Coinductive big-step semantics
and Hoare logics
for nontermination

Tarmo Uustalu, Inst of Cybernetics, Tallinn
joint work with Keiko Nakata

COST Rich Models Toolkit meeting,
Madrid, 17-18 October 2013

Motivation

@ Standard big-step semantics and Hoare-style program
logics do not account for nonterminating program
behaviors.

@ But we want to reason about nonterminating behaviors
(esp in the context of reactive programming).

@ Solution: Devise semantics operating on coinductively
defined semantic entities (traces, resumptions) and logics
for reasoning about them.

@ Original inspiration: Leroy's work on coinductive big-step
semantics in CompCert.

Constructivity

@ An angle: We do programming language theory in a
constructive setting (type theory).
We are happy to apply non-constructive principles, where
necessary, but want to notice when we do.

@ This is the setting of proof assistants/dependently typed
programming languages like Coq/Agda.

@ It is nice to have semantics executable.

@ Constructive proofs are (extract to) programs.

@ In a constructive setting, indications of suboptimal designs
sometimes surface earlier than in a classical setting.

This talk

@ | show a trace-based big-step semantics and Hoare logic
for the simple imperative language While, featuring
nontermination from loops

@ Could add recursive procedures or consider a
(higher-order) functional language

@ Important extensions: interactive input-output,
shared-variable concurrency

@ Here all intermediate states are tracked, generally may
want to single out a class of observable event, identify
weakly bisimilar traces.

Big-step semantics for nontermination

Syntax of While, states

@ Statements are defined inductively by the grammar:
s == x:=e|skip|so; s |if ethen s; else s¢ | while e do s;

@ States o are assignments of integers to variables names.

Trace-based big-step semantics

@ We describe both converging and diverging behaviors by
one single evaluation relation defined coinductively.

@ The leading idea is to avoid any need to decide if a
computation converges or diverges.

@ This requires (at least) appreciating that computations
take time.

o Cf. Leroy, Grall: two separate evaluation relations, or one
single evaluation relation, but no productivity.

@ We will record all intermediate states, corresponding to
the idea of making all intermediate states observable.

Traces

@ We define traces coinductively (as non-empty possibly
infinite lists of states) by

_o : state o : state T : trace
(o) : trace o T trace

@ (Strong) bisimilarity is defined coinductively by

- T ~ Ty
(o) ~ (o) 0T ~O Ty

@ We want to consider bisimilar traces as equal, so require
that all predicates and functions on traces are stable
under bisimilarity.

@ Classically, bisimilarity is nothing but equality.
Constructively, one has to be more careful...

Big-step semantics

@ Evaluation relates an (initial) state to a trace and is
defined coinductively:

(x :=e,0) =0 {o[x+— [e] a])

(so,0) =71 (s1,7) = 7

(skip,o) = (o) (so;51,0) = 7'

ck=e (sn,ou{(o))=>17 ole (s,0:(0)>7

(if e then s; else s¢,0) = 7 (if e then s; else s¢,0) = 7

clEe (s,o:{0))=71 (whileedos,7)=7

(while e do s;,0) = 7/

ol~e

(while e do s,0) = o :: (o)

Big-step semantics ctd

@ Extended evaluation relates an (already accumulated)
trace to a (total) trace, is also defined coinductively:

(s,0)=r1 (s,7) = 7

(s,(o)) =7 (s,ouT)=>0uT

(coinductive prefix closure of evaluation)

@ Design choice: evaluation of an expression to
assign /updating of a variable and evaluation of a guard
constitute take unit time.

e Consideration: every loop always progresses, e.g., we have
(while true do skip,o) = o 1o
As a minimum, evaluating a guard to true must take unit
time.

@ Our choice of what takes unit time gives agreement up to
bisimilarity with the natural small-step semantics.

Big-step semantics ctd

@ Evaluation is stable under bisimilarity:
e If (s,0) = 7 and 7 ~ 7, then (s,0) = T..
(Proof by coinduction.)

@ Evaluation is deterministic (up to bisimilarity):
e If (s,0) = 7 and (s,0) = 7., then T ~ T,.
(Proof by coinduction.)

Big-step semantics, functional-style

@ How to prove that evaluation is total, i.e., that, for any s,
o, there exists 7 such that (s,0) = 77
@ Constructively, we must explicitly produce a witnessing 7

from s, o.

@ This means defining evaluation and extended evaluations

as functions.
e Evaluation:
[x =¢€] o
[skip] o
[so;s1] @
[if e then s; else s¢]| o

[while e do s;]] o

o {o[x— [e] o)

(o)

[s:1]* ([so] o)

[s:]* (o = (o)) ocEe
[se]* (o :: (o)) o e
[while e do s]* ([st]* (o0 :: (o)) ol=e
o (o) olFe

(almost structurally recursive, but not the clauses for

while)

Big-step semantics, functional-style ctd
e Extension:

k(o) = ko
k* (o:71) = ou(k*71)

(guarded corecursion)

e Evaluation is total:
o (s,0)=[s] o.
(By coinduction.)

Small-step semantics

@ Single-step reduction is defined in the standard fashion
inductively:

(x :==e,0) — (skip,o[x — [e] o])
(s0,0) = o’ (s0,0) = (sp,0")
(skip,o) = o (so;s1,0) = (s1,0") (s0;51,0) = (8§ s1,07)

ocEe olEe

(if e then s; else sf,0) — (st,0) (if e then s; else sf,0) — (sf,0)
ocEe
(while e do s, 0) — (st; while e do s, 0)

ol~e

(while e do s;,0) — (skip, o)

Small-step semantics ctd
@ Maximal multi-step reduction is defined coinductively by:

(s,0) > o’ (s,0) = (s',0") (s',0)~ T

(s,0) ~ (o) (s,0)~ouT

@ Similarly to evaluation, maximal multi-step reduction is
stable under bisimilarity and deterministic up to
bisimilarity.

Big-step vs small-step semantics

@ Big-step semantics is sound wrt. small-step semantics:
o If (s,0) = 7, then (s,0) ~ T.
(Proof by coinduction.)
@ It is also complete:
o If (s,0) ~~ 7, then (s,0) = 7.
o If (s,7) ~~ 7/, then (s,7) = 7.
(Proof by mutual coinduction.)
@ (Here ~»* is the coinductive prefix closure of ~~.)

@ The following midpoint lemma is required:
o If (sp;s1,0) ~> 7/, then there exists 7 such that
(s0,0) ~ 7 and (s1,7) ~ 7.
(Proof: 7 is constructed by corecursion and the two
conditions are proved by coinduction.)

Hoare logic

Hoare logic

@ We present a Hoare logic corresponding to the
trace-based big-step semantics.

@ This uses assertions on both states and traces. We don't
define a fixed syntax of assertions, instead we use
predicates. Trace predicates must be stable under
bisimilarity.

@ For trace assertions (predicates), we need some
interesting connectives (operations on predicates).

@ Proofs are defined inductively, as in standard Hoare logic.

Assertion connectives

@ Some trace predicates:

oEU
(o) = (U)
o {olx—[e] o]) E [x — €] o {o) EA
T = finite T |= infinite

(o) [finite o 7 |= finite o . T |= infinite

@ All these predicates are stable under bisimilarity.

Assertion connectives ctd

@ Chop and dagger:

EP TEL,Q nEP 7, P
T EPxxQ (o) = PT 7 = Pt

where

(0) FQ o:TEQ T Q
() Een Q@ 0 TEWNQ 0:7Fs, Q

e Cf. interval temporal logic, B. Mosztowski

o If P, @ are stable under bisimilarity, then so is P * xQ. If
P is stable under bisimilarity, so is P?.

e If 7 is infinite and 7 |= P, then 7 = P xx Q for any Q!

Hoare proofs

@ Proofs are defined inductively by the rules

{U} x :==e {{U) xx [x — €]}

(U} so {Pxx(V)} {V} s {Q}

{U} skip {(U)} {U} sp; 51 {P*x Q}

{eANU} st {P} {—eA U} sr{P}
{U} if e then s; else sf {A\ *x P}

UET {enl} st {Pxx(l)}
{U} while e do s; {(A #x P)T sx A xx (—e)}

UEU {U}s{P} PP
{U} s {P}

Soundness
@ The Hoare logic is sound.
o If {U} s {P}, theno = U and (s,0) = 7 imply 7 = P.

@ (By induction on {U} s {P}, subordinate coinduction in
several cases.)

Completeness

@ The Hoare logic is also complete.

o If, forany o, 7, 0 = U and (s,0) = 7 imply 7 |= P,
then {U} s {P}.

@ To prove this, one defines for any s, U, a trace predicate
sp(s, U) (the strongest postcondition), by structural
recursion on s.

@ Now completeness follows from these lemmata:
e {U} s {sp(s, U}. (By induction on s).
e If 7 |=sp(s, U), then (s, hd 7) = 7. (By induction on
s.)
The latter gives as an immediate corollary:
e lf forall o, 7,0 = U and (s,0) = 7 imply 7 = P,
then sp(s, U) = P.

Strongest postconditions

@ Strongest postconditions:

sp(if e then s; else s¢, U)
sp(while e do s, U)

(U) #x A xx (sp(s¢, e A U) V sp(s¢, me A U))
(U) % (O % sp(se, e A Inv(e, st, U)))T 5% A xx (—e)

sp(x := e, U) = (U)*x[x— €]
sp(skip, U) = (U)
sp(so; s1, U) = sp(so, U) ** sp(s1, Last (sp(so, U))

Tlo TEP
o |= Last P

oEU o |= Last(sp(s,e A Inv(e, s, U)))
o = Inv(e,s, U) o = Inv(e,s, U)

Embedding of standard Hoare logic

@ The standard Hoare logic embeds into the Hoare logic for
trace-based semantics.
o If {U} s {Z} in the standard (partial correctness)
Hoare logic, then {U} s {true xx (Z)}.
(Could go via soundness and completeness. But there is a
direct proof by induction.)

@ Similarly, the total-correctness Hoare logic also embeds
into our logic.
o If {U} s {Z} in the total correctness Hoare logic, then
{U} s {finite xx (Z)}.

