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Big Picture

@ A lazy (GDCL-like) approach to exact nonlinear

olobal optimization over the real numbers
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Big Picture

@ A lazy (CDCL-like) approach to exact nonlinear

global optimization over the real numbers

® |'hree main conceptual ingredients:

@ A practical application ot nonstandard models!
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Eixact Global Optimization

Many classes of optimization problems,
based on restrictions of {’s and b’s
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What is a Real Closed Field?

=




What 1s a Real Closed F 1eld?

Examples:
@ |'he reals: <R7 Tl Ov 1>

@ The algebraic reals: (Rg;4, +, ¥, <,0,1)

@ 'The (a!) Hyperreals: (H(R,+,*, <0, 1>> /U

N

o Real closures; K sit. K=Q(t1,...,tn, €1, .; €m)
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Optimization using RGE QF - 1
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Optimization using RGEF QF - 11

wew coordinate function y
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Optimization using RGEF QF - 11

wew coordinate function y

i Step 2: QE (project onto y)
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AP 2: QE (project onto y)

Use RCF QE to eliminate 3% from dZF(Z,y), obtaining p(y) s.t

\//\ p’L,] NZ.] ) NZ)]E {<7 §7:7 Z’ >}7 p’L,] 6 Z[y]'

Step 3: Real Root Isolation
(note sign invariance: IVT!)
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Step 3: Real Root Isolation
(note sign invariance: IVT!)

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots
of p; j(y) € Zly]. This partitions R into 2k + 1 connected components.

< - — - ——— - — — - —

Step 4: Search!
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Four Possible Outcomes




Five . 7

RUN OUT OF MEMORY AND/OR TIME!!

Computing ¢(y) explicitly is a bad idea!

Monday, October 21, 13



A GAD-based Approach

@ Used by Mathematica

@ Doesn’t require explicit computation of Phi(y)
@ But, 1t 1s eager and pessumaistic

@ Our new approach 1s lazy and optumastic

@ Iirst, let’s understand the CAD-based
approach...
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Cylindrical Algebraic Decomposition

CAD: A partitioning of R"
into finitely many RCF-definable connected
components which “behaves nicely” w.r..

projections onto lower dimensions.
P C Z[il?l,. .. ,$n]

P-invariant CAD

a CAD of IR™s.t. forall cells ci allp € P
Vr € ¢ci(p(r) =0) V
Vi€ ¢i(p(r) > 0) V
Vi € ¢;(p(r) < 0)

CAD sphere diagrams: C. Brown and QEPCAD-B
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CAD Phase I: Projection

PTOij_l IZ[CUl,---;xi—I—l] — Z[wlw“awi]

‘l) ! i | y . v y - ' \ 1 v l \5 v L
A (P {1+ 1 {)-invariant GAD for R 41+ 1

|
i it WAL 1D
can be constructed trom

a (P_1)-invariant GAD of R%1

P,_1 = Proj(P,) C Z[z1,..: Tn-1]

Py, = Proj(Ps) C Z[z1, z2]
P, = Proj(P2) C Z|z1]




Projection sets

CAD sphere diagrams: C. Brown and QEPCAD-B
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Projection sets

Base Phase: R 1
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Projection sets

Litting Phase: R*] -> R”2
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Projection sets

Litting Phase: R*2 -> R”3
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A GAD-based Approach to Optimization

~~_Step 1: New coordlna’re function y

Step 2: CAD projection (with y lowest variable)
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K

Step 2: CAD projection (with y lowest variable)

Pov1={y— f(@), f1(&) = b1,..., fm(Z) — b} C Zly,x1, ...
P, = Proj(P,11) C Zly, x1,

Py = Proj(Ps) C Zly, x1]
P, = Proj(P,) C Z[y]
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Recap ot CAD-based Approach

@ Used by Mathematica
@ Doesn’t require explicit computation of Phi(y)

@ But, 1t 15 eager and pessinustic:

FULL CAD Projection (expensive!!!)
@ Our new approach 1s lazy and optumastic

@ We build on nisat/mesat, a GDCGL-like approach
to the Existential fragment of RCF
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nlsat/mcsat:

CDCL-like approach to ExRCF

@ Start building model for formula immediately;
without first going through projection phase

@ When conflict arises, use projection on demand

@ Real-algebraic analogue ot conflict clauses
generalize a non-extendable partial models to
rule out a delineable region containing them

@ Non-chronological backtracking

* Typically much more ethcient on ExRCF SM'T
problems than classical (eager & pessimistic) GAD!
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nlsat: GDCL-like approach to ExRCF

Key ideas: Use partial solution to guide the search

: : | | | 3 2 2
Feasible Region B ; Eeliios S o

Starting search
Partial solution:

x 0.5

—4xy —4x+y>1 [

What is the core?

X2 +y2 <1 I8 Can we extend it to y?
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nlsat: GDCL-like approach to ExRCF

Key ideas: Use partial solution to guide the search

s . . | 3 2 2
Feasible Region | | x°+2x° +3y° -5 <0

Starting search
Partial solution:
x 0.5

—4xy —4x+y>1 " =

What is the core?

2+yt<1l | Ll Can we extend it to y?
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nlsat ——— -
Mathematica
QEPCAD
Redlog-VTS
Redlog-CAD ===~
BB
ISAT
. ove3
MlnISrpt

1200 1400 1600

problems solved
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CAD-based optimization + nlsat = ?

...but how can we combine the two?
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Key difficulty: Sweeping L. to R

® We use coordinate function y to represent the
objective function

@ T'hen, we need to sweep along all possible values of
y from Left to Right

@ After GAD projection, we can do this

@ But, what about with nlsat/mcsat?
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where to start? how to move to next’ region?




Key difhculty: Sweeping L. to R
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where to start? how to move to next’ region?




Key difhculty: Sweeping L. to R




Key difhculty: Sweeping L. to R

< - — >

I

r+epsilon

where to start? how to move to next’ region?




Computing with Infinitesimals &

Computable Transcendentals
Techmque explained 1n our 2013 CADE paper

@’bmputatwn in Real Clt)sed Inﬁfzteszmal and
Transcendental Extensions of the Ratzonals

k

1te > 10100 Transcendental
Infinitesimal € —

/ /,_

m+e<m

FindRoots (1 — V2 x% — ex? + €2 x°)
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Real Closed Fields

Real Closure of the
Rational Numbers
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Real Closed Fields

root(—m—x+ x°,(1,2)), ...

| Field extension
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Real Closed Fields

R
Ul

E' Kl — Q(T[)(E)

Ul
K, K = Q(m)
Ul 2

~~

Ralg = Q

l,e,m+ e,




Real Closed Fields

Hyperreals ‘”"'/' [HI S
R Kk, = Qm(e)(e)
Ul Ul

K, K; = Q(m)(e) Infinitesimal
Ul
K,K = Q(m)
Ul

IRalg = Q

~~




Real Closed Fields

Hyperreals [HI

2NN
R Kk =Qm(e)e)
Ut Ul

| S—

K, K, = Q(m)(e) Infinitesimal
Ul
K,K = Q(r)
Ul

]Ralg — @




Our approach

Tower of extensions
Hybrid representation

Interval (arithmetic) + Thom’s lemma
Clean denominators

Non-minimal defining polynomials
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Tower of extensions

Basic ldea:
Given (computable) ordered field K

Implement K(¢)
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Tower of extensions

(Computable) ordered field K
Operations: +, —, X, inv, sign 'Binary Rational
a<b e sign(a—»b) = -1

a
2k

Approximation: approx(a) € B;-interval
Boo =B U {_OO; OO}

a+0=0¢approx(a)

Refine approximation
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(Computable) Transcendental Extensions

approx(m)(k) € By-interval

1
vn € N*,3k € N,width(approx(m)(k)) < —

n

Elements of the extension are encoded as rational functions

2 4+m—2
m+ 1

Monday, October 21, 13



(Computable) Transcendental Extensions

1,1

>T% + 5T+ 1

Standard normal form for rational functions
GCD(numerator, denominator) = 1
Denominator is a monic polynomial
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(Computable) Transcendental Extensions

Refine interval
Interval arithmetic
Refine coefficients and extension

Zero iff numerator is the zero polynomial
If g(x) is not the zero polynomial,

then g(m) can’t be zero, since m is transcendental.

Remark
\/T is transcendental with respect to Q

VT is not transcendental with respect to Q ()

Monday, October 21, 13



Infinitesimal Extensions

Every infinitesimal extension is transcendental
Rational functions

sign(ag + a;€ + ...+ a,e™)
sign of first non zero coefficient

1
approx(€) = (0,5%

Non-refinable intervals

1
approx (—) = (2%, 0)

€
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Algebraic Extensions

K(a)
« is a root of a polynomial with coefficients in K

Encoding a as polynomial + interval does not work
K may not be Archimedian

Roots can be infinitely close to each other.
Roots can be greater than any Real.

Thom’s Lemma

We can always distinguish the roots of a polynomial in a
RCF using the signs of the derivatives
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Algebraic Extensions

Roots: —\/1_/6, \/T/E, E{/17/6

r* + 1 € (Q(e))[]

—00.0), {})
1 (u. ), {60222 — 6e >
-9 (“ o ) {()()r — e &
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Algebraic Extensions

Given H = {h4, ..., h,}, signdet(H,p,a,b)
Feasible sign assignments of H at roots of p in (a, b)
Based on Sturm-Tarski Theorem

Ben-Or et al algorithm.

sign(q(a)) where a = (p,(a, b),S)
R = signdet(poly(S),p, (a, b))

it SU{q =0} € R then q(a) =0,
if SU{q > 0} € R then g(a) > 0,
if SU{q <0} € R then q(a) < 0.
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The proicediuire MkInfinitesimal creates a new infinitesimal extension, while Pi
and E return 7 and e respectively. In the following example, we extract the first m u-l-e wW i-l-
(and only) root of the polynomial z* + ez? + (V2 + 7) z — . CO P h

eps = MkInfinitesimal("eps") lnﬁr'II"'QSImCIIS Clnd

pi = Pi()

r = MkRoots([-pi, sqrt2 + pi, eps, 1])[0] franscendenfals

print(r) ;

>> root(x"3 + eps*x~2 + (root(x~2 + -2, (0, +00), {}) + pi)*x + ()r]llr]éal
-1xpi, (0, +o00), {})

print(r.decimal(10))

>> 0.63371731427

— ¢ rise4fun.com/Z3IRCF /tower8

z3rcft

Explore the RCF package using Python
1 # Create Pi, Euler's constants and on infinitesimal.
2 pt = PLO)
} e = EQ)
¢ eps = MkInfinitesimal()

e PS| O & print(“Let r@ be the first root of x*4 + -2%eps*xA3 + (epshZ + -4)*x 2 + 4%eps*x + -2%epd

7 ro = McRoots([4 - 2%eps**Z, 4%eps, (eps**Z - 4), -2%eps, 1])[€]
8 print(ro)

amounts of ire

11 print("Let rl be the first root of (~1%eps**0 + B*eps*®4 + -20%eps**2 + 16)°*rD + -B%eps*s
12 1l = McRoOOtSC[(~1%eps®®s « B%eps®®d o ~20%ps**Z + 16)°r0 « ~8%¢ps®*S + 32%ps**3 + -32%

fun! :-) : F

16 print("Let r2 be the first root of xXAS + 3*°xA3 + rl%*xA2 - 17)
17 r2 = McRoots([-1, @, rl, 3, 1])(0€]

18 print(r2)

2 print(™)

Moot

Research

21 print("Let r3 be the first root of xAS5 + r1*xA3 + pi*r2*xA2 - 3%)
22 r3 = McRoots([-3, @, pi*r2, r1, @, 1])([€]

‘' shortcut: Alt+B
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to opfimization...
Key difficulty: Sweeping L. to R

® We use coordinate function y to represent the
objective function

@ T'hen, we need to sweep along all possible values of
y from Left to Right

@ After GAD projection, we can do this

@ But, what about with nlsat?
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procedure Min(F(Z,y))

G := true
¢ := Mkinfinitesimal() (* create an infinitesimal value *)

loop
T = Mino(G)
case r of
unsat = return unsat
unbounded = v := —%
(inf,a) > v:=a+e¢
(minja) = v:=a
end
case Check(F(Z,y),{y — v}) of
sat = return r
(unsat,S) = G:=GAS
end

end

Min_0: Procedure for Univariate Optimization Problem
Check: Procedure for SAT Modulo Assignment Problem,
with support for RCF's containing mfinitesimals,
and satistying the finite decomposition property.
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T'he RCEF Optimization Problem

Input: A quantifier-free RCF formula F(Z,y).

Output (with ‘is (un)sat’ meaning ‘is (un)satisfiable over R’):

unsat, if ['(Z,y) is unsat,
unbounded, if for all v exists w < v s.t. F(Z,w) is sat,
(inf, a), if for all v < a, F(Z,a) is unsat, and
for all € > 0 exists v € (a,a + €) s.t. F'(Z,v) is sat,

(min, a), if I'(Z,a) is sat, and for all v < a, F(Z,v) is unsat.

Monday, October 21, 13



Conclusion
@ A CDClI-like approach to exact nonlinear global

optimization over the real numbers (and all RCFs)

® |'hree main conceptual ingredients:

T'’hank you!
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