Solving Existentially Quantified Horn Clauses:

The Solving Algorithm E-HSF

Tewodros Beyene!, Corneliu Popeeal, and Andrey Rybalchenko!»?

1Technische Universitiat Miinchen

2Microsoft Research Cambridge

Rich Model Toolkit COST Action Meeting

Malta, June 17, 2013

Tewodros Beyene (PUMA, TUM) The Solving Algorithm E-HSF Malta, June 17, 2013 1/21



E-HSF briefly - Input and Output

@ A set of horn clauses as input.

@ Some can be existentially quantified;i.e.with existentially quantified
head.

o Example: x=5—=3dy:x+y >10.
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E-HSF briefly - Input and Output

@ A set of horn clauses as input.

@ Some can be existentially quantified;i.e.with existentially quantified
head.

o Example: x=5—=3dy:x+y >10.
o Extends HSF - algorithm for quantifier free horn clauses.
@ As an output, it may

e return a solution,
e return a counter example, or
e simply diverge.
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An Example

A program with:
@ variables v = (x,y),
e initial condition init(v) = (y > 1), and

e transition relation next(v,Vv') = (x' = x+y).
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An Example

A program with:

@ variables v = (x, y),

e initial condition init(v) = (y > 1), and

e transition relation next(v,Vv') = (x' = x+y).
CTL property: EF dst(v), where dst(v) = (x > 0)

Horn clause encoding:
init(v) — inv(v),
inv(v) A —dst(v) — 3v' 1 next(v,v') Ainv(v') A rank(v, V'),
rank(v,v') — ti(v, V'
ti(v,v') A rank(v',v"
dwf (/).

);
)

— ti(v,v"),

Unknowns: inv(v), rank(v,v'), and t/(v. V).
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An Example - Skolemization

@ Application of a skolem relation rel(v, Vv’).
@ Lower bound on the guard grd(v) of the skolem relation.
init(v) — inv(v),
inv(v) A —dst(v) A rel(v,v') — next(v, V') Ainv(v') A rank(v, V'),
inv(v) A ~dst(v) — grd(v),
rank(v,v') — ti(v, V'),
ti(v, V') A rank(V',v") — ti(v,v"),
dwf (ti).
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An Example - First E-HSF lteration |

@ Initial candidates for the Skolem relation and its Guard.
Defs = {true — rel(v,V'), grd(v) — true} .

Initialise Constraint with the assertion true.

Clauses now contains the result of Skolemization and Defs.

Apply the solving algorithm HSF.
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An Example - First E-HSF Iteration Il

init(v) — inv(v),

inv(v) A —dst(v) A rel(v,v') — next(v, V'),
inv(v) A —dst(v) A rel(v,v') — inv(V'),
inv(v) A —dst(v) A rel(v,v') — rank(v, V'),
inv(v) A —dst(v) — grd(v),

rank(v,v') — ti(v,Vv'),

ti(v,v') A rank(v',v") — ti(v,v"),

dwf (ti),
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An Example - First E-HSF Iteration Il

init(v) — inv(v),

inv(v) A —dst(v) A rel(v,v') — next(v, V'),
inv(v) A —dst(v) A rel(v,v') — inv(V'),
inv(v) A —dst(v) A rel(v,v') — rank(v, V'),
inv(v) A —dst(v) — grd(v),

rank(v,v') — ti(v,Vv'),

ti(v,v') A rank(v',v") — ti(v,v"),

dwf (ti),

true — rel(v, V'),
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An Example - First E-HSF Iteration Il

init(v) — inv(v),

inv(v) A —dst(v) A rel(v,v') — next(v, V'),
inv(v) A —dst(v) A rel(v,v') — inv(V'),
inv(v) A —dst(v) A rel(v,v') — rank(v, V'),
inv(v) A —dst(v) — grd(v),

rank(v,v') — ti(v,Vv'),

ti(v,v') A rank(v',v") — ti(v,v"),

dwf (ti),

true — rel(v, V'),
grd(v) — true.
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An Example - Analysing the First Counter-example |

@ Counter example consists of clauses Cex

init(v) — q1(v),
q1(v) A —dst(v) A ga(v, V') — next(v, V'),
true — go(v, v').

@ SSA renaming: SYM(q1) = inv and SYM(q2) = rel.
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true — go(v, v').
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An Example - Analysing the First Counter-example |

Counter example consists of clauses Cex

init(v) — q1(v),
q1(v) A —dst(v) A ga(v, V') — next(v, V'),
true — go(v, v').

SSA renaming: SYM(q1) = inv and SYM(g2) = rel.
y>1A-(x>0)—=x' =x+y.

Cex\ Defs: y > 1A=(x>0)Ag(v,v) = X' =x+y.
Use template v/ = Tv + t for the skolem relation rel(v, v').
y>1IAa(x>0)AV =Tv+t—=x' =x+y.
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An Example - Analysing the First Counter-example |l

@ For our example,
o T is a matrix of unknown coefficients :;i :X ),
e tis a vector of unknown free coefficient (t, t,),

o X' =tux+tyy+itcand y =tux+t,y+t,

Tewodros Beyene (PUMA, TUM) The Solving Algorithm E-HSF Malta, June 17, 2013 8/21



An Example - Analysing the First Counter-example |l

@ For our example,
o T is a matrix of unknown coefficients :;i :X ),
e tis a vector of unknown free coefficient (t, t,),
o X' =tux+tyy+itcand y =tux+t,y+t,
0 y > 1A(x>0)A X = tox + tyy + tA
Y =tux+tyy+t, > x =x+y.
@ Conjoin with Constraint (true at the start), and solve.
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An Example - Analysing the First Counter-example |l

@ For our example,
tux txy)

o T is a matrix of unknown coefficients (.~ ¢~
e tis a vector of unknown free coefficient (t, t,),
o X' =tux+tyy+itcand y =tux+t,y+t,

0 y > 1A(x>0)A X = tox + tyy + tA
Y =tux+tyy+t, > x =x+y.
@ Conjoin with Constraint (true at the start), and solve.

@ SMT provides x’ = x + y Ay’ = 10 as solution.
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An Example - Analysing the First Counter-example |l

For our example,
o T is a matrix of unknown coefficients i;i :X ),
e tis a vector of unknown free coefficient (t, t,),
o X' =tux+tyy+itcand y =tux+t,y+t,

Y 2 1AA(x 2 0)A X' = toeX + tayy + te/\

Y =tux+tyy+t, > x =x+y.

Conjoin with Constraint (true at the start), and solve.

SMT provides x’ = x + y Ay’ = 10 as solution.

Update skolem relation definitions:

Defs = {x' =x+y Ay =10 — rel(v,V'), grd(v) — true}
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An Example - Second E-HSF lIteration

@ Counter example is obtained with Cex.

init(v) — q1(v),

g1(v) A =dst(v) A ga(v, V') = g3(v, V'),
X' =x+yANy =10 — g2(v,V),

q3(v7 V/) - q4(V, Vl):

@ SSA renaming: SyM(q1) = inv, SYM(q2) = rel, SYM(q3) = rank,
SYM(qa) = ti.

Tewodros Beyene (PUMA, TUM) The Solving Algorithm E-HSF Malta, June 17, 2013 9/21



An Example - Second E-HSF lIteration

@ Counter example is obtained with Cex.

init(v) — q1(v),
g1(v) A —dst(v) A ga(v, V') = g3(v, V'),
X' =x+yANy =10 — g2(v,V),
a5(v, ) = au(v, V'),
@ SSA renaming: SyM(q1) = inv, SYM(q2) = rel, SYM(q3) = rank,
SYM(qa) = ti.
o Cex )\ Defs: init(v) A —dst(v) A rel(v,v') — qa(v, V).
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An Example - Analysing the Second Counter-example |

e SYM(qs) = ti and dwf(ti) € Skolemized implies violation of
disjunctive well-foundedness.
e Construct templates bound(v) and decrease(v, v').
o bound(v) = (rx+ryy > ny).
o decrease(v,V') = (rnx' +ryy’ < nx+ry—1).
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An Example - Analysing the Second Counter-example |

SYM(qa) = ti and dwf (ti) € Skolemized implies violation of
disjunctive well-foundedness.

Construct templates bound(v) and decrease(v, V).
o bound(v) = (rx+ryy > ny).
o decrease(v,V') = (rnx' +ryy’ < nx+ry—1).

init(v) A —dst(v) A rel(v,v') = qa(v, V).
init(v) A —dst(v)A v/ = Tv + t — bound(v) A decrease(v, v').
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An Example - Analysing the Second Counter-example |

SYM(qa) = ti and dwf (ti) € Skolemized implies violation of
disjunctive well-foundedness.

Construct templates bound(v) and decrease(v, V).
o bound(v) = (rx+ryy > ny).
o decrease(v,V') = (rnx' +ryy’ < nx+ry—1).

init(v) A —dst(v) A rel(v,v') = qa(v, V).

init(v) A —dst(v)A v/ = Tv + t — bound(v) A decrease(v, v').

Y2 1AA(x 2 0)A X' = toX + tyy + b Ay = tux + tyyy + ty, —
nx+ry>nAnx +ry <rnx+ry—1
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An Example - Analysing the Second Counter-example |l

@ Add this constraint to Constraint, and apply SMT solver:

e x < —1 for bound,
e x' > x + 1 for decrease, and
o X' =x+ 1Ay =1 for the template v/ = Tv + t.
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An Example - Analysing the Second Counter-example |l

@ Add this constraint to Constraint, and apply SMT solver:

e x < —1 for bound,
e x' > x + 1 for decrease, and
o X' =x+ 1Ay =1 for the template v/ = Tv + t.

e But, solution for rel/(v,v’) is not compatible with the one obtained at
the first iteration...x’ = x + y A y/ = 10.
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An Example - Analysing the Second Counter-example |l

@ Add this constraint to Constraint, and apply SMT solver:

e x < —1 for bound,
e x' > x + 1 for decrease, and
o X' =x+ 1Ay =1 for the template v/ = Tv + t.

e But, solution for rel/(v,v’) is not compatible with the one obtained at
the first iteration...x’ = x + y A y/ = 10.

@ Hence, modify Defs:

Defs = {xX' =x+1Ay =1 rel(v,V), grd — true}
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An Example - Third E-HSF Iteration

Application of HSF returns a solution such that

inv(v

)
v) = (x —X+1/\y =1),
)=
)=

(v) =
(
rank(v, v’

ti(v, v/

E-HSF finishes herel

rel
(x<-1AX>x+1),
(x<-1AX>x+1).
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A little detail: Skolemization

@ Reformulates the problem as a problem of finding witnesses for the
existentially quantified variables.
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A little detail: Skolemization

@ Reformulates the problem as a problem of finding witnesses for the
existentially quantified variables.

@ For the clause body(v) — 3w : head(v, w), the skolem relation
rel(v, w) determines which value w satisfies head(v, w) for a given v.
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@ For the clause body(v) — 3w : head(v, w), the skolem relation
rel(v, w) determines which value w satisfies head(v, w) for a given v.

@ Each v such that body(v) holds is required to be in the domain of
the skolem relation.
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A little detail: Skolemization

@ Reformulates the problem as a problem of finding witnesses for the
existentially quantified variables.

@ For the clause body(v) — 3w : head(v, w), the skolem relation
rel(v, w) determines which value w satisfies head(v, w) for a given v.

@ Each v such that body(v) holds is required to be in the domain of
the skolem relation.

@ Domain of skolem relation rel/(v, w) represented as the guard grd(v).
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A little detail: Skolem Template

@ Templates determine the search space for:

o skolem relations,
e their guards, and
e termination arguments for well-foundedness.
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A little detail: Skolem Template

@ Templates determine the search space for:

o skolem relations,
e their guards, and
e termination arguments for well-foundedness.

o Template functions GRDT and RELT should satisfy the following
condition: for each (grd, rel) that results from skolemization of a
given existential clause, the implication

GrDT(grd)(v) — 3w : RELT(rel)(v, w) (1)

is valid.
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A little detail: Skolem Template

@ Templates determine the search space for:

o skolem relations,
e their guards, and
e termination arguments for well-foundedness.

o Template functions GRDT and RELT should satisfy the following
condition: for each (grd, rel) that results from skolemization of a
given existential clause, the implication

GrDT(grd)(v) — 3w : RELT(rel)(v, w) (1)

is valid.

o Established by choosing templates accordingly!

Tewodros Beyene (PUMA, TUM) The Solving Algorithm E-HSF Malta, June 17, 2013 14 /21



E-HSF briefly - Algorithm

1: skolemize each existential clause by creating a skolem relation.
2: for current set of candidate skolem solutions do

3: if all clauses are satisfied then
4. terminate declaring SAT
5: else
6: analyse the counter example path,
7: if a skolem relation is not involved then
8: terminate declaring UNSAT
9: else
10: encode clauses without the skolem solutions as a constraint,
store the constraint into induced constraint,
11: if induced constraint is valid then
12: update candidate skolem solutions, and go to 2
13: else
14: terminate declaring UNSAT
15: end if
16: end if
17: end if
18: end for
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Correctness

The algorithm E-HSF relies on the following propositions.

Lemma (Skolemization preserves satisfiability)

The set of clauses Clauses is equi-satisfiable with the set of clauses
computed by SKOLEMIZE when domains of Skolem relations contain
corresponding guards. Formally, Clauses is equi-satisfiable with the set

{grd(v) — 3w : rel(v,w) | grd € Grds A rel € Rels A
Parent(grd) = Parent(rel)} U Skolemized .

v
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Soundness and Progress

Theorem (Soundness)

If HSF is sound, i.e., it returns solutions for given sets of clauses, and
if GRDT(grd)(v) — 3w : RELT(rel)(v, w) holds for each grd € Grds
and rel € Rels such that Parent(grd) = Parent(rel), then, upon
termination, E-HSF returns a solution for Clauses.
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Soundness and Progress

Theorem (Soundness)

If HSF is sound, i.e., it returns solutions for given sets of clauses, and
if GRDT(grd)(v) — 3w : RELT(rel)(v, w) holds for each grd € Grds
and rel € Rels such that Parent(grd) = Parent(rel), then, upon
termination, E-HSF returns a solution for Clauses.

Theorem (Progress of refinement)

E-HSF does not consider any error derivation(counter-example) more
than once.
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Implementation and Application

@ Implementation based on HSF and the Z3 solver.
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@ Applied to verification of CTL properties.
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Implementation and Application

Implementation based on HSF' and the Z3 solver.

Applied to verification of CTL properties.

Input transition system described using Prolog facts:
e init(v), and
e next(v,v’).

CTL propery to be proved or disproved as forall-exists Horn clauses.
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Implementation and Application

Implementation based on HSF' and the Z3 solver.

Applied to verification of CTL properties.

Input transition system described using Prolog facts:
e init(v), and
e next(v,v’).

CTL propery to be proved or disproved as forall-exists Horn clauses.

o ... like the example.
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Experiment

e On industrial examples reported in 1.

!Reasoning about Nondeterminism in Programs, Byron Cook,-Eric Koskinen
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e On industrial examples reported in 1.
@ For a program and CTL property ¢, two verification tasks:

e prove ¢, and
e prove —¢.

!Reasoning about Nondeterminism in Programs, Byron Cook,-Eric Koskinen
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@ On industrial examples reported in 1.
@ For a program and CTL property ¢, two verification tasks:
e prove ¢, and
@ prove —¢.
@ For our examples, linear templates are sufficiently expressive.
o RELT(next)(v, v')=(next(v,v')Aw' = Tv+tA Gv<g), and
o GRDT(next)(v,v')=(Gv < g A3V : next(v,v')) , where w is a subset
of v that is left unconstrained by next(v,v’).

!Reasoning about Nondeterminism in Programs, Byron Cook,-Eric Koskinen
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On industrial examples reported in .

For a program and CTL property ¢, two verification tasks:
e prove ¢, and
e prove —¢.
@ For our examples, linear templates are sufficiently expressive.
o RELT(next)(v, v')=(next(v,v')Aw' = Tv+tA Gv<g), and
o GRDT(next)(v,v')=(Gv < g A3V : next(v,v')) , where w is a subset
of v that is left unconstrained by next(v,v’).
@ Linear ranking functions for dealing with well-foundedness:

o DECREASET(v)=Rv > r, and
o BounpT(v,v')=Rv' < Rv —1.

!Reasoning about Nondeterminism in Programs, Byron Cook,-Eric Koskinen
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Results

Program Property ¢ Ecr ¢ Ecr. —¢
Result Time Name Result Time Name
- P1 AG(a=1— AF(r=1)) v 1.2s 1 X 2.7s 29
o P2 EF(a=1A EG(r #5)) v 0.6s 30 X 5.2s 2
5 P3 AG(a=1— EF(r =1)) v 4.8s 3 X 0.1s 31
o) P4 EF(a=1A AG(r #1)) v 0.6s 32 X 0.4s 4
o P5 AG(s =1 — AF(u=1)) v 6.1s 5 X 0.2s 33
@ P6 EF(s = 1 A EG(u # 1)) v 1.4s 34 X 3.65 6
5 P7 AG(s =1 — EF(u = 1)) v 12.9s 7 X 0.2s 35
) P8 EF(s = 1 A AG(u # 1)) v 44.7s 36 X 3.8s 8
w P9 AG(a=1— AF(r =1)) v 51.3s 9 X 120.0s 37
@ P10 EF(a=1A EG(r # 1)) v 132.0s 38 X 45.9s 10
b P11 AG(a=1— EF(r =1)) v 67.6s 11 X 3.9s 39
o) P12 EF(a=1A AG(r #1)) v 67.9s 12 X 3.8s 40
< P13 | AF(io = 1) V AF(ret = 1) v 37mb4s 13 T/0 B 41
@ P14 | EG(io # 1) A EG(ret # 1) T/0 - 42 X 136.6s 14
= P15 | EF(io = 1) A EF(ret = 1) T/0 - 15 X 1.4s 43
o) P16 | AG(io #1) V AG(ret # 1) v 0.1s 44 X 874.5s 16
2 P17 AG(AF(w > 1)) v 3.0s 17 X 0.1s 45
I P18 F(EG(w < 1) v 0.5s 46 X 3.5s 18
= P19 AG(EF(w > 1)) v 3.3s 19 X 0.1s 47
o P20 F(AG(w < 1) v 0.7s 48 X 0.1s 20
o P21 AG(AF(w = 1) v 2.8s 21 X 0.1s 49
g P22 EF(EG(w #1) v 2.2s 50 X 5.0s 22
Ic) P23 AG(EF(w = 1) v 4.5s 23 x 0.1s 51
= P24 EF(AG(w # 1) v 3.4s 52 X 0.7s 24
H P25 ¢c>5— AF(r > 5) v 32s 25 X 0.1s 53
=) P26 ¢ >5NAEG(r<5) X 0.1s 54 X 1.3s 26
= P27 ¢ >5— EF(r > 5) X 0.2s 27 X 0.1s 55
n P28 c>5AAG(r <5) X 0.1s 56 X 0.3s 28
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Summary

@ Algorithm to solve existentially quantified horn clauses.
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@ Algorithm to solve existentially quantified horn clauses.

@ Application to verification of CTL properties.
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