CFG, starting from entry point.

Within each block: sequence of builtins, handled in the domain.

Inter-block calls/edges: project, extend, etc. (next slide).

As graph is traversed, triples (block, λin, λout)
are stored for each block in a memo table.

Memo table entries have status ∈ {fixpoint, approx ., complete}.
Iterate until all complete.
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Interprocedural analysis / recursion support

Project the caller state over the actual parameters,

find all the compatible implementations (blocks),

rename to their formal parameters,

... abstractly execute each compatible block, ...

calculate the least upper bound of the partial results of each block
(if “monovariant on success” flag),

rename back to the actual parameters and, finally

extend (reconcile) return state into calling state.
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Speeding up convergence

Analyze non-recursive blocks first,
use as starting λout in recursions.

Blocks derived from conditionals treated specially
(no project or extend operations required).

The (block, λin, λout) tuples
act as a cache that avoids recomputation.

Use strongly-connected components (on the fly).
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Resource Analysis

Java parser 

AnalysisTransformation

soot + Ciao

transform.

javac

IR − CFG

Shape

...

Sharing

CHA

Java Source

Ciao Source

Java Bytecode

Fixpoint
algorithm

(AI−based) ...

Resource Info.

Sizes and 

Prog. Point Info
Pre/Post pairs

Sets of 

(Horn clauses)

Resource Usage

[DLH90, LGHD94, LGHD96, DLGHL94, DLGHL97, NMLGH07, MLNH07, MLGCH08, NMLH08]

[NMLH09, LGDB10, SLBH13, LKSGL13, SLH13]
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Analysis/Debugging/Verification of Resources

Automatically infer upper/lower bounds on the usage that a program
makes of a general notion of various (user-definable) resources.

Examples:
I Memory, execution time, execution steps, data sizes.
I Bits sent or received over a socket, SMSs sent or received, accesses to

a database, calls to a procedure, files left open, money spent, ..
I Energy consumed, . . .

Approach:
1 Programmer defines via assertions resource-related properties for basic

procedures (e.g., instructions, bytecodes, libraries).
2 System infers the resource usage bounds for rest of program as

functions of input data sizes.

Involved properties normally undecidable → approximation required
(bounds that are safe and also as accurate as possible).

Applications: performance debugging and verification,
resource-oriented optimization, granularity control in parallelism, . . .

[NMLGH07, NMLH09]
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User-definable aspects of the analysis

A cost model defines an upper/lower bound cost for primitive
operations (e.g., methods, bytecode instructions).

I Provided by the user, via the assertion language.

@Cost("cents","2*size(data)")

public native void Stream.send(java.lang.String data);

I Some predefined in system libraries.

For platform-dependent resources such as execution time or energy
consumption model needs to consider low level factors.

Assertions:
I Also used to provide other inputs to the resource analysis such as

argument sizes, size metrics, etc. if needed.
I Also allow improving the accuracy and scalability of the system.
I Output of resource analysis also expressed via assertions.
I Used additionally to state resource-related specifications which allows

finding bugs, verifying, certifying, etc.
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The Assertion Language (simplified grammar, Java)

〈primitive assrt〉 ::= primitive name(var∗)〈assrt〉∗
〈assrt〉 ::= @requires ( 〈prop〉∗ )

| @ensures ( 〈prop〉∗ )
| @cost ( 〈resource usage〉∗ )
| @if ( 〈prop〉∗ ) { 〈prop〉∗ } [ cost ( 〈resource usage〉∗ ) ]

〈resource usage〉 ::= res usage(res name,〈expr〉)

〈prop〉 ::= type
| size(var ,〈sz metric〉,〈expr〉)
| size metric(var ,〈sz metric〉)

〈expr〉 ::= 〈expr〉〈bin op〉〈expr〉 | (
∑
|
∏

)〈expr〉
| 〈expr〉〈expr〉 | lognum〈expr〉 | −〈expr〉
| 〈expr〉! | ∞ | num
| size([〈sz metric〉,]arg(r num))

〈bin op〉 ::= + | − | × | / | %

〈sz metric〉 ::= int | ref | . . .
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Overview of the Analysis
1 Pre-analysis phase using the fixpoint analyzers:

I Class hierarchy analysis simplifies CFG and improves overall precision.
I Sharing analysis for correctness (conservative: only when there is no

sharing among data structures –currently limited to acyclic).
I Determinacy information inferred and used to obtain tighter bounds.
I Non-failure (no exceptions) inferred for non-trivial lower bounds.

2 Set up recurrence equations representing the size of each output
argument as a function of the input data sizes.

I Data dependency graphs determine relative sizes of variable contents.
(Size measures are derived from inferred shape information.)

3 Compute upper bounds to the solutions of these recurrence equations
to obtain bounds on output argument sizes.

I We have a simple recurrence solver, although the system can easily
interface with tools like Parma, PUBS, Mathematica, Matlab, etc.

4 Use the size information to set up recurrence equations representing
the computational cost of each block and compute upper bounds to
their solutions to obtain resource usage.
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Example: sending SMSs

p u b l i c c l a s s C e l l P h o n e {

v o i d sendSms ( SmsPacket smsPk ,
Encoder enc ,
Stream stm ) {

i f ( smsPk != n u l l ) {
stm . send (

enc . fo rmat ( smsPk . sms ) ) ;
sendSms ( smsPk . next , enc , stm ) ;
}}}

c l a s s SmsPacket{
S t r i n g sms ;
SmsPacket n e x t ;

}

a b s t r a c t c l a s s Stream{
@Cost ({ ” c e n t s ” , ”2∗ s i z e ( data ) ” })
n a t i v e v o i d send ( S t r i n g data ) ;

}

i n t e r f a c e Encoder {
S t r i n g format ( S t r i n g data ) ;
}

c l a s s TrimEncoder implements Encoder {
@Cost ({ ” c e n t s ” , ”0” })
@Size ( ” s i z e ( r e t )<= s i z e ( s ) ” )
p u b l i c S t r i n g format ( S t r i n g s ){

r e t u r n s . t r i m ( ) ;
}}

c l a s s UnicodeEncoder implements Encoder {
@Cost ({ ” c e n t s ” , ”0” })
@Size ( ” s i z e ( r e t )<=6∗ s i z e ( s ) ” )
p u b l i c S t r i n g format ( S t r i n g s ){

r e t u r n j a v a . n e t . URLEncoder . encode ( s ) ;
}}
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Example (I)

1 System takes by default size of input data: size(smsPk) = n.
I Result will be parametric on this.

2 The number of characters sent depends on the formatting done by
the different encoders:

I The user indicates that the encoding in TrimEncoder results in a
smaller or equal (output) string.

c l a s s TrimEncoder implements Encoder {
@Size ( ” s i z e ( r e t )<= s i z e ( s ) ” )
p u b l i c S t r i n g format ( S t r i n g s ){

I And that the result of UnicodeEncoder can be up to 6 times larger
(\uxxxx) than the one received.

c l a s s UnicodeEncoder implements Encoder {
@Size ( ” s i z e ( r e t )<=6∗ s i z e ( s ) ” )
p u b l i c S t r i n g format ( S t r i n g s ){
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Example (II)

3 After setting up and solving the size equations the system obtains
that the upper bound on the number of characters sent is:

max(6, 1) ∗ n = 6 ∗ n = 6 ∗ size(smsPk)

4 The analysis establishes then (cost) recurrences for every method:
CostsendSms (r0, 0, r2, r3) = 0
CostsendSms (r0, r1, r2, r3) = cost of sending a char ×CostsendSms (r0, r1− 1, r2, r3)

where r0,r1,r2, and r3 represent the size of This, SmsPk, enc, and stm, respectively.

5 Given that we are charged 2 cents per character sent:

@Cost ({ ” c e n t s ” , ”2∗ s i z e ( data ) ” })
n a t i v e v o i d send ( S t r i n g data ) ;

CostsendSms (r0, 0, r2, r3) = 0
CostsendSms (r0, r1, r2, r3) = 2× 6× (r1− 1)︸ ︷︷ ︸

character size

×CostsendSms (r0, r1− 1, r2, r3)

and the total cost of the sendSMS method is 6× r12 − 6× r1 cents.
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Some results (Java)

Program Resource(s) t Resource Usage Func. / Metric

BST Heap usage 367 O(2n) n ≡ tree depth

CellPhone SMS monetary cost 386 O(n2) n ≡ packets length

Client Bytes received and 527 O(n) n ≡ stream length

bandwidth required O(1) —

Dhrystone Energy consumption 759 O(n) n ≡ int value

Divbytwo Stack usage 219 O(log2(n)) n ≡ int value

Files Files left open and 649 O(n) n ≡ number of files

Data stored O(n ×m) m ≡ stream length

Join DB accesses 460 O(n ×m) n,m ≡ table records

Screen Screen width 536 O(n) n ≡ stream length

Different complexity functions, resources, types of loops/recursion,
etc.
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Some results (Ciao)

Program Resource Usage Function Metrics Time
client “bits received” λx .8 · x length 186
color map “unifications” 39066 size 176
copy files “files left open” λx .x length 180
eight queen “queens movements” 19173961 length 304
eval polynom “FPU usage” λx .2.5x length 44

fib “arith. operations”
λx .2.17 · 1.61x +
0.82 · (−0.61)x − 3

value 116

grammar “phrases” 24 length/size 227
hanoi “disk movements” λx .2x − 1 value 100
insert stores “accesses Stores” λn,m.n + k length 292

“insertions Stores” λn,m.n

perm “WAM instructions”
λx .(

∑x
i=1 18 · x!)+

(
∑x

i=1 14 · x!
i

) + 4 · x!
length 98

power set “output elements” λx . 1
2
· 2x+1 length 119

qsort “lists parallelized” λx .4 · 2x − 2x − 4 length 144
send files “bytes read” λx , y .x · y length/size 179
subst exp “replacements” λx , y .2xy + 2y size/length 153
zebra “resolution steps” 30232844295713061 size 292
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Interesting Resource: Execution Time

Important: e.g., verification of real-time constraints.

Very hard in current architectures, (e.g., worst-case cache behavior).

I Certainly feasible in simple processors and with caches turned off.
I Our approach is complementary to accurate WCET models, which

consider cache behavior, pipeline state, etc. (inputs to us).

Approach:

I Obtain timing model of abstract machine instructions through a
one-time profiling phase (results provided as assertions).

F Includes fitting constants in a function if the execution time depends
on the argument’s properties.

I Static cost analysis phase which infers a function which returns
(bounds on) the execution time of program for given input data sizes.

[MLGCH08]
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First Phase Output

Cost assertions automatically generated in first phase and stored to make
the instruction execution costs available to the static analyzer.

Examples

:- true pred unify variable(A, B): int(A), int(B)

+ (cost(ub, exectime, 667.07),

cost(lb, exectime, 667.07)).

:- true pred unify variable(A, B): var(A), gnd(B)

+ (cost(ub, exectime, 233.3),

cost(lb, exectime, 233.3)).

:- true pred unify variable(A, B): list(A),list(B)

+ cost(ub, exectime, 271.58+284.34*length(A)). ...
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Observed and Estimated Execution Time (Intel)

Pr. Cost. Intel (µs)
No. App. Est. Prf. Obs. D. % Pr.D. %

1 E 110 110 113 -2.4 -2.4
2 E 69 69 71 -2.3 -2.3
3 E 1525 1525 1576 -3.3 -3.3
4 E 1501 1501 1589 -5.7 -5.7
5 E 2569 2569 2638 -2.7 -2.7
6 E 1875 1875 2027 -7.8 -7.8
7 E 1868 1868 1931 -3.3 -3.3

8 L 43 68 81 -67.2 -17.8
U 3414 3569 3640 -6.4 -2.0

9 L 54 79 91 -54.6 -14.8
U 3414 3694 4011 -16.2 -8.2

10 L 135 142 124 8.6 13.7
U 7922 2937 2858 120.6 2.7

11 L 216 138 111 72.3 22.5
U 226 216 162 34.0 29.5
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Resource Analysis as an Abstract Interpretation
[SLH13, SLBH13]

In the classical CiaoPP resource analysis the last steps (setting up and
solving recurrences) were not implemented as an abstract domain.

We have now defined, implemented and integrated the resource
analysis as an abstract domain (a plugin of the generic fixpoint).

We get all the good features of the AI framework for free:

I Multivariance: e.g., separate different call patterns for same block:
sort(lst(int),var) ... sort(lst(flt),var) ... sort(var,lst(int))

I Easier combination with other domains.
I Easier integration w/static debugging/verification and rt-checking.
I Many other engineering advantages.

New domain for size analysis (sized types) that infers bounds on the
size of data structures and substructures.

I Size: number of rule applications in type/shape definition.

Used in the XC energy analysis.
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The Sized Types Abstract Domain
[SLBH13]

Sized types are representations of data shape information including both
lower and upper bounds on the size of the corresponding terms and their
subterms at any position and depth.

Derived from the regular types inferred for program variables.

If τ is a regular type, sized(τ) is its corresponding sized type:
listnum sized(listnum)

listnum -> []

listnum -> [num | listnum]
listnum(α,β)

(
num

(γ,δ)
〈.,1〉

)
The superscripts (size bound variables) express bounds on the number
of rule (functor) applications.
{ [1,2,3,4], [2,4] } listnum(3,5)

(
num

(1,4)
〈.,1〉

)
Size analysis infers relations (inequations) among the size bound
variables of the sized types occurring at different argument positions.
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Experimental Results

Prog. Resource An. (LB) Resource An. (UB) An. Time (s)
New Prev. New Prev. RAML New Prev.

append α α = β β = β = 1.00 0.53
appAll a1a2a3 a1 + b1b2b3 ∞ + b1b2b3 = 2.41 0.67
coupled µ 0 + ν ∞ + ν = 1.37 0.64
dyade α1α2 α1α2 = β1β2 β1β2 = β1β2 = 1.66 0.62
erathos α α = β2 β2 = β2 = 2.25 0.77
fib φµ φµ = φν φν = infeas. + 1.06 0.67
hanoi 1 0 + 2ν ∞ + infeas. + 0.82 0.60
isort α2 α2 = β2 β2 = β2 = 1.68 0.62
isortl a2

1 a2
1 = b2

1b2 ∞ + b2
1b2 = 2.55 0.67

lisfact αγ α + βδ ∞ + unkn. ? 1.39 0.64
listnum µ µ = ν ν = unkn. ? 1.19 0.58
minsort α2 α + β2 β2 = β2 = 1.94 0.67
nub a1 a1 = b2

1b2 ∞ + b2
1b2 = 3.61 0.91

part α α = β β = β = 1.70 0.65
zip3 min(αi ) 0 + min(βi ) ∞ + β3 + 2.48 0.57
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Energy Consumption Analysis

Specialize the generic resource analysis by encoding energy models:
provide cost and size assertions for each individual instruction.

Some energy models:
I Java bytecode energy consumption models available for simple

processors –upper bound consumption per bytecode in joules:

Opcode Inst. Cost in µJ Mem. Cost in µJ Total Cost in in µJ
iadd .957860 2.273580 3.23144
isub .957360 2.273580 3.230.94
. . . . . . . . . . . .

I More sophisticated ISA-level energy models developed w/Bristol &
XMOS (based on “Tiwari” model).

The CiaoPP resource analysis then generates at compile time safe
upper- and lower-bound energy consumption functions for given
programs.

[NMLH08]
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Demo: java resource analysis (including CHA, nullity, etc.);

XC energy analysis.
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Low-level ISA characterization

Obtaining the cost model: energy consumption per instruction

Coll. w/Xmos and Bristol U (based on Tiwari model).
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Energy Model
Expressed in the Ciao assertion language
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XC Source
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Assembly Code
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CiaoPP Menu
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Select Resource Analysis
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Analysis Results
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Checking against actual HW energy consumption
Test programs run on two different HW rigs:

ISS (Instruction Set Simulation) and

SRA (Static Resource Analysis).
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Some Results

Benchmarks
Function name Description Energy function

fact(N) Calculates N! 26.0 N + 19.4
fibonacci(N) Nth Fibonacci no. 30.1 + 35.6 φN + 11.0 (1− φ)N

sqr(N) Computes N2 103.0 N2 + 205.8 N + 188.32
poweroftwo(N) Calculates 2N 62.4 · 2N − 312.3
sumofdigits(N) Adds all digits in N 84.4dlog10 Ne − 78.7

isprime(N) Checks if N is prime 58.6 N − 35.5
power(base,exp) Calculates baseexp 6.3 (log2 exp + 1) + 6.5
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Some Results
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Feedback from the hardware experts (Xmos, Bristol)

SRA provides results beyond what is possible with simulation
(as test run-time increases, ISS becomes impractically long).

SRA shows promising accuracy in comparison with ISS and the HW
(at least for the simple cases studied so far).

Simulation time limits the usefulness of ISS method, whereas
equation solving limits SRA.
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IR Level Trade-offs
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LLVM IR vs. ISA tradeoff
b
u

u
6

b
u
f

u
6

z
e
x
t

r
u
s

s
e
x
t

r
u
s

l
d
c

r
u
6

m
k
m
s
k

2
r

a
n
d
n
o
t

2
r

s
e
x
t

2
r

z
e
x
t

2
r

l
d
a
p
f

u
1
0

c
l
z

l
2
r

m
k
m
s
k

r
u
s

l
d
a
p
b

u
1
0

l
d
c

l
r
u
6

l
d
a
p
f

l
u
2
0

l
d
a
p
b

l
u
2
0

n
e
g

2
r

n
o
t

2
r

b
i
t
r
e
v

l
2
r

b
y
t
e
r
e
v

l
2
r

l
d
w

3
r

s
t
w

3
r

l
d
1
6
s

3
r

l
d
8
u

3
r

s
t
8

3
r

s
t
1
6

3
r

l
d
a
w

u
6

e
q

2
r
u
s

s
h
r

3
r

s
h
l

3
r

e
q

3
r

l
d
a
w

l
r
u
6

l
s
s

3
r

l
s
u

3
r

s
h
l

2
r
u
s

s
h
r

2
r
u
s

s
u
b

2
r
u
s

a
d
d

2
r
u
s

o
r

3
r

a
n
d

3
r

s
u
b

3
r

l
d
a
w
b
l
2
r
u
s

l
d
a
w
f
l
2
r
u
s

a
d
d

3
r

a
s
h
r
l
2
r
u
s

a
s
h
r

l
3
r

l
d
a
1
6
b

l
3
r

x
o
r

l
3
r

l
d
a
w
b

l
3
r

c
r
c
3
2

l
3
r

l
d
a
1
6
f

l
3
r

l
d
a
w
f

l
3
r

m
u
l

l
3
r

c
r
c
8

l
4
r

m
a
c
c
u

l
4
r

m
a
c
c
s

l
4
r

l
s
u
b

l
5
r

l
a
d
d

l
5
r

l
m
u
l

l
6
r

Odd threads instruction (name & encoding)

bu u6
buf u6
zext rus
sext rus
ldc ru6

mkmsk 2r
andnot 2r
sext 2r
zext 2r
ldapf u10
clz l2r

mkmsk rus
ldapb u10
ldc lru6

ldapf lu20
ldapb lu20
neg 2r
not 2r

bitrev l2r
byterev l2r

ldw 3r
stw 3r

ld16s 3r
ld8u 3r
st8 3r
st16 3r
ldaw u6
eq 2rus
shr 3r
shl 3r
eq 3r

ldaw lru6
lss 3r
lsu 3r
shl 2rus
shr 2rus
sub 2rus
add 2rus
or 3r
and 3r
sub 3r

ldawb l2rus
ldawf l2rus
add 3r
ashr l2rus
ashr l3r

lda16b l3r
xor l3r

ldawb l3r
crc32 l3r
lda16f l3r
ldawf l3r
mul l3r
crc8 l4r
maccu l4r
maccs l4r
lsub l5r
ladd l5r
lmul l6r
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xC Program Error vs. HW ISA /
llvm isa LLVM IR

fact 4.5% 2.86% 0.94
fibonacci 11.94% 5.41% 0.92
sqr 9.31% 1.49% 0.91
power of two 11.15% 4.26% 0.93
reverse 2.18% N/A N/A
concat 8.71% N/A N/A
mat mult 1.47% N/A N/A
sum facts 2.42% N/A N/A

Average 6.46% 3.50% 0.92
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Energy consumption verification / debugging
:- check pred fact(A, B) : (int(A), var(B))

+ resource(energy, 0, 100).

1 Resource analysis infers upper and lower bounds for resource “energy.”
The analysis results produced are:
:- true pred fact(A,B)

: (int(A), var(B))

=> (int(A), int(B), rsize(A, num(LA,UA)),

rsize(B, num(’Factorial’(LA),’Factorial’(UA))))

+ resource(energy, 21 * LA + 16, 21 * UA + 16).

2 Then, the analysis results are compared with the “check” assertion
(the specification) and the following assertions are produced:
:- checked pred fact(A, B)

: (int(A), intervals(int(A), [i(0,4)]), var(B))

+ resource(energy, 0, 100).

:- false pred fact(A, B)

: (int(A), intervals(int(A), [i(5,inf)]), var(B))

+ resource(energy, 0, 100).
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Resource Usage Verification – Function Comparisons

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 71 / 80



Resource Usage Verification – Function Comparisons
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Resource Usage Verification – Function Comparisons
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Tools / timeline
’83 Parallel abstract machines → motivation: auto-parallelization.
’88 MA3 analyzer: memo tables (cf. OLDT resolution), practicality established.
’89 PLAI framework: accelerated fixpoint, abstract domains as plugins.

Sharing analysis, side-effect analysis.
90’s Incremental analysis, concurrency (dynamic scheduling), automatic domain

combinations, scalability, auto-parallelization, extension to constraints.
’90 GraCos analyzer: fully automatic cost analysis (upper bounds).

early 90’s Automatic parallelization with task granularity control.
mid 90’s Ciao model: Integrated verification/debugging/optimization w/assertions.

’97-present CiaoPP tool:
’91-’06 Combined abstract interpretation and partial evaluation.

late 90’s Lower bound cost analysis. Non-failure (no exceptions), determinacy.
’01 Verification of cost, additional resources, ...

’01-05 Modularity/scalability. Diagnosis (locating origin of assrt. violations).
New shape/type domains, widenings. Polyhedra, convex hulls.

’03 Abstraction carrying code, reduced certificates.
’04 Verification/debugging/optimization of user-defined resources.
’05 Multi-language support using CLP as IR: Java, C# (shapes, resources, ...).
’08 Verification of exec. time. First results in energy (Java), heap models, ...
’12 (X)C program energy analysis/verification, ISA-level energy models.
’13 Cost analysis as abstract interpretation. Sized shapes inference. LLVM.
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http://www.ciao-lang.org

Provides access to:

Ciao, CiaoPP, LPdoc, etc.

Documentation.

Mailing lists.

etc.

Please contact us for GIT access.

Around 1,000,000 lines of (mostly Ciao/Prolog) code.

Mostly LGPL (some packages have some variations).
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[LGBH10] P. López-Garćıa, F. Bueno, and M. Hermenegildo.
Automatic Inference of Determinacy and Mutual Exclusion for Logic Programs Using Mode and Type
Information.
New Generation Computing, 28(2):117–206, 2010.

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 75 / 80



References – Analysis and Verification of Resources

[DLH90] S. K. Debray, N.-W. Lin, and M. Hermenegildo.
Task Granularity Analysis in Logic Programs.
In Proc. of the 1990 ACM Conf. on Programming Language Design and Implementation, pages 174–188. ACM
Press, June 1990.
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Ciao Architecture Overview

Compiler

Development Environment
Emacs based, command line,

top-levels (compilation, analysis)

Source (user and library)
Packages

(multi-paradigm)

fsyntax

hiord

clpr

...

Modules
(w./wo. assertions)

mod1

mod2

...
modn

user interaction

Front-end Compiler
(implements module system)

Expanded Code
(Kernel Language)

Annotated/
Transformed Code

Preprocessor

Analysis (types,
modes, resources, . . . )

Verification (static
checking of assertions)

Optimization (parallelism,
specialization, . . . )

Back-end Compiler
(optimized from annotations)

Executable Code
(bytecode, native code)

Documenter
(automatic

documentation
from programs
with assertions)

Run-time Engine and Libs.
Multi-platform

Parallel, sequential, tabled, . . .

Compile-time Messages
Errors/warnings
Static Violations

Run-time Messages
Debugging

Dynamic Violations
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The tabling algorithm via an example (OLDT resolution)

Example

:- table reach /2.

reach(X,Y) :-

edge(X,Z),

reach(Z,Y).

reach(X,Y) :-

edge(X,Y).

edge (1 ,2).

edge (2 ,1).

?- reach(1,Y).

Y = 1;

Y = 2;

no

Subgoal Answers

10. Y = 1

2. reach(1,Y) 15. Y = 2

18. Complete

9. Y = 1

5. reach(2,Y) 17. Y = 2

18. Complete

Y=2

1. reach(1,Y).

4. reach(2,Y).

7. reach(1,Y).

3. edge(1,Z), reach(Z,Y). 13. edge(1,Y).

6. edge(2,Z), reach(Z,Y). 8. edge(2,1).

14. edge(1,2).

12. fail

11. reach(1,1). 16. reach(1,2).

Z=2

Z=1

Y=1 Y=2
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Entailment vs. Call Abstraction

TCHR: implementation of CHR on top of XSB Prolog with tabling.
I It uses call abstraction.

Reach: is some graph in a node reachable within some distance?

Ciao TCLP TCHR

Reach 30 7 140 129 978

Reach 25 6 680 129 876

Reach 20 5 964 128 955

Reach 15 4 316 129 313

Reach 10 2 296 128 994

Reach 5 427 129 616

Reach 0 1 129 472

Constraints reduce the search space.
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The Assertion Language (subset)

:- pred Pred [:Precond] [=> Postcond] [+ Comp-formula ] .

Each typically a “mode” of use; the set covers the valid calls.
:- pred quicksort(X,Y) : list(int) * var => sorted(Y) + (is det,not fails).

:- pred quicksort(X,Y) : var * list(int) => ground(X) + non det.

Properties; from libraries or user defined (in the source language):
:- regtype color := green | blue | red.
:- regtype list(X) :=[] | [ X|list]. ≡ list( ,[]). list(X,[H|T]) :- X(H), list(X,T).

:- prop sorted := [] | [ ] | [X,Y|Z] :- X > Y, sorted([Y|Z]).

Types/shapes, cost, data sizes, aliasing, termination, determinacy, non-failure, ...

Program-point Assertions:
Inlined with code: ..., check( int(X), X>0, mshare([[X]]) ), ....

Assertion Status (so far “to be checked” – check status – default)
Also: trust (guide analyzer), true/false (analysis output), test, etc.

Hermenegildo et al. (IMDEA, UPM, ...) Analysis and Verification “of and with” CLP Rich Model–Jun 16-17, 2013 79 / 80



Verification and Error Detection using Safe Approximations

[BDD+97, HPB99, PBH00c, PBH00a, HPBLG03]

Need to compare actual semantics [[P]] with intended semantics I:

P is partially correct w.r.t. I iff [[P]] ≤ I
P is complete w.r.t. I iff I ≤ [[P]]
P is incorrect w.r.t. I iff [[P]] 6≤ I
P is incomplete w.r.t. I iff I 6≤ [[P]]

Usually, partial descriptions of I available, typically as assertions.

Problem: difficulty computing [[P]] w.r.t. interesting observables.

Approach: use a safe approximation of [[P]] → i.e., [[P]]α+ or [[P]]α−

Specially attractive if compiler computes (most of) [[P]]α+ anyway.

Definition Sufficient condition
P is prt. correct w.r.t. Iα if α([[P]]) ≤ Iα [[P]]α+ ≤ Iα
P is complete w.r.t. Iα if Iα ≤ α([[P]]) Iα ≤ [[P]]α=

P is incorrect w.r.t. Iα if α([[P]]) 6≤ Iα [[P]]α= 6≤ Iα, or
[[P]]α+ ∩ Iα = ∅ ∧ [[P]]α 6= ∅

P is incomplete w.r.t. Iα if Iα 6≤ α([[P]]) Iα 6≤ [[P]]α+
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