Mean-payoff games with incomplete information

Paul Hunter, Guillermo Pérez, Jean-François Raskin

Université Libre de Bruxelles COST Meeting @ Madrid

October, 2013

Outline

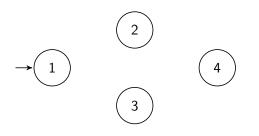
MPG variations

- Mean-payoff games
- Imperfect information

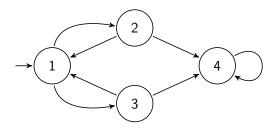
2 Tackling MPGs with imperfect information

- Incomplete information
- Observable determinacy
- Decidable subclasses
- Pure games with incomplete information

3 Conclusions

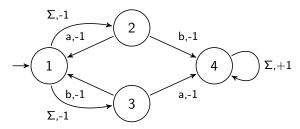


P. Hunter, G. Pérez, J.F. Raskin (ULB)

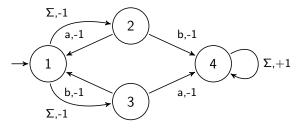


P. Hunter, G. Pérez, J.F. Raskin (ULB)

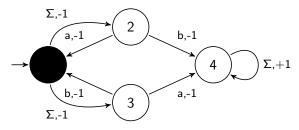
• $\Sigma = \{a, b\}$ and weights on the edges



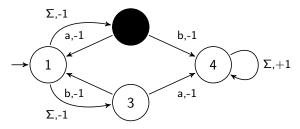
- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - to move token: $\exists ve$ chooses σ and $\forall dam$ chooses edge
 - to win (\exists ve): maximize average weight of edges traversed



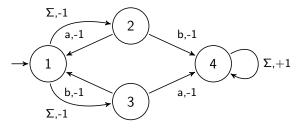
- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - to move token: $\exists ve$ chooses σ and $\forall dam$ chooses edge
 - to win (\exists ve): maximize average weight of edges traversed
- Example: $\exists ve \text{ chooses } a, \forall dam \text{ chooses } (1, a, 2); \text{ payoff} = -1$



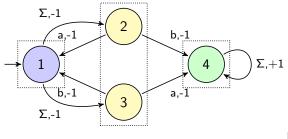
- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - to move token: $\exists \mathbf{ve} \text{ chooses } \sigma \text{ and } \forall \mathsf{dam} \text{ chooses edge}$
 - to win (\exists ve): maximize average weight of edges traversed
- Example: $\exists ve \text{ chooses } a, \forall dam \text{ chooses } (1, a, 2); \text{ payoff} = -1$



- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - to move token: $\exists ve$ chooses σ and $\forall dam$ chooses edge
 - to win (\exists ve): maximize average weight of edges traversed



- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - to move token: $\exists \mathbf{ve} \text{ chooses } \sigma \text{ and } \forall \mathsf{dam} \text{ chooses edge}$
 - to win (\exists ve): maximize average weight of edges traversed
- ∃ve only sees colors, ∀dam sees everything



Definition (MPGs)

- Mean-payoff games are 2-player games of infinite duration played on (directed) weighted graphs. ∃ve chooses an action, and ∀dam resolves non-determinism by choosing the next state.
- \exists ve wants to maximize the average weight of the edges traversed (the MP value).
- $\forall dam$ wants to minimize the same value.

Definition (Strategies for ∃ve)

An observable strategy for $\exists ve$ is a function from finite sequences $(Obs \cdot \Sigma)^*Obs$ to the next action.

Definition (Strategies for $\exists ve$)

An observable strategy for $\exists ve$ is a function from finite sequences $(Obs \cdot \Sigma)^*Obs$ to the next action.

Definition (MP value)

Given the transition relation Δ and the weight function $w : \Delta \mapsto \mathbb{Z}$ of a MPG, the MP value is $\lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n-1} w(q_i, \sigma_i, q_{i+1})$.

Definition (Strategies for $\exists ve$)

An observable strategy for $\exists ve$ is a function from finite sequences $(Obs \cdot \Sigma)^*Obs$ to the next action.

Definition (MP value)

Given the transition relation Δ and the weight function $w : \Delta \mapsto \mathbb{Z}$ of a MPG, the MP value is $\lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n-1} w(q_i, \sigma_i, q_{i+1})$.

Problem (Winner of a MPG)

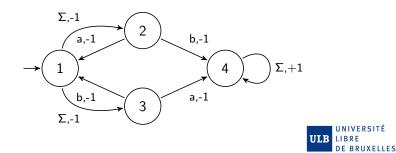
Given a threshold $\nu \in \mathbb{N}$, the MPG is won by $\exists ve \text{ iff } MP \ge \nu$. W.I.o.g assume $\nu = 0$.

Theorem (Ehrenfeucht and Mycielski [1979])

- MPGs are determined, i.e. if ∃ve doesn't have a winning strategy then ∀dam does (and viceversa).
- Positional strategies suffice for either $\forall dam$ or $\exists ve$ to win a MPG.

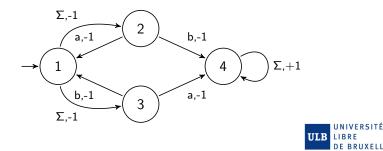
Theorem (Ehrenfeucht and Mycielski [1979])

- MPGs are determined, i.e. if ∃ve doesn't have a winning strategy then ∀dam does (and viceversa).
- Positional strategies suffice for either $\forall dam$ or $\exists ve$ to win a MPG.
- $\Sigma = \{a, b\}$



Theorem (Ehrenfeucht and Mycielski [1979])

- MPGs are determined, i.e. if $\exists ve$ doesn't have a winning strategy then $\forall dam \ does \ (and \ viceversa)$.
- Positional strategies suffice for either $\forall dam$ or $\exists ve$ to win a MPG.
- $\Sigma = \{a, b\} \exists ve has a winning strat: play b in 2 and a in 3$



IRRF BRIIXFILES

Outline

MPG variations

- Mean-payoff games
- Imperfect information

Tackling MPGs with imperfect information

- Incomplete information
- Observable determinacy
- Decidable subclasses
- Pure games with incomplete information

Conclusions

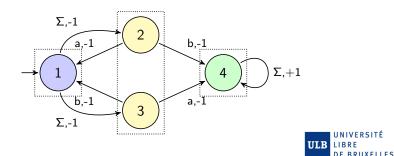
Definition (MPGs with imperfect info.)

A MPG with imperfect information is played on a weighted graph given with a coloring of the state space that defines equivalence classes of indistinguishable states (observations).

Definition (MPGs with imperfect info.)

A MPG with imperfect information is played on a weighted graph given with a coloring of the state space that defines equivalence classes of indistinguishable states (observations).

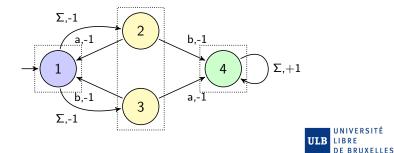
 $\Sigma = \{a, b\}$



Definition (MPGs with imperfect info.)

A MPG with imperfect information is played on a weighted graph given with a coloring of the state space that defines equivalence classes of indistinguishable states (observations).

 $\Sigma = \{a, b\}$ Neither $\exists ve \text{ nor } \forall dam \text{ have a winning strategy anymore}$



Why consider such a model?

- MPGs are natural models for systems where we want to optimize the limit-average usage of a resource.
- Imperfect information arises from the fact that most systems have a limited amount of sensors and input data.

Why consider such a model?

- MPGs are natural models for systems where we want to optimize the limit-average usage of a resource.
- Imperfect information arises from the fact that most systems have a limited amount of sensors and input data.

Theorem (Degorre et al. [2010])

- MPGs with imperfect info. are no longer "determined".
- $\exists ve$ learns about the game by using memory.
- Determining who wins is undecidable.
- May require infinite memory to be won by $\exists ve$.

Outline

MPG variations

- Mean-payoff games
- Imperfect information

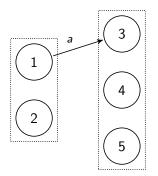
2 Tackling MPGs with imperfect information

- Incomplete information
- Observable determinacy
- Decidable subclasses
- Pure games with incomplete information

Conclusions

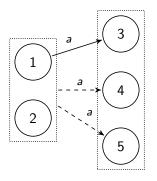
Definition

A game of imperfect information is of incomplete information if for every $(q, \sigma, q') \in \Delta$, then for every s' in the same observation as q' there is a transition $(s, \sigma, s') \in \Delta$ where s is in the same observation as q.



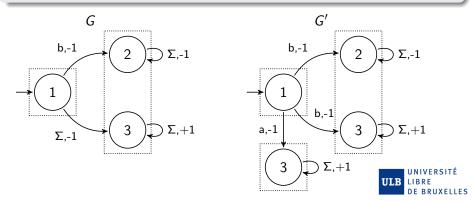
Definition

A game of imperfect information is of incomplete information if for every $(q, \sigma, q') \in \Delta$, then for every s' in the same observation as q' there is a transition $(s, \sigma, s') \in \Delta$ where s is in the same observation as q.



Lemma (imperfect to incomplete info.)

imperfect information can be turned into incomplete information with a possible exponential blow-up (via its knowledge-based subset construction).



Outline

MPG variations

- Mean-payoff games
- Imperfect information

2 Tackling MPGs with imperfect information

- Incomplete information
- Observable determinacy
- Decidable subclasses
- Pure games with incomplete information

Conclusions

• the view \exists ve has of a play in the game is $o_0 \sigma_0 o_1 \sigma_1 \dots$,

- the view \exists ve has of a play in the game is $o_0 \sigma_0 o_1 \sigma_1 \dots$,
- given current o_i the game could be in any $q ∈ o_i$ (not true in imperfect information),

- the view $\exists ve$ has of a play in the game is $o_0 \sigma_0 o_1 \sigma_1 \dots$,
- given current o_i the game could be in any $q ∈ o_i$ (not true in imperfect information),
- **③** ∀dam can have a two step strategy: choose observations first,

- the view $\exists ve$ has of a play in the game is $o_0 \sigma_0 o_1 \sigma_1 \dots$,
- given current o_i the game could be in any $q ∈ o_i$ (not true in imperfect information),
- I dam can have a two step strategy: choose observations first,
- G "delay" the specific choice of states for later!

$\forall dam and determinacy$

Definition

- Observable strategies: we let ∀dam reveal to ∃ve only the (Obs × Σ)⁺ → Obs version of his strategy.
- Let γ be a function mapping observation-action sequences to concrete state-action ones.

$\forall dam and determinacy$

Definition

- Observable strategies: we let ∀dam reveal to ∃ve only the (Obs × Σ)⁺ → Obs version of his strategy.
- Let γ be a function mapping observation-action sequences to concrete state-action ones.

Definition (New winning condition)

Let ψ be a play in the game. $\exists ve$ wins if all paths in $\gamma(\psi)$ are winning for her. $\forall dam$ wins if there is some path which is winning for him.

$\forall dam and determinacy$

Definition

- Observable strategies: we let ∀dam reveal to ∃ve only the (Obs × Σ)⁺ → Obs version of his strategy.
- Let γ be a function mapping observation-action sequences to concrete state-action ones.

Definition (New winning condition)

Let ψ be a play in the game. $\exists ve$ wins if all paths in $\gamma(\psi)$ are winning for her. $\forall dam$ wins if there is some path which is winning for him.

Theorem (Observable determinacy)

The new winning condition is a projection of the perfect information game winning condition (via γ). The new winning condition is coSuslin and hence determined^{*}.

Outline

MPG variations

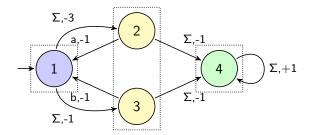
- Mean-payoff games
- Imperfect information

2 Tackling MPGs with imperfect information

- Incomplete information
- Observable determinacy
- Decidable subclasses
- Pure games with incomplete information

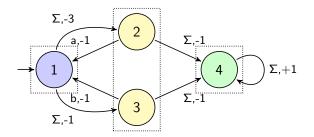
Conclusions

A function sequence is good (bad) if a function is pointwise bigger or equal (smaller) then a previous one – same observation.



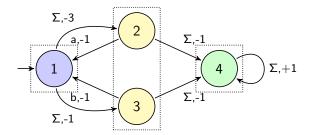
obs: blue play: f_l cur. f: $f_l(1) = 0$

A function sequence is good (bad) if a function is pointwise bigger or equal (smaller) then a previous one – same observation.



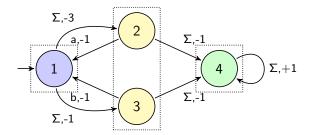
obs: blue-a-yellow play: $f_l a f_1$ cur. f: $f_1(2) = -3, f_1(3) = -1$

A function sequence is good (bad) if a function is pointwise bigger or equal (smaller) then a previous one – same observation.



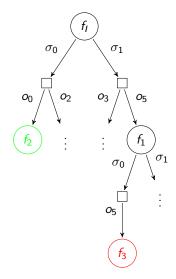
obs: blue-a-yellow-b-green play: $f_1 a f_1 b f_2$ cur. f: $f_2(4) = -4$

A function sequence is good (bad) if a function is pointwise bigger or equal (smaller) then a previous one – same observation.



obs: blue-a-yellow-b-green-a-green play: $f_1 a f_1 b f_2 a f_3 \text{ good}$ cur. f: $f_3(4) = -3$

Unfolding a MPG with incomplete information



"Unfold" *G*, stop when a good or bad sequence is reached.

- We are left with a new reachability game
- Not all branches will be labelled...

Let H be the reachability game played on the unfolding of G,

Theorem (Strategy transfer for ∃ve)

 \exists *ve* has a finite memory winning strategy in G if and only if she has a winning strategy in H.

Theorem (Strat. transfer for ∀dam)

If $\forall dam$ has a winning observable strategy in H then he also has a winning strategy in G.

Finite memory, Adeq. Pure, Pure games

All based on function sequences (branches) of the associated reachability game H.

Definition

● Finite memory games: ∃ve can force good leaves or ∀dam can force bad leaves.

Finite memory, Adeq. Pure, Pure games

All based on function sequences (branches) of the associated reachability game H.

Definition

- Inite memory games: ∃ve can force good leaves or ∀dam can force bad leaves.
- Adequately pure games: ∃ve (∀dam) can force good (bad) branches where all but 2 functions have different support.

Finite memory, Adeq. Pure, Pure games

All based on function sequences (branches) of the associated reachability game H.

Definition

- Inite memory games: ∃ve can force good leaves or ∀dam can force bad leaves.
- Adequately pure games: ∃ve (∀dam) can force good (bad) branches where all but 2 functions have different support.
- Pure games [structural]: the unfolding of G is finite and in all branches, all but 2 functions have different support.

Let A be a class of MPGs with incomplete (or imperfect) information. Given MPG with incomplete (imperfect) information G,

Problem (Class membership)

Is G a member of A?

Problem (Winner determination)

Does $\exists ve$ have a winning strategy in G?

	Finite	Adequately pure		Pure	
	memory				
Information		incomplete	imperfect	incomplete	imperfect
Class-	$Undec^1$	PSPACE-	NEXP-	coNP-	coNEXP-
membership		complete	hard, in	complete	complete
			EXPSPACE		
Winner-	R-c	PSPACE-	EXP-	NP ∩	EXP-
det.		complete	complete	coNP	complete

¹gray=Degorre et al. [2010], other colors are new results

P. Hunter, G. Pérez, J.F. Raskin (ULB)

MPGs with incomplete info.

Outline

MPG variations

- Mean-payoff games
- Imperfect information

Tackling MPGs with imperfect information

- Incomplete information
- Observable determinacy
- Decidable subclasses
- Pure games with incomplete information

Conclusions

Theorem

Deciding if $\exists ve$ has a winning strategy in a given pure MPG with incomplete information is in NP \cap coNP.

Based on Björklund et al. [2004].

Observe^{*} that positional strategies suffice for \exists ve to win pure games with incomplete information.

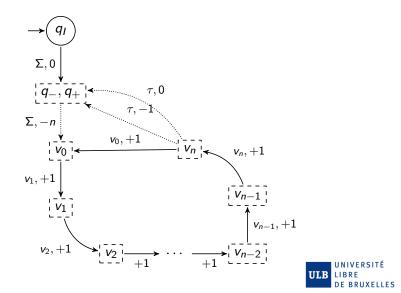
Theorem

The class membership problem for pure games with incomplete information is coNP-complete.

Proof.

- One can "guess" a branch in H (of size at most |Obs| + 1) and in polynomial time check that it is neither good nor bad.
- For hardness we reduce from the HAMILTONIAN-CYCLE problem.

HAM-CYCLE as an MPG



Summary

- **1** Done: incomplete info., observable determinacy, subclasses
- Cooking: other asymmetric information types, other quantitative games, mixed strategies

	Finite	Adequately pure		Pure	
	memory				
Information		incomplete	imperfect	incomplete	imperfect
Class-	$Undec^1$	PSPACE-	NEXP-	coNP-	coNEXP-
membership		complete	hard, in	complete	complete
			EXPSPACE		
Winner-	R-c	PSPACE-	EXP-	NP ∩	EXP-
det.		complete	complete	coNP	complete

¹gray=Degorre et al. [2010], other colors are new results

P. Hunter, G. Pérez, J.F. Raskin (ULB)

IBRE F BRIIXFILES

ULB

- Björklund, H., Sandberg, S., and Vorobyov, S. (2004). Memoryless determinacy of parity and mean payoff games: a simple proof. <u>Theoretical Computer Science</u>, 310(1):365–378.
- Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., and Toruńczyk, S. (2010). Energy and mean-payoff games with imperfect information. In <u>Computer Science Logic</u>, pages 260–274. Springer.
- Ehrenfeucht, A. and Mycielski, J. (1979). Positional strategies for mean payoff games. International Journal of Game Theory, 8:109–113.
- Galperin, H. and Wigderson, A. (1983). Succinct representations of graphs. <u>Information and Control</u>, 56(3):183–198.

