Exploring Interpolants

Philipp Rümmer, Pavle Subotić

Uppsala University, Sweden

COST Meeting, October 17

Introduction

Interpolants in Model Checking

- Craig interpolants used in model checking to refine abstractions

Introduction

Interpolants in Model Checking

- Craig interpolants used in model checking to refine abstractions
- For a given interpolation problem several interpolants may exist

Introduction

Interpolants in Model Checking

- Craig interpolants used in model checking to refine abstractions
- For a given interpolation problem several interpolants may exist
- The choice of interpolants affect if/how a program is verified

Introduction

Interpolants in Model Checking

- Craig interpolants used in model checking to refine abstractions
- For a given interpolation problem several interpolants may exist
- The choice of interpolants affect if/how a program is verified
- We present a technique that:

Discovers a range of interpolants

Introduction

Interpolants in Model Checking

- Craig interpolants used in model checking to refine abstractions
- For a given interpolation problem several interpolants may exist
- The choice of interpolants affect if/how a program is verified
- We present a technique that:

Discovers a range of interpolants
Incorporates domain specific knowledge

Introduction

Interpolants in Model Checking

- Craig interpolants used in model checking to refine abstractions
- For a given interpolation problem several interpolants may exist
- The choice of interpolants affect if/how a program is verified
- We present a technique that:

Discovers a range of interpolants

- Incorporates domain specific knowledge

Semantic in nature

Introduction

Interpolants in Model Checking

- Craig interpolants used in model checking to refine abstractions
- For a given interpolation problem several interpolants may exist
- The choice of interpolants affect if/how a program is verified
- We present a technique that:

Discovers a range of interpolants
Incorporates domain specific knowledge
Semantic in nature
Prover independent

Preliminaries

Craig Interpolants

Let ($A \wedge B=f a / s e$) then there exists an interpolant $/$ for (A, B) such that:

$$
\begin{aligned}
& A \rightarrow I \\
& B \rightarrow \neg I
\end{aligned}
$$

I refers only to common symbols of A, B

Motivation

Motivating Example

```
i = 0; x = j; // init
while (i<50) { // loop
    i++;
    x++;
}
if (j == 0)
    assert (x >= 50); // error location
```


Safety Properties

No feasible path exists that reaches an error state

Motivation

Analysis using CEGAR

(1) Compute an approximation of CFG with respect to a set of predicates

Motivation

Analysis using CEGAR

- Compute an approximation of CFG with respect to a set of predicates
(2) Choose a (spurious or genuine) path to error

Motivation

Analysis using CEGAR

- Compute an approximation of CFG with respect to a set of predicates
(2) Choose a (spurious or genuine) path to error
(3) If spurious, use interpolation to generate further predicates

Motivation

Motivating Example

```
i = 0; x = j; // init
while (i<50) { // loop
    i++;
    x++;
}
if (j == 0)
    assert (x >= 50); // error location
```

Counter Example - one loop iteration

$$
\overbrace{i_{0}=0 \wedge x_{0}=j}^{\text {init }}
$$

Motivation

Motivating Example

```
i = 0; x = j; // init
while (i<50) { // loop
    i++;
    x++;
}
if (j == 0)
    assert (x >= 50); // error location
```

Counter Example - one loop iteration

$$
\overbrace{i_{0}=0 \wedge x_{0}=j}^{\text {init }} \wedge \overbrace{i_{0}<50 \wedge i_{1}=i_{0}+1 \wedge x_{1}=x_{0}+1}^{\text {loop }}
$$

Motivation

Motivating Example

```
i = 0; x = j; // init
while (i<50) { // loop
    i++;
    x++;
}
if (j == 0)
    assert (x >= 50); // error location
```

Counter Example - one loop iteration

$$
\overbrace{i_{0}=0 \wedge x_{0}=j}^{\text {init }} \wedge \overbrace{i_{0}<50 \wedge i_{1}=i_{0}+1 \wedge x_{1}=x_{0}+1}^{\text {loop }} \wedge \overbrace{i_{1} \geq 50 \wedge j=0 \wedge x_{1}<50}^{\text {error }}
$$

Motivation

Counter Example - one loop iteration

$$
\underbrace{i_{0}=0 \wedge x_{0}=j \wedge i_{0}<50 \wedge i_{1}=i_{0}+1 \wedge x_{1}=x_{0}+1}_{A} \wedge \underbrace{i_{1} \geq 50 \wedge j=0 \wedge x_{1}<50}_{B}
$$

Interpolation Problem

where I has symbols only from A and B

Motivation

Candidate Interpolant

$$
I_{1}=\left(i_{1} \leq 1\right)
$$

The Interpolant

$$
\begin{aligned}
& \underbrace{i_{0}=0 \wedge x_{0}=j \wedge i_{0}<50 \wedge i_{1}=i_{0}+1 \wedge x_{1}=x_{0}+1}_{A} \rightarrow i_{1} \leq 1 \checkmark \\
& \underbrace{i_{1} \geq 50 \wedge j=0 \wedge x_{1}<50}_{B} \rightarrow \neg i_{1} \leq 1 \checkmark \\
& i_{1} \in \operatorname{sym}(A) \text { and } i_{1} \in \operatorname{sym}(B) \checkmark
\end{aligned}
$$

Motivation

The Problem

- ($i_{1} \leq 1$) eliminates the counter-example
- Results in unrolling the loop - not general enough
- What we really would like is an inductive invariant

Motivation

A Better Candidate Interpolant

$$
I_{2}=\left(x_{1} \geq i_{1}+j\right)
$$

The Interpolant

$$
\begin{aligned}
& \underbrace{i_{0}=0 \wedge x_{0}=j \wedge i_{0}<50 \wedge i_{1}=i_{0}+1 \wedge x_{1}=x_{0}+1}_{A} \rightarrow\left(x_{1} \geq i_{1}+j\right) \checkmark \\
& \underbrace{i_{1} \geq 50 \wedge j=0 \wedge x_{1}<50}_{B} \rightarrow \neg\left(x_{1} \geq i_{1}+j\right) \checkmark \\
& x_{1}, i_{1}, j \in \operatorname{sym}(A) \text { and } x_{1}, i_{1}, j \in \operatorname{sym}(B) \checkmark
\end{aligned}
$$

Motivation

Interpolants

- ($\left.x_{1} \geq i_{1}+j\right)$ avoids loop unrolling
- But how do we get $\left(x_{1} \geq i_{1}+j\right)$ instead of $\left(i_{1} \leq 1\right)$ from the theorem prover?

Interpolant lattice for the example

Interpolant lattice for the example

- How to navigate in lattice?
- How to compare "quality" of interpolants?

Some Related Work

- Syntactic restrictions (R. Jhala and K. L. McMillan, TACAS 06)
- Interpolant strength (V. D'Silva VMCAI 10)
- Beautiful Interpolants (A.Albarghouthi, K. L. McMillan, CAV 13)
- Term abstraction (F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina, LPAR 12)

Our Approach

Pre-process the interpolation query

Our Approach

Pre-process the interpolation query

- General, prover independent framework

Our Approach

Pre-process the interpolation query

- General, prover independent framework
- Generate several interpolants for a given interpolation problem

Our Approach

Pre-process the interpolation query

- General, prover independent framework
- Generate several interpolants for a given interpolation problem
- Incorporate domain specific knowledge in defining interpolant quality

Outline

(9) Interpolation Abstractions
(2) Exploring Interpolants
(3) Experiments on Software Programs
4. Conclusion

Abstractions in the Example

- Step 1: Rename common variables in $A\left[\bar{s}_{A}, \bar{s}\right] \wedge B\left[\bar{s}, \bar{s}_{B}\right]$

In the example: common symbols are $\left\{j, i_{1}, x_{1}\right\}$

$$
\begin{aligned}
& A\left[\bar{s}_{A},,^{\prime}\right]=i_{0}=0 \wedge x_{0}=j^{\prime} \wedge i_{0}<50 \wedge i_{1}^{\prime}=i_{0} \wedge x_{1}^{\prime}=x_{0} \\
& B\left[\bar{s}^{\prime \prime}, \bar{s}_{B}\right]=i_{1}^{\prime \prime} \geq 50 \wedge j^{\prime \prime}=0 \wedge x_{1}^{\prime \prime}<50
\end{aligned}
$$

Abstractions in the Example

- Step 1: Rename common symbols in $A\left[\bar{s}_{A}, \bar{s}\right] \wedge B\left[\bar{s}, \bar{s}_{B}\right]$
- Step 2: Add templates capturing limited knowledge

In the example: templates are $\left\{j, x_{1}-i_{1}\right\}$

$$
A\left[\bar{s}_{A}, \bar{s}\right]^{\sharp}=i_{0}=0 \wedge x_{0}=j^{\prime} \wedge i_{0}<50 \wedge i_{1}^{\prime}=i_{0} \wedge x_{1}^{\prime}=x_{0} \wedge \underbrace{x_{1}^{\prime}-i_{1}^{\prime}=x_{1}-i_{1} \wedge j^{\prime}=j}_{R_{A}\left[\bar{s}^{\prime}, \bar{s}\right]}
$$

$$
B\left[\bar{s}, \bar{s}_{B}\right]^{\sharp}=i_{1}^{\prime \prime} \geq 50 \wedge j^{\prime \prime}=0 \wedge x_{1}^{\prime \prime}<50 \wedge \underbrace{x_{1}-i_{1}=x_{1}^{\prime \prime}-i_{1}^{\prime \prime} \wedge j=j^{\prime \prime}}_{R_{B}\left[\bar{s}, \bar{s}^{\prime \prime}\right]}
$$

Example

Interpolation Problem $A \wedge B$

Example

With abstraction generated by template $x-y$

Example

Blocks Interpolants $x \geq 4$ etc.

Example

Allows interpolants $x \geq y$ etc.

Interpolant sub-lattice for templates $\left\{i_{1}\right\}$ and $\left\{j, x_{1}-i_{1}\right\}$

Definitions

Definition (Abstraction)

An interpolation abstraction is a pair ($\left.R_{A}\left[\bar{s}^{\prime}, \bar{s}\right], R_{B}\left[\bar{s}, \bar{s}^{\prime \prime}\right]\right)$ of formulae with the property that $R_{A}[\bar{s}, \bar{s}]$ and $R_{B}[\bar{s}, \bar{s}]$ are valid i.e., $\operatorname{Id}\left[\bar{s}^{\prime}, \bar{s}\right] \Rightarrow R_{A}\left[\bar{s}^{\prime}, \bar{s}\right]$ and $\operatorname{Id}\left[\bar{s}, \bar{s}^{\prime \prime}\right] \Rightarrow R_{B}\left[\bar{s}, \bar{s}^{\prime \prime}\right]$.

Definition (Abstract Interpolation Problem)

- $A\left[\bar{s}_{A}, \bar{s}\right] \wedge B\left[\bar{s}, \bar{s}_{B}\right]$ is the concrete interpolation problem.
- $\left(A\left[\bar{s}_{A}, \bar{s}^{\prime}\right] \wedge R_{A}\left[\bar{s}, \bar{s}^{\prime}\right]\right) \wedge\left(R_{B}\left[\bar{s}^{\prime \prime}, \bar{s}\right] \wedge B\left[\bar{s}^{\prime \prime}, \bar{s}_{B}\right]\right)$ is called abstract interpolation problem;

Definition (Feasible Abstractions)

Assuming that the concrete interpolation problem is solvable, we call an interpolation abstraction feasible if also the abstract interpolation problem is solvable, and infeasible otherwise.

Natural classes of Abstractions

- Term interpolation abstractions, constructed from a set of terms $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$

$$
R_{A}^{T}\left[\left[^{\prime}, \bar{s}\right]=\bigwedge_{i=1}^{n} t_{i}\left[\bar{s}^{\prime}\right]=t_{i}[\bar{s}], \quad R_{B}^{T}\left[\bar{s}, \bar{s}^{\prime \prime}\right]=\bigwedge_{i=1}^{n} t_{i}[\bar{s}]=t_{i}\left[\bar{s}^{\prime \prime}\right]\right.
$$

- (same possible for inequalities)
- Predicate interpolation abstractions, constructed from $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$

$$
R_{A}^{\text {Pred }}\left[\bar{s}^{\prime}, \bar{s}\right]=\bigwedge_{i=1}^{n}\left(\phi_{i}\left[\bar{s}^{\prime}\right] \rightarrow \phi_{i}[\bar{s}]\right), \quad R_{B}^{\text {Pred }}\left[\bar{s}, \bar{s}^{\prime \prime}\right]=\bigwedge_{i=1}^{n}\left(\phi_{i}[\bar{s}] \rightarrow \phi_{i}\left[\bar{s}^{\prime \prime}\right]\right)
$$

- Quantified interpolation abstractions

Soundness and Completeness

Lemma (Soundness)

Every interpolant of the abstract interpolation problem is also an interpolant of the concrete interpolation problem (but in general not vice versa).

Lemma (Completeness)

Suppose $A\left[\bar{s}_{A}, \bar{s}\right] \wedge B\left[\bar{s}, \bar{s}_{B}\right]$ is an interpolation problem with interpolant $![\bar{s}]$, such that both $A\left[\bar{s}_{A}, \bar{s}\right]$ and $B\left[\bar{s}, \bar{s}_{B}\right]$ are satisfiable. Then there is a feasible interpolation abstraction such that every abstract interpolant is equivalent to $\mathrm{I}[\bar{s}]$.

Exploring Interpolants

- How do we find good interpolation abstractions?
- Can be done in two steps:

Define a base vocabulary of "interesting" templates (building blocks for interpolants)

- Search for maximum feasible interpolation abstractions in this language

Exploring Interpolants

- How do we find good interpolation abstractions?
- Can be done in two steps:

Define a base vocabulary of "interesting" templates (building blocks for interpolants) Search for maximum feasible interpolation abstractions in this language

Definition (Abstraction lattice)

Suppose an interpolation problem $A\left[\bar{s}_{A}, \bar{s}\right] \wedge B\left[\bar{s}, \bar{s}_{B}\right]$. An abstraction lattice is a pair $\left(\left\langle L, \sqsubseteq_{L}\right\rangle, \mu\right)$ consisting of a complete lattice $\left\langle L, \sqsubseteq_{L}\right\rangle$ and a monotonic mapping μ from elements of $\left\langle L, \sqsubseteq_{L}\right\rangle$ to interpolation abstractions ($R_{A}\left[\bar{s}^{\prime}, \bar{s}\right], R_{B}\left[\bar{s}, \bar{s}^{\prime \prime}\right]$) with the property that $\mu(\perp)=\left(I d\left[\bar{s}^{\prime}, \bar{s}\right], \operatorname{ld}\left[\bar{s}, \bar{s}^{\prime \prime}\right]\right)$.

Abstraction lattice template base set $\left\{x_{1}-\dot{i}_{1}, \dot{I}_{1}, j\right\}$

Sub-lattices of interpolant lattice

Overall Architecture

Overall Architecture

Experiments

Experiment Setup

- Extended the Eldarica model checker with our approach
- Experiments on Horn clause benchmarks generated from programs
- Pre-computed templates of the form $\{x, y, x-y, x+y\}$ Typically 15-300 templates
- Costs assigned to templates to define preference

Experiments

Benchmark	Eldarica		Eldarica-ABS		Flata sec	$\begin{array}{r} \mathrm{Z3} \\ \mathrm{sec} \end{array}$
	N	sec	N	sec		
C programs						
boustrophedon (C)	*	*	10	10.7	*	0.1
boustrophedon_expansed (C)	*	*	11	7.7	*	0.1
halbwachs (C)	*	*	53	2.4	*	0.1
gopan (C)	17	22.2	62	57.0	0.4	349.5
rate_limiter (C)	11	2.7	11	19.1	1.0	0.1
anubhav (C)	1	1.7	1	1.6	0.9	*
cousot (C)	*	*	3	7.7	0.7	*
bubblesort (E)	1	2.8	1	2.3	77.6	0.3
insdel (C)	1	0.9	1	0.9	0.7	0.0
insertsort (E)	1	1.8	1	1.7	1.3	0.1
listcounter (C)	*	*	8	2.0	0.2	*
listcounter (E)	1	0.9	1	0.9	0.2	0.0
listreversal (C)	1	1.9	1	1.9	4.9	*
mergesort (E)	1	2.9	1	2.6	1.1	0.2
selectionsort (E)	1	2.4	1	2.4	1.2	0.2
rotation_vc. 1 (C)	7	2.0	7	0.3	1.9	0.2
rotation_vc. 2 (C)	8	2.7	8	0.2	2.2	0.3
rotation_vc. 3 (C)	0	2.3	0	0.2	2.3	0.0
rotation. 1 (E)	3	1.8	3	1.8	0.5	0.1
split_vc. 1 (C)	18	3.9	17	3.2	*	1.1
split_vc. 2 (C)	*	*	18	1.1	*	0.2
split_vc. 3 (C)	0	2.8	0	1.5	*	0.0
Recursive Horn SMT-LIB Benchmarks						
addition (C)	1	0.7	1	0.8	0.4	0.0
bfprt (C)	+	*	5	8.3	-	0.0
binarysearch (C)	1	0.9	1	0.9	-	0.0
buildheap (C)	*	*	*	*	-	*
countZero (C)	2	2.0	2	2.0	-	0.0
disjunctive (C)	10	2.4	5	5.0	0.2	0.3
floodfill (C)	*	*	*	*	41.2	0.1
$\operatorname{gcd}(\mathrm{C})$	4	1.2	4	2.0	-	*
identity (C)	2	1.1	2	2.1	-	0.1
merge-leq (C)	3	1.1	7	7.0	15.7	0.1

Summary

A semantic, solver-independent framework for guiding interpolant search

Summary

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries

Summary

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries
- Easy to integrate in verifiers (basic implementation 500-1000 LOC)

Summary

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries
* Easy to integrate in verifiers (basic implementation 500-1000 LOC)

Enables use of domain-specific knowledge in interpolation

Summary

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries

Easy to integrate in verifiers (basic implementation 500-1000 LOC)

- Enables use of domain-specific knowledge in interpolation
- General framework

Summary

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries

Easy to integrate in verifiers (basic implementation 500-1000 LOC)

- Enables use of domain-specific knowledge in interpolation
- General framework
- Our implementation is just a basic instance of the framework

Summary

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries

Easy to integrate in verifiers (basic implementation 500-1000 LOC)

- Enables use of domain-specific knowledge in interpolation
- General framework
- Our implementation is just a basic instance of the framework
- Each query can have a specific lattice, lattices can be infinite etc.

Summary

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries

Easy to integrate in verifiers (basic implementation 500-1000 LOC)

- Enables use of domain-specific knowledge in interpolation
- General framework
- Our implementation is just a basic instance of the framework

Each query can have a specific lattice, lattices can be infinite etc.

- Applicable to various logics, not restricted to arithmetic

Summary

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries

Easy to integrate in verifiers (basic implementation 500-1000 LOC)

- Enables use of domain-specific knowledge in interpolation
- General framework
- Our implementation is just a basic instance of the framework
- Each query can have a specific lattice, lattices can be infinite etc.

Applicable to various logics, not restricted to arithmetic

- Templates, but interpolants still constructed by theorem prover \Rightarrow Arbitrary Boolean structure, etc., allowed

Summary

Applications (ongoing work)

- Software programs with heap, other datatypes
- Timed systems
- Reachability in Petri nets/Vector addition systems

Thank you - Questions

Finding Abstractions

Algorithm 1: Exploration algorithm
Input: Interpolation problem $A\left[\bar{s}_{A}, \bar{s}\right] \wedge B\left[\bar{s}, \bar{s}_{B}\right]$, abstraction lattice $\left(\left\langle L, \sqsubseteq_{L}\right\rangle, \mu\right)$
Result: Set of maximal feasible interpolation abstractions
1 if \perp is infeasible then
2 return Ø;
3 end
4 Frontier $\leftarrow\{$ maximise $(\perp)\}$;
5 while \exists feasible elem $\in L$, incomparable with Frontier do
$6 \quad$ Frontier \leftarrow Frontier $\cup\{$ maximise $($ elem $)\}$;
7 end
8 return Frontier;

Finding Abstractions

```
Algorithm 2: Maximisation algorithm
Input: Feasible element: elem
Result: Maximal feasible element
1 while \(\exists\) feasible successor fs of elem do
2 pick element middle such that \(f s \sqsubseteq_{L}\) middle \(\sqsubseteq_{L} \top\);
\(3 \quad\) if middle is feasible then
                elem \(\leftarrow\) middle;
    else
        elem \(\leftarrow f s ;\)
    end
end
9 return elem;
```

