
•1

Formal Methods in Aerospace:
Constraints, Assets and Challenges

Virginie Wiels – ONERA/DTIM

Overview

1. Constraints
certification

2. Assets
industrial practice of formal methods

3. Challenges
research themes at Onera

•Focus on software
•(but some information on systems, architectures and networks in 3)

Certification

• Negotiation between industrial company and certification
authorities all along the development

• EASA Europe
• FAA USA

• For each aircraft
• Based on existing certification standards
• With negotiated specificities

(Certification Review Item)

Aeronautic safety standards

Intended
Aircraft

Function

System
Design

Information

Functional
System

Function , Failure
& Safety
Information

Electronic Hardware
Development Life - Cycle

(DO - 254 / ED -80)

Safety Assessment of Aircraft in
Commercial Service
(ARP 5150 / 5151)

Operation

Development Phase In -Service /Operational Phase

Software Development
Life -Cycle

(DO - 178 B /ED - 12 B)

Safety Assessment Process
Guidelines & Methods
(ARP 4761 / ED -135)

Airworthiness Regulation Requirements
o FAR CS 25.1309: « Equipment, Systems and Installation »
o AC AMC 25.1309: « System, Design and Analysis »

Law

Guidelines for Integrated
Modular Avionics
(DO - 297 / ED -124)

Aircraft & System Development
Processes

(ARP 4754 / ED -79)

Development Assurance Level

Relationships ARP 4754 / DO-178B
Software development assurance

level is defined with respect to
the criticality level of the system
in which the software is
included, to the potential
consequences of the failure of
this system

Certification objectives for software
are then defined for each DAL
by ED-12/DO-178.

Failure condition DAL (development
assurance level)

CAT (10-9) A

HAZ (10-7) B

MAJ (10-5) C

MIN D

No safety effect E

DO-178B

1. Introduction
2. System aspects relating to software development
3. Software life cycle
4. Software planning process
5. Software development processes
6. Software verification process
7. Software configuration management process
8. Software quality assurance process
9. Certification liaison process
10. Overview of aircraft and engine certification
11. Software life cycle data
12. Additional considerations
• Annex A: Process objectives and outputs by software level
• Annex B: Acronyms and glossary of terms Introduction

SOFTWARE CONSIDERATIONS IN
AIRBORNE SYSTEMS

AND EQUIPMENT CERTIFICAION

RTCA

DOCUMENT NO. RTCA/DO-
178B

December 1, 1992
Prepared by: SC-167

“Requirements and Technical Concepts for Aviation”

Software development processes

System
Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

Low-Level
Requirements

Software requirement process

Software design process

Software coding process

Software integration process

Software verification process objectives

Compliance: with requirements
Conformance: with standardsSystem

Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

Low-Level
Requirements

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

A-5. 7 Complete & Correct

A-3.1 Compliance
A-3.6 Traceability

A-4.1 Compliance
A-4.6 Traceability

A-4. 8 Architecture Compatibility

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Partition Integrity

A-4.2 Accuracy &
Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.7 Algorithm Accuracy

A-5.1 Compliance
A-5.5 Traceability

A-5.2 Compliance
A-6.3 Compliance
A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

A-6.5 Compatible With Target

A7 Verification of verification
(Functional & Structural coverage)

Verification process objectives level A

Compliance: with requirements
Conformance: with standards

With independence
System

Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

(A-2: 3, 4, 5)

(A-2: 7)

(A-2: 6)

(A-2: 1, 2)

Low-Level
Requirements

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

A-5. 7 Complete & Correct

A-3.1 Compliance
A-3.6 Traceability

A-4.1 Compliance
A-4.6 Traceability

A-4. 8 Architecture Compatibility

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Partition Integrity

A-4.2 Accuracy & Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.7 Algorithm Accuracy

A-5.1 Compliance
A-5.5 Traceability

A-5.2 Compliance
A-6.3 Compliance
A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

A-6.5 Compatible With Target

A7 Verification of verification
(Functional & Structural coverage)

Software verification process : level B

Compliance: with requirements
Conformance: with standards

With independence
System

Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

(A-2: 3, 4, 5)

(A-2: 7)

(A-2: 6)

(A-2: 1, 2)

Low-Level
Requirements

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

A-5. 7 Complete & Correct

A-3.1 Compliance
A-3.6 Traceability

A-4.1 Compliance
A-4.6 Traceability

A-4. 8 Architecture Compatibility

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Partition Integrity

A-4.2 Accuracy & Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.7 Algorithm Accuracy

A-5.1 Compliance
A-5.5 Traceability

A-5.2 Compliance
A-6.3 Compliance
A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

A-6.5 Compatible With Target

A7 Verification of verification
(Functional & Structural coverage)

Software verification process : level C

Compliance: with requirements
Conformance: with standards

With independence
Not required

System
Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

(A-2: 3, 4, 5)

(A-2: 7)

(A-2: 6)

(A-2: 1, 2)

Low-Level
Requirements

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

A-5. 7 Complete & Correct

A-3.1 Compliance
A-3.6 Traceability

A-4.1 Compliance
A-4.6 Traceability

A-4. 8 Architecture Compatibility

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Partition Integrity

A-4.2 Accuracy & Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.7 Algorithm Accuracy

A-5.1 Compliance
A-5.5 Traceability

A-5.2 Compliance
A-6.3 Compliance
A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

A-6.5 Compatible With Target

A7 Verification of verification
(Functional & Structural coverage)

Software verification process : level D

System
Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

(A-2: 3, 4, 5)

(A-2: 7)

(A-2: 6)

(A-2: 1, 2)

Low-Level
Requirements

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

A-5. 7 Complete & Correct

A-3.1 Compliance
A-3.6 Traceability

A-4.1 Compliance
A-4.6 Traceability

A-4. 8 Architecture Compatibility

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Partition Integrity

A-4.2 Accuracy & Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.7 Algorithm Accuracy

A-5.1 Compliance
A-5.5 Traceability

A-5.2 Compliance
A-6.3 Compliance
A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

A-6.5 Compatible With Target

A7 Verification of verification
(Functional & Structural coverage)

Compliance: with requirements
Conformance: with standards

With independence
Not required

Software verification process activities

• Reviews: qualitative assessment of correctness
• Analyses : repeatable assessment of correctness

6.3 Software reviews and analyses
6.3.1 Reviews and analyses of the HLR
6.3.2 Reviews and analyses of the LLR
6.3.3 Reviews and analyses of the software architecture
6.3.4 Reviews and analyses of the source code
6.3.5 Reviews and analyses of the outputs of the integration process
6.3.6 Reviews and analyses of the test cases, procedures and results

Software verification process activities

Compliance: with requirements
Conformance: with standardsSystem

Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

(A-2: 3, 4, 5)

(A-2: 7)

(A-2: 6)

(A-2: 1, 2)

Low-Level
Requirements

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

A-5. 7 Complete & Correct

A-3.1 Compliance
A-3.6 Traceability

A-4.1 Compliance
A-4.6 Traceability

A-4. 8 Architecture Compatibility

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Partition Integrity

A-4.2 Accuracy &
Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.7 Algorithm Accuracy

A-5.1 Compliance
A-5.5 Traceability

A-5.2 Compliance

Software verification process activities

• Reviews: qualitative assessment of correctness
• Analyses : repeatable assessment of correctness

• Test
6.4 Software testing process

6.4.1 Test environment
6.4.2 Requirements-based test case selection
6.4.3 Requirements-based testing method
6.4.4 Test coverage analysis

Software verification process activities

Compliance: with requirements
Conformance: with standardsSystem

Requirements

High-Level
Requirements

Software
Architecture

Source Code

Executable
Object Code

(A-2: 3, 4, 5)

(A-2: 7)

(A-2: 6)

(A-2: 1, 2)

Low-Level
Requirements

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy &Consistency

A-5. 7 Complete & Correct

A-3.1 Compliance
A-3.6 Traceability

A-4.1 Compliance
A-4.6 Traceability

A-4. 8 Architecture Compatibility

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Partition Integrity

A-4.2 Accuracy &
Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.7 Algorithm Accuracy

A-5.1 Compliance
A-5.5 Traceability

A-5.2 Compliance
A-6.3 Compliance
A-6.4 Robustness

A-6.1 Compliance
A-6.2 Robustness

A-6.5 Compatible With Target

Test

Functional test only

Coverage analysis
- functional
- structural

Coverage

• Nominal and robustness test cases

• Functional coverage
• At least one test case for each requirement (HLR and LLR)

• Structural coverage
• Coverage criterai depending on DAL

• MC/DC coverage level A
• Decision coverage level B
• Statement coverage level C

• Dead code must be removed

DO-178C

• RTCA SC-205 / EUROCAE WG-71
• 2005-2011
• Industrials, certification authorities, tool vendors, experts
• Consensus

• Outcome
• Core document DO-178C
• New document : DO-330 Tool qualification
• Technical supplements

• Model Based Development DO-331
• Object-Oriented technologies DO-332
• Formal Methods DO-333

DO-333: Formal Methods Technical Supplement

Enables the use of formal methods in replacement
of traditional verification techniques

• Provides a guide for the use of formal methods
• Modify existing objectives
• Define new objectives
• Describe activities
• Define conditions for their use

• Provides information on formal methods
• Identifies and presents their characteristics

A model is an abstract representation of a given set of aspects of
a system that is used for analysis, simulation, code generation,
or any combination thereof.

DO-333: Definition of Formal Methods

A formal model is a model defined using a formal notation

Formal method
Formal model
Formal analysis

•A formal notation is a notation having a precise,
unambiguous, mathematically defined syntax and
semantics.

DO-333: Definition of formal methods

Formal method
Formal model
Formal analysis

The use of mathematical reasoning to guarantee that
properties are always satisfied by a formal model.

•Soundness is required for an analysis to be
considered formal

• HLR
• Formal

•HLR

•Accuracy & Consistency
•HW Compatibility
•Verifiability
•Conformance
•Algorithm Accuracy

FM 6.3: software reviews and analyses

•Accuracy & Consistency
•HW Compatibility
•Verifiability
•Conformance
•Algorithm Accuracy

•Verifiability
•Conformance
•Accuracy & Consistency

•Complete & Correct

•Compliance
•Traceability

•Architecture Compatibility •Compliance
•Traceability

•System
•Requirements

•Software
•Architecture

•Source Code

•Executable
•Object Code

•Low-Level
•Requirements

•Compliance
•Compliance
•Traceability

•Compliance
•Robustness

•Compatible With Target

•Compliance
•Robustness

•Accuracy & Consistency
•HW Compatibility
•Verifiability
•Conformance
•Algorithm Accuracy

•Consistency
•HW Compatibility
•Verifiability
•Conformance
•Partition Integrity

•When HLR are formaly expressed

•Formal analysis can be used

• HLR
• Formal

•HLR

•Accuracy & Consistency
•HW Compatibility
•Verifiability
•Conformance
•Algorithm Accuracy

FM 6.3 : software reviews and analyses

•Verifiability
•Conformance
•Accuracy & Consistency

•Complete & Correct

•Compliance
•Traceability

•Architecture Compatibility •

•

•System
•Requirements

•Software
•Architecture

•Source Code

•Executable
•Object Code

•Low-Level
•Requirements

•Compliance
•Compliance
•Traceability

•Compliance
•Robustness

•Compatible With Target

•Compliance
•Robustness

•Accuracy & Consistency
•HW Compatibility
•Verifiability
•Conformance
•Algorithm Accuracy

•Consistency
•HW Compatibility
•Verifiability
•Conformance
•Partition Integrity

•When HLR and LLR are formaly
expressed

•Formal analysis can be used

• Formal
•LLR

•Compliance
•Traceability

• HLR

•Accuracy & Consistency
•HW Compatibility
•Verifiability
•Conformance
•Algorithm Accuracy

FM 6.7 : Formal analyses of the EOC

•Verifiability
•Conformance
•Accuracy & Consistency

•Complete & Correct

•Compliance
•Traceability

•Architecture Compatibility •Compliance
•Traceability

•System
•Requirements

•Software
•Architecture

•Source Code

•Executable
•Object Code

•Low-Level
•Requirements

•Compliance
•Compliance
•Traceability

•Compliance
•Robustness

•Compatible With Target

•Compliance
•Robustness

•Accuracy & Consistency
•HW Compatibility
•Verifiability
•Conformance
•Algorithm Accuracy

•Consistency
•HW Compatibility
•Verifiability
•Conformance
•Partition Integrity

•When LLR are formaly expressed
with property preservation between
source code and EOC, then Formal

analysis can be used to replace some
tests

• Formal
•LLR

•

•

•Property
•preservation

•X

• HLR

•Accuracy & Consistency
•HW Compatibility
•Verifiability
•Conformance
•Algorithm Accuracy

FM 6.7 : Formal analyses of the EOC

•Verifiability
•Conformance
•Accuracy & Consistency

•Complete & Correct

•Compliance
•Traceability

•Architecture Compatibility •Compliance
•Traceability

•System
•Requirements

•Software
•Architecture

•Source Code

•Executable
•Object Code

•Low-Level
•Requirements

•Compliance
•Compliance
•Traceability

•Compliance
•Robustness

•Compatible With Target

•Compliance
•Robustness

•Accuracy & Consistency
•HW Compatibility
•Verifiability
•Conformance
•Algorithm Accuracy

•Consistency
•HW Compatibility
•Verifiability
•Conformance
•Partition Integrity

•Properties might be proved directly on
EOC : WCET, Stack usage, …

•

FM Supplement : Formal verification

Formal Analysis might replace :
• Review and analysis objectives
• Conformance tests versus HLR & LLR
• Robustness tests

Formal Analysis might help for verification of compatibility with
the hardware

Formal Analysis cannot replace HW/SW integration tests

Therefore testing will always be required.

FM 6.7.1 Principle of coverage analysis when
using formal methods

• Test
• Requirements-based coverage analysis
• Structural coverage analysis

• Formal methods: the structural coverage objectives may be replaced
by

• Complete coverage of each requirement (6.7.1.2)
• Completeness of the set of requirements (6.7.1.3)
• Detection of unintended dataflow relationships (6.7.1.4)
• Detection of extraneous code including dead code and

deactivated code (6.7.1.5)

FM 6.7.1 Principle of coverage analysis when
using formal methods

• Structural coverage analysis aims at detecting:
• Shortcomings in requirements-based verification cases or procedures

: 6.7.1.2
• Inadequacies in software requirements : 6.7.1.3 + 6.7.1.4
• Extraneous code, including dead code, and deactivated code : 6.7.1.5

• Intuitively
• FM ensure exhaustive coverage for a given requirement
• To ensure complete coverage of the code, it remains to show that the

set of requirements is complete wrt to the considered function

Overview

1. Constraints
certification

2. Assets
industrial practice of formal methods

3. Challenges
research themes at Onera

Industrial practice: MBD

Model based development

Industrial practice: FM

• Models (Simulink, Scade)
• Model checking

• No certification credit yet
• Better model earlier

• Source code (C, ada)
• Proof of functional properties

• DO-178 level A

• Model/code
• Robustness analysis of models using static analysis on source code

• EOC
• Abstract interpretation

for stack analysis, wcet, absence of run-time errors
• DO-178 level A, B, C

Airbus example

•Absint
•Frama-C
•for DO-178 level A

•Experimenting
model checking on
Scade model

Tools

• Frama-C frama-c.com
• Extensible and collaborative platform
• Dedicated to source-code analysis of C software
• Connected to Z3, CVC3, Yices, Alt-Ergo, Coq, …

• Absint www.absint.com
• Abstract interpretation based tools
• Stack analysis
• Wcet computation
• Absence of run-time errors

• Tools have to be qualified (DO-330)

Industrial practice of formal methods

• 5 criteria defined by Airbus for the use of formal methods
• Soundness
• Cost Savings
• Analysis of unaltered programs
• Usability by normal software engineers on normal machines
• Ability to be integrated into the DO-178B conforming process

A few references

• Testing or Formal Verification: DO-178C Alternatives and
Industrial Experience
Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels,
Benjamin Monate
IEEE Software, 2013

• Formal verification of avionics software products
Jean Souyris, Virginie Wiels, David Delmas, Hervé Delseny
FM 2009

• Model checking flight control systems: the Airbus experience
Thomas Bochot, Pierre Virelizier, Hélène Waeselynck and Virginie Wiels
ICSE 2009

• www.onera.fr/staff/virginie-wiels

Overview

1. Constraints
certification

2. Assets
industrial practice of formal methods

3. Challenges
research themes at Onera

Formal safety assessment

• Formal models (Altarica)
• Evaluation

• Elementary causes of a failure
• Probability of failure

• Synthesis (solvers)
• Independence relations
• DAL allocation

(Development Assurance Level)

• Industrial applications
• Dassault (Falcon 7X)
• Airbus
• Astrium

• PoC: Pierre.Bieber@onera.fr

Architecture exploration

• Synthesis of correct solutions
• From a set of constraints
• Multi-viewpoints (Safety, Real Time, …)

• Design choices exploration/ dimensioning
• Applied to allocation of functions on architectures

• PoC: David.Doose@onera.fr

Real Time assessment

• Worst Case Traversal Time
• Commuted networks (AFDX…)
• Network calculus
• Tool developed with RTaW
• PoC : Marc.Boyer @ onera.fr

• Worst Case Response Time
• Includes functional level
• Constraint solving
• PoC : Frederic.Boniol@onera.fr

• Worst Case Execution Time
• Probabilistic methods
• PoC : Luca.Santinelli@onera.fr

Multi/Many-core architectures

• Multi-many
• Demonstration of determinism?

• Scheduling
• Schedulability analysis
• Off-line scheduling synthesis

• Code generation
• Multi-threaded

• PoC: Eric.Noulard@onera.fr,Claire.Pagetti@onera.fr

•Kalray 256 cores•Tilera 32 cores•Freescale 8 cores•Texas 8 cores

Cooperation of formal techniques

• Verification framework at model level (Lustre)
• K-induction, backward analysis, invariant generation, AI
• In collaboration with Rockwell-Collins

• Poc: Remi.Delmas@onera.fr

Software verification: model/code

• Formal proof of compliance of C code wrt UML state
machine model (using Frama-C)

• PoC: Thomas.Polacsek@onera.fr

Behavioural
model

Static
analysis

•Generation or

hand coding

•Generation

Code

C language

ACSL

UML
State

Machine

Frama-C

Design phase Implementation phase Verification phase

Assertions

End-to-end verification of control-command systems

• Stability properties of control-command systems
• Embedding properties all along the development
• In collaboration with Georgia Tech, NASA, Iowa University

• PoC: Pierre-Loic.Garoche@onera.fr

Dynamic analysis and combination with test

• Formal verification of temporal
properties on execution traces

• Avionics software (Airbus)
• Static analysis for the generation

of observation points
• Efficient verification (Büchi) for

long traces

• Long-term objective
• Finely combine static analysis,

dynamic analysis and test

• PoC : Virginie.Wiels@onera.fr

Support to certification

• Software
• Application of DO-333 (FM) and DO-331 (MBDV)

• Tools
• Certification of FM tools

• IMA (Integrated Modular Architectures)
• Support to certification authorities
• Incremental certification

• ARP 4754
• DAL allocation

• Multi/Manycore
• Identification of specific issues for certification

