
Coinductive big-step semantics

and Hoare logics

for nontermination

Tarmo Uustalu, Inst of Cybernetics, Tallinn
joint work with Keiko Nakata

COST Rich Models Toolkit meeting,
Madrid, 17–18 October 2013

Motivation

Standard big-step semantics and Hoare-style program
logics do not account for nonterminating program
behaviors.

But we want to reason about nonterminating behaviors
(esp in the context of reactive programming).

Solution: Devise semantics operating on coinductively
defined semantic entities (traces, resumptions) and logics
for reasoning about them.

Original inspiration: Leroy’s work on coinductive big-step
semantics in CompCert.

Constructivity

An angle: We do programming language theory in a
constructive setting (type theory).
We are happy to apply non-constructive principles, where
necessary, but want to notice when we do.

This is the setting of proof assistants/dependently typed
programming languages like Coq/Agda.

It is nice to have semantics executable.

Constructive proofs are (extract to) programs.

In a constructive setting, indications of suboptimal designs
sometimes surface earlier than in a classical setting.

This talk

I show a trace-based big-step semantics and Hoare logic
for the simple imperative language While, featuring
nontermination from loops

Could add recursive procedures or consider a
(higher-order) functional language

Important extensions: interactive input-output,
shared-variable concurrency

Here all intermediate states are tracked, generally may
want to single out a class of observable event, identify
weakly bisimilar traces.

Big-step semantics for nontermination

Syntax of While, states

Statements are defined inductively by the grammar:

s ::= x := e | skip | s0; s1 | if e then st else sf | while e do st

States σ are assignments of integers to variables names.

Trace-based big-step semantics

We describe both converging and diverging behaviors by
one single evaluation relation defined coinductively.

The leading idea is to avoid any need to decide if a
computation converges or diverges.

This requires (at least) appreciating that computations
take time.

Cf. Leroy, Grall: two separate evaluation relations, or one
single evaluation relation, but no productivity.

We will record all intermediate states, corresponding to
the idea of making all intermediate states observable.

Traces

We define traces coinductively (as non-empty possibly
infinite lists of states) by

σ : state
〈σ〉 : trace

σ : state τ : trace
σ :: τ : trace

(Strong) bisimilarity is defined coinductively by

〈σ〉 ∼ 〈σ〉
τ ∼ τ∗

σ :: τ ∼ σ :: τ∗

We want to consider bisimilar traces as equal, so require
that all predicates and functions on traces are stable
under bisimilarity.

Classically, bisimilarity is nothing but equality.
Constructively, one has to be more careful...

Big-step semantics

Evaluation relates an (initial) state to a trace and is
defined coinductively:

(x := e, σ)⇒ σ :: 〈σ[x 7→ JeK σ]〉

(skip, σ)⇒ 〈σ〉
(s0, σ)⇒ τ (s1, τ)

∗⇒ τ ′

(s0; s1, σ)⇒ τ ′

σ |= e (st , σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ 6|= e (sf , σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ |= e (st , σ :: 〈σ〉) ∗⇒ τ (while e do st , τ)
∗⇒ τ ′

(while e do st , σ)⇒ τ ′

σ 6|= e

(while e do st , σ)⇒ σ :: 〈σ〉

Big-step semantics ctd

Extended evaluation relates an (already accumulated)
trace to a (total) trace, is also defined coinductively:

(s, σ)⇒ τ

(s, 〈σ〉) ∗⇒ τ

(s, τ)
∗⇒ τ ′

(s, σ :: τ)
∗⇒ σ :: τ ′

(coinductive prefix closure of evaluation)

Design choice: evaluation of an expression to
assign/updating of a variable and evaluation of a guard
constitute take unit time.

Consideration: every loop always progresses, e.g., we have
(while true do skip, σ)⇒ σ :: σ ::
As a minimum, evaluating a guard to true must take unit
time.

Our choice of what takes unit time gives agreement up to
bisimilarity with the natural small-step semantics.

Big-step semantics ctd

Evaluation is stable under bisimilarity:
• If (s, σ)⇒ τ and τ ∼ τ∗, then (s, σ)⇒ τ∗.
(Proof by coinduction.)

Evaluation is deterministic (up to bisimilarity):
• If (s, σ)⇒ τ and (s, σ)⇒ τ∗, then τ ∼ τ∗.
(Proof by coinduction.)

Big-step semantics, functional-style

How to prove that evaluation is total, i.e., that, for any s,
σ, there exists τ such that (s, σ)⇒ τ?
Constructively, we must explicitly produce a witnessing τ
from s, σ.
This means defining evaluation and extended evaluations
as functions.
Evaluation:

Jx := eK σ = σ :: 〈σ[x 7→ JeK σ]〉
JskipK σ = 〈σ〉

Js0; s1K σ = Js1K∗ (Js0K σ)
Jif e then st else sf K σ = JstK∗ (σ :: 〈σ〉) σ |= e

= Jsf K∗ (σ :: 〈σ〉) σ 6|= e
Jwhile e do stK σ = Jwhile e do stK∗ (JstK∗ (σ :: 〈σ〉)) σ |= e

= σ :: 〈σ〉 σ 6|= e

(almost structurally recursive, but not the clauses for
while)

Big-step semantics, functional-style ctd

Extension:

k∗ (〈σ〉) = k σ
k∗ (σ :: τ) = σ :: (k∗ τ)

(guarded corecursion)

Evaluation is total:
• (s, σ)⇒ JsK σ.
(By coinduction.)

Small-step semantics

Single-step reduction is defined in the standard fashion
inductively:

(x := e, σ)→ (skip, σ[x 7→ JeK σ])

(skip, σ)→ σ

(s0, σ)→ σ′

(s0; s1, σ)→ (s1, σ
′)

(s0, σ)→ (s ′0, σ
′)

(s0; s1, σ)→ (s ′0; s1, σ
′)

σ |= e

(if e then st else sf , σ)→ (st , σ)

σ 6|= e

(if e then st else sf , σ)→ (sf , σ)

σ |= e

(while e do st , σ)→ (st ; while e do st , σ)

σ 6|= e

(while e do st , σ)→ (skip, σ)

Small-step semantics ctd

Maximal multi-step reduction is defined coinductively by:

(s, σ)→ σ′

(s, σ) 〈σ′〉
(s, σ)→ (s ′, σ′) (s ′, σ′) τ

(s, σ) σ :: τ

Similarly to evaluation, maximal multi-step reduction is
stable under bisimilarity and deterministic up to
bisimilarity.

Big-step vs small-step semantics

Big-step semantics is sound wrt. small-step semantics:
• If (s, σ)⇒ τ , then (s, σ) τ .
(Proof by coinduction.)

It is also complete:
• If (s, σ) τ , then (s, σ)⇒ τ .

• If (s, τ)
∗
 τ ′, then (s, τ)

∗⇒ τ ′.
(Proof by mutual coinduction.)

(Here ∗ is the coinductive prefix closure of .)

The following midpoint lemma is required:
• If (s0; s1, σ) τ ′, then there exists τ such that

(s0, σ) τ and (s1, τ)
∗
 τ ′.

(Proof: τ is constructed by corecursion and the two
conditions are proved by coinduction.)

Hoare logic

Hoare logic

We present a Hoare logic corresponding to the
trace-based big-step semantics.

This uses assertions on both states and traces. We don’t
define a fixed syntax of assertions, instead we use
predicates. Trace predicates must be stable under
bisimilarity.

For trace assertions (predicates), we need some
interesting connectives (operations on predicates).

Proofs are defined inductively, as in standard Hoare logic.

Assertion connectives

Some trace predicates:

σ |= U

〈σ〉 |= 〈U〉

σ :: 〈σ[x 7→ JeK σ]〉 |= [x 7→ e] σ :: 〈σ〉 |= 4

〈σ〉 |= finite

τ |= finite

σ :: τ |= finite

τ |= infinite

σ :: τ |= infinite

All these predicates are stable under bisimilarity.

Assertion connectives ctd

Chop and dagger:

τ0 |= P τ |=τ0 Q

τ |= P ∗∗ Q 〈σ〉 |= P†
τ0 |= P τ |=τ0 P†

τ |= P†

where

〈σ〉 |= Q

〈σ〉 |=〈σ〉 Q

σ : τ |= Q

σ : τ |=〈σ〉 Q

τ |=τ0 Q

σ : τ |=σ:τ0 Q

Cf. interval temporal logic, B. Mosztowski

If P , Q are stable under bisimilarity, then so is P ∗ ∗Q. If
P is stable under bisimilarity, so is P†.

If τ is infinite and τ |= P , then τ |= P ∗∗ Q for any Q!

Hoare proofs

Proofs are defined inductively by the rules

{U} x := e {〈U〉 ∗∗ [x 7→ e]}

{U} skip {〈U〉}
{U} s0 {P ∗∗ 〈V 〉} {V } s1 {Q}

{U} s0; s1 {P ∗∗ Q}

{e ∧ U} st {P} {¬e ∧ U} sf {P}
{U} if e then st else sf {4 ∗∗ P}

U |= I {e ∧ I} st {P ∗∗ 〈I 〉}
{U} while e do st {(4 ∗∗ P)† ∗∗ 4 ∗∗ 〈¬e〉}

U |= U ′ {U ′} s {P ′} P ′ |= P

{U} s {P}

Soundness

The Hoare logic is sound.

• If {U} s {P}, then σ |= U and (s, σ)⇒ τ imply τ |= P .

(By induction on {U} s {P}, subordinate coinduction in
several cases.)

Completeness

The Hoare logic is also complete.

• If, for any σ, τ , σ |= U and (s, σ)⇒ τ imply τ |= P ,
then {U} s {P}.

To prove this, one defines for any s, U , a trace predicate
sp(s,U) (the strongest postcondition), by structural
recursion on s.

Now completeness follows from these lemmata:
• {U} s {sp(s,U}. (By induction on s).
• If τ |= sp(s,U), then (s, hd τ)⇒ τ . (By induction on
s.)
The latter gives as an immediate corollary:
• If, for all σ, τ , σ |= U and (s, σ)⇒ τ imply τ |= P ,
then sp(s,U) |= P .

Strongest postconditions

Strongest postconditions:

sp(x := e,U) = 〈U〉 ∗∗ [x 7→ e]
sp(skip,U) = 〈U〉
sp(s0; s1,U) = sp(s0,U) ∗∗ sp(s1, Last (sp(s0,U))
sp(if e then st else sf ,U) = 〈U〉 ∗∗ 4 ∗∗ (sp(st , e ∧ U) ∨ sp(sf ,¬e ∧ U))
sp(while e do st ,U) = 〈U〉 ∗∗ (4 ∗∗ sp(st , e ∧ Inv(e, st ,U)))† ∗∗ 4 ∗∗ 〈¬e〉

τ ↓ σ τ |= P

σ |= Last P

σ |= U

σ |= Inv(e, s,U)

σ |= Last(sp(s, e ∧ Inv(e, s,U)))

σ |= Inv(e, s,U)

Embedding of standard Hoare logic

The standard Hoare logic embeds into the Hoare logic for
trace-based semantics.
• If {U} s {Z} in the standard (partial correctness)
Hoare logic, then {U} s {true ∗∗ 〈Z 〉}.
(Could go via soundness and completeness. But there is a
direct proof by induction.)

Similarly, the total-correctness Hoare logic also embeds
into our logic.
• If {U} s {Z} in the total correctness Hoare logic, then
{U} s {finite ∗∗ 〈Z 〉}.

