Formal Methods in Aerospace:
Constraints, Assets and Challenges

Virginie Wiels — ONERA/DTIM

Overview

1. Constraints
certification

2. Assets
iIndustrial practice of formal methods

3. Challenges
research themes at Onera

Focus on software
(but some information on systems, architectures and networks in 3)

ONERA

Certification

- Negotiation between industrial company and certification
authorities all along the development
EASA Europe
FAA USA

. For each aircraft

- Based on existing certification standards

- With negotiated specificities
(Certification Review Item)

ONERA

Aeronautic safety standards

Airworthiness Regulation Requirements
0 FAR CS 25.1309: « Equipment, Systems and Installation »

Law
0 AC AMC 25.1309: « System, Design and Analysis »
1
Safety Assessment Process : Safety Assessment of Aircraft in
Guidelines & Methods Commercial Service
(ARP 4761 | ED -135) (ARP 5150 / 5151)
Intended Function , Failure System
Aircraft & Safet Desi
Function arety esign
Information Information
‘ Aircraft & System Development F”g;;'toerr‘]fl
Processes Operation
(ARP 4754 [ED -79) H
7§ I Y\
Guidelines for Integrated
Modular Avionics
(DO -297 /ED -124)
1
A 4 v]
Electronic Hardware Software Development
Development Life - Cycle Life -Cycle
(DO -254 [ED -80) (DO -178 B /ED -12 B)
Development Phase In -Service /Operational Phase

0
Z
nm
lin
’r >

\L
‘l

Development Assurance Level

Relationships ARP 4754 | DO-178B

Software development assurance
level is defined with respect to
the criticality level of the system
in which the software is
iIncluded, to the potential
consequences of the failure of
this system

Certification objectives for software
are then defined for each DAL
by ED-12/DO-178.

Failure condition

DAL (development
assurance level)

CAT (109) A
HAZ (10°7) B
MAJ (10°) C
MIN D
No safety effect E

ONERA

DO-17/8B

Introduction

System aspects relating to software development
Software life cycle

Software planning process

Software development processes

Software verification process

Software configuration management process
Software quality assurance process

Certification liaison process

Overview of aircraft and engine certification
Software life cycle data

Additional considerations

Annex A: Process objectives and outputs by software level
Annex B: Acronyms and glossary of terms Introduction

ONERA

Software development processes

System
Requirementg

A

y

High-

Requirements

Level

Software
Architecture

Low-Level

Requirementg

A

y

Source Code

l

Executable
Object Code

Software requirement process

Software design process

Software coding process

Software integration process

ONERA

.

Software verification process objecti

L System . A-3.1 Compliance
equiremen A-3.6 Traceability

A-3.2 Accuracy & Consistenc
A-3.3 HW Compeatibility

A-3.4 Verifiability

A-3.5 Conformance

A-3.7 Algorithm Accuracy High-Level
Requirements A7 Verification of verification

A-4. 8 Architecture Compatibility A-4.1 Compliance (Functional & Structural coverage)
A-4.6 Traceability

A-4.9 Consistency A-4.2 Accuracy &

A-4.10 HW Compatibility Consistency

A-4.11 Verifiability A-4.3 HW Compatibility

A-4.12 Confqrmance . Software Low-Level A-4.4 Verifiability

A-4.13 Partition Integrity Architecture Requirement A-4.5 Conformance
x A-4.7 Algorithm Accufacy

A-6.3 Compliance
A-6.4 Robustness

A-5.2 Compliance I
A-5.1 Compliance

,\ A-5.5 Traceability
A 4

Source Code

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

—

A-6.1 Compliance
A-6.2 Robustness

Executable
f Object Code

A-6.5 Compatible With Target

l
A-5. 7 Complete & Correct |

ONERA

System
Requirements

A-3.2 Accuracy & Consistenc
A-3.3 HW Compeatibility

A-3.4 Verifiability A-2]1, 2)
A-3.5 Conformance

A-3.7 Algorithm Accuracy High-Level

Requirements

A-4. 8 Architecture Compatibility

A-3.1 Compliance L
A-3.6 Traceability

Compliance: with requirements
Conformance: with standards
With independence

A7 Verification of verification

(Functional & Structural coverage)

A-4.1 Compliance
A-4.6 Traceability

. (A-2: 3] 4, 5)
A-4.9 Consistency A-4.2 Accuracy & Consigtency
A-4.10 HW Compatibility A-4.3 HW Compatibility
A-4.11 Verifiability A-4.4 Verifiability
A-4.12 Conformance Software Low-Level A-4.5 Conformance
A-4.13 Partition Integrity Architecture Requirement A-4.7 Algorithm Accurage

z
A-5.2 Compliance I .
(A-2:16) A-5.1 Compliance A-6.3 Compliance

—~

Source Code

(A-zin

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

—

Executable

f Object Code

l
A-5. 7 Complete & Correct |

A-5.5 Traceability

A-6.5 Compatible With Target

A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

ONERA

-

System
Requirements

A-3.2 Accuracy & Consistenc
A-3.3 HW Compeatibility

A-3.4 Verifiability A-2]1, 2)
A-3.5 Conformance

A-3.7 Algorithm Accuracy High-Level

Requirements

A-4. 8 Architecture Compatibility

A-3.1 Compliance l
A-3.6 Traceability

Compliance: with requirements

Conformance: with standards
With independence

A7 Verification of verification

(Functional & Structural coverage)

A-4.1 Compliance
A-4.6 Traceability

. (A-2: 3] 4, 5)
A-4.9 Consistency A-4.2 Accuracy & Comsistency
A-4.10 HW Compatibility A-4.3 HW Compatibility
A-4.11 Verifiability A-4.4 Verifiability
A-4.12 Conformance Software Low-Level A-4.5 Conformance
A-4.13 Partition Integrity Architecture Requirement A-4.7 Algorithm Accurge
%
A-5.2 Compliance I _
(A-2:16) A-5.1 Compliance A-6.3 Compliance

—~

Source Code

(A-zin

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

o

Executable

f Object Code

l
A-5. 7 Complete & Correct |

A-5.5 Traceability

A-6.5 Compatible With Target

A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

ONERA

-

A-3.2 Accuracy & Consistenc

A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-4. 8 Architecture Compatibility

A-4.9 Consistency

System
Requirements

(A-2:3

High-Level
Requirements
A-4.1 Compliance

A-4.6 Traceability
4,5)

A-4.12 Conformance
A-4.13 Partition Integrity

Software
Architecture

Low-Level

Requirement

Z

A-5.2 Compliance I

A-5.4 Conformance
A-5.6 Accuracy &Consistency

(A-2:

—~

6)

Compliance: with requirements |
| Conformance: with standards

_ I
A-3.1 Compliance | With independence I
A-3.6 Traceability L I

—— — — — — — — — — — — —]

A7 Verification of verification
(Functional & Structural coverage)

A-4.2 Accuracy & Comsistency

A-4.5 Conformance
A-4.7 Algorithm Accurag

A-5.1 Compliance A-6.3 Compliance
A-5.5 Traceability A-6.4 Robustness

—

Source Code

(A-zin

Executable
f Object Code

l
A-5. 7 Complete & Correct |

A-6.1 Compliance
A-6.2 Robustness

A-6.5 Compatible With Target

ONERA

Software verification process

Compliance: with requirements |

. System) | Conformance: with standards |
A-3.2 Accuracy & Consistenc Requirements A-3.1 Compliance I With independence |
qul A-3.6 Traceability L i
A2, Y} ST TTTTTTTTTTT=
High-Level
Requirements A7 Verification of verification
(Functional &)

(A-2: 3] 4, 5)

oy : Software Low-Level
A-4.13 Partition Integrity Architecture Requirement

Z

I (A-2:|6)

—~

Source Code

o

(A-2i7) A-6.1 Compliance
A-6.2 Robustness
Executable
I /| Object Code .
| A-6.5 Compatible With Target

ONERA

- Reviews: qualitative assessment of correctness

- Analyses : repeatable assessment of correctness

6.3 Software reviews and analyses
6.3.1 Reviews and analyses of the HLR
6.3.2 Reviews and analyses of the LLR
6.3.3 Reviews and analyses of the software architecture
6.3.4 Reviews and analyses of the source code
6.3.5 Reviews and analyses of the outputs of the integration process
6.3.6 Reviews and analyses of the test cases, procedures and results

ONERA

A-3.4 Verifiability
A-3.5 Conformance

, System . | __ Conformance: with standards
A-3.2 Accuracy & Consistenc = . i A-3.1 Compliance = —o————————————-—
A-3.3 HW Compatibility equiremen A-3.6 Traceability

A-3.7 Algorithm Accuracy

A-4. 8 Architecture Compatibility

A-4.9 Consistency

High-Level
Requirements

A-4.1 Compliance
A-4.6 Traceability
(A-2: 3[4, 5)
A-4.2 Accuracy &

A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance Software Novilevel

A-4.13 Partition Integrity

A-5.2 Compliance I

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

'Source Code

(A-zin

| Executable
/ Object Code

l
A-5. 7 Complete & Correct [

7

Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability

Architecture Requirementg A-4.5 Conformance
x A-4.7 Algorithm Accuracy
(A-2:(6) A-5.1 Compliance
A-5.5 Traceability

ONERA

- Reviews: qualitative assessment of correctness
- Analyses : repeatable assessment of correctness

« Test

6.4 Software testing process
6.4.1 Test environment
6.4.2 Requirements-based test case selection
6.4.3 Requirements-based testing method
6.4.4 Test coverage analysis

ONERA

A-3.2 Accuracy & Consistenc
A-3.3 HW Compatibility

A-3.4 Verifiability

A-3.5 Conformance

A-3.7 Algorithm Accuracy

A-4. 8 Architecture Compatibility
A-4.9 Consistency (A-2:3{4,5)

High-Level
Requirements

A-3.1 Compliance
A-3.6 Traceability

A-4.1 Compliance
A-4.6 Traceability

A-4.10 HW Compatibility
A-4.11 Verifiability

mare

A-4.12 Conformance Low—LeveI
A-4.13 Partition Integrity Architecture Requirement
x
A-5.2 Compliance I
(A-2:|6)

A-5.3 Verifiability
A-5.4 Conformance

\
'Source Code
A-5.6 Accuracy &Consistency

(A-zin

| Executable |

A-5.1 Compliance
A-5.5 Traceability

A-4.2 Accuracy &
Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability

A-4.5 Conformance
A-4.7 Algorithm Accuracy

A-6.3 Compliance
A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

Object Code

l
A-5. 7 Complete & Correct [

A-6.5 Compatible With Target

ONERA

Functional test onhy

Coverage analysis
- functional
- structural

—_— Software gy - - == —
Requirements-Based

Coverage Analysis

—
Test Generation - - — — 4 |
|
b
Hardware/ ! I
ardware
Low-Level ! SOHW::{e Software |
Tests ntegration o ! |
Tests ntegration '
Tests |
b
Software Requirementsj — — — .J I
|
i
J

| Software Structure
Coverage Analysis

4 ;
~
——4» Direct Path
End of Testing — —p» Conditional Path

Additional
Verification

ONERA

Coverage

- Nominal and robustness test cases

- Functional coverage
At least one test case for each requirement (HLR and LLR)

- Structural coverage

Coverage criterai depending on DAL
 MC/DC coverage level A
» Decision coverage level B
« Statement coverage level C

Dead code must be removed

ONERA

DO-178C

- RTCA SC-205/ EUROCAE WG-71
2005-2011
Industrials, certification authorities, tool vendors, experts
Consensus

- Outcome
Core document DO-178C
New document : DO-330 Tool qualification

Technical supplements
* Model Based Development DO-331
» Object-Oriented technologies DO-332
» Formal Methods DO-333

ONERA

A

DO-333: Formal Methods Technical

.

Enables the use of formal methods in replacement

of traditional verification techniques
Provides a guide for the use of formal methods
* Modify existing objectives
» Define new objectives

» Describe activities
» Define conditions for their use

Provides information on formal methods
ldentifies and presents their characteristics

ONERA

.
N

DO-333: Definition of Formal Methods

' :\f‘\?\ :—:‘.__f_" \
"
NS

7 o

W

A model is an abstract representation of a given set of aspects of
a system that is used for analysis, simulation, code generation,
or any combination thereof.

A formal model is a model defined using a formal notation

Formal model

Formal method .
Formal analysis

A formal notation is a notation having a precise,
unambiguous, mathematically defined syntax and
semantics.

ONERA

DO-333: Definition of formal methods

The use of mathematical reasoning to guarantee that
properties are always satisfied by a formal model.

Formal model

Formal method .
Formal analysis

Soundness is required for an analysis to be
considered formal

ONERA

Accuracy & Consistency
HW Compatibility

Verifiability
Conformance

Architecture Compatibility Compliance

Traceability

Consistency
HW Compatibility

Verifiability
Conformance
Partition Integrity . "Requiremen

Compliance I

Traceability
Verifiability
Conformance
Source Co
Accuracy & Consistency -

Compliance

Compliance
Traceability

When HLR are formaly expressed

Formal analysis can be used

Accuracy & Consisten
HW Compatibility
Verifiability
Conformance
Algorithm Accuracy

Compliance

Robustness
Compliance
Robustness
e With Target
R g ONERA

NN

Accuracy & Consistency
HW Compatibility
Verifiability
Conformance

Algorithm Accuracy

Architecture Compatibility

Consistency

HW Compatibility
Verifiability
Conformance
Partition Integrity

Compliance
Traceability

Compliance
Traceabilit
e I

Compliance I

Verifiability
Conformance
Accuracy & Consistency

O
ORI IN SN

Compliance

Traceability
i/(

AaD thla\A
>V
.

\ h Target

When HLR and LLR are formaly
expressed

Formal analysis can be used

Accuracy & Consisten
HW Compatibility
Verifiability
Conformance
Algorithm Accuracy

Compliance
Robustness

Compliance
Robustness

ONERA

Accuracy & Consistency
HW Compatibility
Verifiability
Conformance

Algorithm Accuracy

Architecture Compatibility

Consistency

HW Compatibility
Verifiability
Conformance
Partition Integrity

Compliance I

Verifiability
Conformance
Accuracy & Consistency

O
ORI IN SN

|/<

Compliance

" \When LLR are formaly expressed
with property preservation between
source code and EOC, then Formal

analysis can be used to replace some

Compliance
Traceability

e)
Traceability
Property

preservation

Accuracy & Consisten
HW Compatibility
Verifiability
Conformance
Algorithm Accuracy

Co ance
ko ess

Compliance
Robustness

ble With Target
N

ONERA

Compliance
Traceability

Accuracy & Consistency
HW Compatibility
Verifiability
Conformance

Algorithm Accuracy

Architecture Compatibility Compliance

Traceability

Consistency

HW Compatibility
Verifiability
Conformance
Partition Integrity

Accuracy & Consisten
HW Compatibility
Verifiability
Conformance
Algorithm Accuracy

Compliance I

Verifiability
Conformance

Source Co
Accuracy & Consistency -

Compliance
Robustness

Compliance
Traceability

Properties might be proved directly o Compliance
EOC : WCET, Stack usage, ... Robustness
aomnleie £ Orre = OTICEA

FM Supplement : Formal verification

Formal Analysis might replace :
Review and analysis objectives
Conformance tests versus HLR & LLR
Robustness tests

Formal Analysis might help for verification of compatibility with
the hardware

Formal Analysis cannot replace HW/SW integration tests

Therefore testing will always be required.

ONERA

usm formal methods

. Test

Requirements-based coverage analysis
Structural coverage analysis

- Formal methods: the structural coverage objectives may be replaced
by
Complete coverage of each requirement (6.7.1.2)
Completeness of the set of requirements (6.7.1.3)
Detection of unintended dataflow relationships (6.7.1.4)

Detection of extraneous code including dead code and
deactivated code (6.7.1.5)

ONERA

FM 6.7.1 Principle of coverage analyS|s »
using formal methods

. Structural coverage analysis aims at detecting:

Shortcomings in requirements-based verification cases or procedures
. 6.7.1.2

Inadequacies in software requirements : 6.7.1.3 +6.7.1.4
Extraneous code, including dead code, and deactivated code : 6.7.1.5

- Intuitively
FM ensure exhaustive coverage for a given requirement

To ensure complete coverage of the code, it remains to show that the
set of requirements is complete wrt to the considered function

ONERA

Overview

1. Constraints
certification

2. Assets
Industrial practice of formal methods

3. Challenges
research themes at Onera

ONERA

Industrial practice: MBD

Model based development

Aircraft
high level
requirements

High level
requirements

Flight tests
f Aircraft level
simulation Ground tests

¥

Aircraft level

o)]
> Model tests —
- detailed
g requirements 1
g ;
w
Scade design !
§ Partial automatic
L code generation
-
=
£ Partial manual | Unit testing
= Coding and
8— Formal verification
L

ONERA

Industrial practice: FM

- Models (Simulink, Scade)

Model checking
* No certification credit yet
» Better model earlier
- Source code (C, ada)

Proof of functional properties
« DO-178 level A

- Model/code
Robustness analysis of models using static analysis on source code

- EOC

Abstract interpretation
for stack analysis, wcet, absence of run-time errors

e DO-178 level A, B, C

ONERA

Airbus example

' Aircraft level

Ground tests

Lab tests

: A

>

2 Aircraft

ﬁ high level

O requirements

< ~ simulation
High level

o requirements W

:

E detailed

5 requirements

3

») ! /

Scade design 4

E’ Partial automatic

L) code generation

= -

£ Partial manual

(=¥ Codi

£ ng '

o

w

Integration testing

Unit testing
and
Formal verification

Experimenting

model checking on

Scade model

Absint
Frama-C

for DO-178 level A

ONMNER

- Frama-C frama-c.com
Extensible and collaborative platform

Dedicated to source-code analysis of C software
Connected to Z3, CVC3, Yices, Alt-Ergo, Coq, ...

- Absint

Abstract interpretation based tools
Stack analysis

Wcet computation

Absence of run-time errors

- Tools have to be qualified (DO-330)

ONERA

Industrial practice of formal methods

- 5 criteria defined by Airbus for the use of formal methods

Soundness

Cost Savings

Analysis of unaltered programs

Usability by normal software engineers on normal machines
Ability to be integrated into the DO-178B conforming process

ONERA

A few references

- Testing or Formal Verification: DO-178C Alternatives and
Industrial Experience

Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels,
Benjamin Monate

|IEEE Software, 2013

- Formal verification of avionics software products
Jean Souyris, Virginie Wiels, David Delmas, Hervé Delseny

FM 2009

- Model checking flight control systems: the Airbus experience
Thomas Bochot, Pierre Virelizier, Hélene Waeselynck and Virginie Wiels
ICSE 2009

- www.onera.fr/staff/virginie-wiels

ONERA

Overview

1. Constraints
certification

2. Assets
iIndustrial practice of formal methods

3. Challenges
research themes at Onera

ONERA

Formal safety assessment

- Formal models (Altarica)

- Evaluation
Elementary causes of a failure
Probability of failure

- Synthesis (solvers)

Independence relations

DAL allocation
(Development Assurance Level)

- Industrial applications greenloss
Dassault (Falcon 7X) meoz il iloss
Airbus p

wpglass disi:‘loss
AS'[I’I um elecpumpg-lt/sélhmumploss

- PoC: Pierre.Bieber@onera.fr woglos elecl;“;;ami “Yid"i"“ o

ONERA

Architecture exploration

Scare
Pb-Solvers:
R - minisat+
Model - Sat4J
Instance - wbo
0/ -
R
DSL Constraints
Instance Optimization
A 4

- Synthesis of correct solutions
From a set of constraints
Multi-viewpoints (Safety, Real Time, ...)

- Design choices exploration/ dimensioning
Applied to allocation of functions on architectures

- PoC: David.Doose@onera.fr

ONERA

- Worst Case Traversal Time
Commuted networks (AFDX...)
Network calculus “ 1
Tool developed with RTaW - '
PoC : Marc.Boyer @ onera.fr

- Worst Case Response Time
Includes functional level

Constraint solving , [o
PoC : Frederic.Boniol@onera.fr L oty .

. . SR
- Worst Case Execution Time =
2 TR A 374 PO NTTH_ SHADING AND PRIOKITIES, StawCase, UPP. EXACT FRACTION]
Probabilistic methods e I
: : s N B |
PoC : Luca.Santinelli@onera.fr R . |
” B Tt s |
7 900 s o7
Red means that the time constraint cannot pted [
be guaranteed for a given vu'tual hnk m: |
|] us
= VI‘I'CR"H"_‘
— . —

Texas 8 cores Freescale 8 cores Tilera 32 cores Kalray 256 cores

- Multi-many
Demonstration of determinism?

- Scheduling
Schedulability analysis
Off-line scheduling synthesis

- Code generation
Multi-threaded

- PoC: Eric.Noulard@onera.fr,Claire.Pagetti@onera.fr

ONERA

Cooperation of formal techniques

- Verification framework at model level (Lustre)
K-induction, backward analysis, invariant generation, Al
In collaboration with Rockwell-Collins

- Poc: Remi.Delmas@onera.fr

Invariant

generators \

backward
analysis
(PDR, ...)

‘:;;za:ﬁ:; Lustre model .

k-induction

ONERA

Software verification: model/code

- Formal proof of compliance of C code wrt UML state
machine model (using Frama-C)

- PoC: Thomas.Polacsek@onera.fr

Design phase Implementation phase Verification phase
C language
Generation or
hand coding Code
Behav(;omljral Saiie
mode analysis

UML Frama-C

State
Machine

Generation Assertions
ACSL

ONERA

- Stabllity properties of control-command systems
Embedding properties all along the development
In collaboration with Georgia Tech, NASA, lowa University

- PoC: Pierre-Loic.Garoche@onera.fr

+ Stability
Sirulinl roofs Constructive proofs: need to
- be anchored in the source
\ + 1 Replay stabili f
\\J TR S eplay stability proofs
controller T Safe Verify Safety Architecture

+ Safety Arch.| Props

.~ + ACSL | Replay Stability proofs

C codeSpec) Replay Safety proofs

+ RTE | Address language or
hardware issues

-
-~
-
-
-
- -

Certified Compiler “---rueeeos N
eg. Compcert Bin
ary

annotation
_ O/O Manually written vs Generated model/code/prop ONERA
/_‘—____—'__.““—.

- Formal verification of temporal
properties on execution traces
Avionics software (Airbus)

Static analysis for the generation
of observation points

Efficient verification (Blchi) for -
|Ong fraces Execution

Property \ Trace
- Long-term objective

Finely combine static analysis, g
. . csu
dynamic analysis and test |

Program

Dynamic JHJIV‘A&.\

Observation
points

L A
. PoC : Virginie.Wiels@onera.fr ™ ¢ B connbuon D nemedaretic

ONERA

Support to certification

- Software

Application of DO-333 (FM) and DO-331 (MBDV)
- Tools

Certification of FM tools

- IMA (Integrated Modular Architectures)
Support to certification authorities
Incremental certification

- ARP 4754

DAL allocation

- Multi/Manycore
|dentification of specific issues for certification

ONERA

