Exact Global Optimization on Demand

Leonardo de Moura & Grant Olney Passmore Microsoft Research, Redmond, USA Clare Hall, Cambridge, UK

COST Action Meeting, IMDEA Software, Madrid October, 2013

Monday, October 21, 13

A *lazy* (CDCL-like) approach to *exact* nonlinear global optimization over the real numbers

A *lazy* (CDCL-like) approach to *exact* nonlinear global optimization over the real numbers

Three main conceptual ingredients:

- A *lazy* (CDCL-like) approach to *exact* nonlinear global optimization over the real numbers
- Three main conceptual ingredients:

CAD-based approach to optimization eager method for nonlinear optimization, in Mathematica v9.x

A *lazy* (CDCL-like) approach to *exact* nonlinear global optimization over the real numbers

Three main conceptual ingredients:

CAD-based approach to optimization eager method for nonlinear optimization, in Mathematica v9.x

nlsat/mcsat - existential CAD `on demand'

lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

A *lazy* (CDCL-like) approach to *exact* nonlinear global optimization over the real numbers

Three main conceptual ingredients:

CAD-based approach to optimization eager method for nonlinear optimization, in Mathematica v9.x

nlsat/mcsat - existential CAD `on demand'

lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

computable nonstandard RCFs

computable RCFs containing infinitesimals (de Moura - Passmore, 2013)

A *lazy* (CDCL-like) approach to *exact* nonlinear global optimization over the real numbers

Three main conceptual ingredients:

CAD-based approach to optimization eager method for nonlinear optimization, in Mathematica v9.x

nlsat/mcsat - existential CAD `on demand'

lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

computable nonstandard RCFs

computable RCFs containing infinitesimals (de Moura - Passmore, 2013)

• A practical application of nonstandard models!

Exact Global Optimization

Many classes of optimization problems, based on restrictions of f's and b's

Exact Global Optimization

Many classes of optimization problems, based on restrictions of f's and b's

nonlinear, computable

What is a Real Closed Field?

$\operatorname{RCF} = Th(\langle \mathbb{R}, +, *, <, 0, 1 \rangle)$

What is a Real Closed Field?

$RCF = Th(\langle \mathbb{R}, +, *, <, 0, 1 \rangle)$

Examples: The reals: $\langle \mathbb{R}, +, *, <, 0, 1 \rangle$

• The algebraic reals: $\langle \mathbb{R}_{alg}, +, *, <, 0, 1 \rangle$ • The (a!) Hyperreals: $\left(\prod_{\mathbb{N}} \langle \mathbb{R}, +, *, <, 0, 1 \rangle \right) / \mathcal{U}$

• Real closures: $\widetilde{\mathbb{K}}$ s.t. $\mathbb{K} = \mathbb{Q}(t_1, \ldots, t_n, \epsilon_1, \ldots, \epsilon_m)$

Optimization using RCF QE - I

RCF admits quantifier elimination (QE)

Optimization using RCF QE - I

RCF admits quantifier elimination (QE)

In theory, one can exploit RCF QE to solve nonlinear optimization problems over the reals: *Let's see how! In the next slide...*

Optimization using RCF QE - I

RCF admits quantifier elimination (QE)

In theory, one can exploit RCF QE to solve nonlinear optimization problems over the reals: *Let's see how! In the next slide...*

In practice, this is not a viable solution: RCF QE is infeasible: O(2^2^(Omega(n)))

Optimization using RCF QE - II

Optimization using RCF QE - II

$$\begin{array}{ll} \underset{\vec{x}}{\text{minimize}} & f(\vec{x}) \\ \text{subject to} & \bigwedge_{i=1}^{m} f_i(\vec{x}) \leq b_i \end{array}$$

Step 1: New coordinate function y

$$F(\vec{x}, y) \triangleq \left(y = f(\vec{x}) \land \bigwedge_{i=1}^{m} f_i(\vec{x}) \le b_i \right)$$

Optimization using RCF QE - II

Step 1: New coordinate function y

$$F(\vec{x}, y) \triangleq \left(y = f(\vec{x}) \land \bigwedge_{i=1}^{} f_i(\vec{x}) \le b_i \right)$$

m

Step 2: QE (project onto y)

Use RCF QE to eliminate $\exists \vec{x} \text{ from } \exists \vec{x} F(\vec{x}, y)$, obtaining $\varphi(y)$ s.t. $\varphi(y) \triangleq \bigvee_{i} \bigwedge_{j} (p_{i,j}(y) \bowtie_{i,j} 0), \qquad \bowtie_{i,j} \in \{<, \leq, =, \geq, >\}, \quad p_{i,j} \in \mathbb{Z}[y].$

Step 2: QE (project onto y)

Use RCF QE to eliminate $\exists \vec{x} \text{ from } \exists \vec{x} F(\vec{x}, y)$, obtaining $\varphi(y)$ s.t.

 $\varphi(y) \triangleq \bigvee_{i} \bigwedge_{j} (p_{i,j}(y) \bowtie_{i,j} 0), \qquad \bowtie_{i,j} \in \{<, \le, =, \ge, >\}, \quad p_{i,j} \in \mathbb{Z}[y].$

Step 3: Real Root Isolation (note sign invariance: IVT!)

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

Monday, October 21, 13

Sweep from L to R, looking for first connected component satisfying $\varphi(y)$

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

Monday, October 21, 13

Sweep from L to R, looking for first connected component satisfying $\varphi(y)$

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying $\varphi(y)$

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying $\varphi(y)$

exact minimum found!

Four Possible Outcomes

No satisfying region: Infeasible

 \odot (-inf, r) : Unbounded

[r]: Exact minimum

∅ (r, _): No minimum, but exact infimum

Five Four Possible Outcomes

- No satisfying region: Infeasible
- [r] : Exact minimum
- ⌀ (r, _) : No minimum, but exact infimum

Computing $\varphi(y)$ explicitly is a bad idea!

A CAD-based Approach

- Used by Mathematica
- Doesn't require explicit computation of Phi(y)
- But, it is eager and pessimistic
- Our new approach is *lazy* and *optimistic*
- First, let's understand the CAD-based approach...

Cylindrical Algebraic Decomposition

CAD: A partitioning of \mathbb{R}^n into finitely many RCF-definable connected components which "behaves nicely" w.r.t. projections onto lower dimensions.

$$P \subset \mathbb{Z}[x_1, \dots, x_n]$$
-invariant **CAD**
CAD of \mathbb{R}^n s.t. for all cells c_i , all $p \in P$
 $\forall \vec{r} \in c_i(p(\vec{r}) = 0) \lor$
 $\forall \vec{r} \in c_i(p(\vec{r}) > 0) \lor$
 $\forall \vec{r} \in c_i(p(\vec{r}) < 0)$.

CAD sphere diagrams: C. Brown and QEPCAD-B

P

0

CAD Phase I: Projection

 $Proj_{i+1}: \mathbb{Z}[x_1, \ldots, x_{i+1}] \to \mathbb{Z}[x_1, \ldots, x_i]$

Inductive Property: A (P_{i+1})-invariant CAD for R^{i+1} can be constructed from a (P_i)-invariant CAD of R^i.

 $P_n = P \subset \mathbb{Z}[x_1, \dots, x_n]$ $P_{n-1} = Proj(P_n) \subset \mathbb{Z}[x_1, \dots, x_{n-1}]$

 $P_2 = Proj(P_3) \subset \mathbb{Z}[x_1, x_2]$ $P_1 = Proj(P_2) \subset \mathbb{Z}[x_1]$

CAD sphere diagrams: C. Brown and QEPCAD-B

Projection sets $P_3 = \{x_1^2 + x_2^2 + x_3^2 - 4\}$ $P_2 = \{x_2^2 + x_1^2 - 4\}$ $P_1 = \{x_1 + 2, x_1 - 2\}$

Base Phase: R^1

Projection sets

 $P_3 = \{x_1^2 + x_2^2 + x_3^2 - 4\}$ $P_2 = \{x_2^2 + x_1^2 - 4\}$ $P_1 = \{\bar{x_1} + 2, \bar{x_1} - 2\}$

Lifting Phase: R^1 -> R^2

Projection sets

 $P_3 = \{x_1^2 + x_2^2 + x_3^2 - 4\}$ $P_2 = \{x_2^2 + x_1^2 - 4\}$ $P_1 = \{\bar{x_1} + 2, \bar{x_1} - 2\}$

Lifting Phase: R^2 -> R^3

A CAD-based Approach to Optimization

Step 1: New coordinate function y

 $F(\vec{x}, y) \triangleq \left(y = f(\vec{x}) \land \bigwedge_{i=1}^{m} f_i(\vec{x}) \le b_i \right)$

 $P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$ $P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$

 $P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$ $P_1 = Proj(P_2) \subset \mathbb{Z}[y]$

Monday, October 21, 13

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R

Monday, October 21, 13

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R

Step 2: CAD projection (with y lowest variable)

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R

Step 2: CAD projection (with y lowest variable)

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R

Recap of CAD-based Approach

- Used by Mathematica
- Doesn't require explicit computation of Phi(y)
- But, it is *eager* and *pessimistic:* FULL CAD Projection (expensive!!!)
- Our new approach is *lazy* and *optimistic*
- We build on *nlsat/mcsat*, a CDCL-like approach to the Existential fragment of RCF

nlsat/mcsat: CDCL-like approach to ExRCF

- Start building model for formula immediately, without first going through projection phase
- When conflict arises, use projection on demand
- Real-algebraic analogue of *conflict clauses* **generalize** a non-extendable partial models to rule out a *delineable* region containing them
- Non-chronological backtracking

* Typically much more efficient on ExRCF SMT problems than classical (eager & pessimistic) CAD!

nlsat: CDCL-like approach to ExRCF

nlsat: CDCL-like approach to ExRCF

Key ideas: Use partial solution to guide the search $x^3 + 2x^2 + 3y^2 - 5 < 0$ **Feasible Region** Ψ Starting search -4xy - 4x + y > 1-2Partial solution: 0.5 X What is the core? Can we extend it to y? $x^2 + y^2 < 1$

Monday, October 21, 13

CAD-based optimization + nlsat = ?

CAD-based Optimization uses projection eagerly and pessimistically

nlsat/mcsat solves Exists RCF by using projection lazily and optimistically

...but how can we combine the two?

- We use coordinate function y to represent the objective function
- Then, we need to *sweep* along all possible values of y from Left to Right
- After CAD projection, we can do this
- But, what about with nlsat/mcsat?

VS

where to start? how to move to `next' region?

Monday, October 21, 13

Key idea: RCFs containing infinitesimals!

-1/epsilon

where to start? how to move to `next' region?

Key idea: RCFs containing infinitesimals!

where to start? how to move to `next' region?

Key idea: RCFs containing infinitesimals!

-1/epsilon rr+epsilon

where to start? how to move to `next' region?

Monday, October 21, 13

Computing with Infinitesimals & Computable Transcendentals Technique explained in our 2013 CADE paper

> Computation in Real Closed Infinitesimal and Transcendental Extensions of the Rationals

Real Closed Fields

Real Closed Fields

Our approach

Tower of extensions Hybrid representation Interval (arithmetic) + Thom's lemma Clean denominators Non-minimal defining polynomials

Tower of extensions

Basic Idea:

Given (computable) ordered field KImplement $K(\varsigma)$

Tower of extensions

(Computable) ordered field *K* Operations: +, -, ×, *inv*, *sign*

 $a < b \Leftrightarrow sign(a - b) = -1$

Binary Rational $\frac{a}{2^k}$

Approximation: $approx(a) \in B_{\infty}$ -interval $B_{\infty} = B \cup \{-\infty, \infty\}$ $a \neq 0 \Rightarrow 0 \notin approx(a)$

Refine approximation

(Computable) Transcendental Extensions

$approx(\pi)(k) \in B_{\infty}$ -interval

 $\forall n \in \mathbb{N}^+, \exists k \in \mathbb{N}, width(approx(\pi)(k)) < \frac{1}{n}$

Elements of the extension are encoded as rational functions

$$\frac{\pi^2 + \pi - 2}{\pi + 1}$$

(Computable) Transcendental Extensions

$$\frac{1}{2}\pi + \frac{1}{\pi+1} = \frac{\frac{1}{2}\pi^2 + \frac{1}{2}\pi + 1}{\pi+1}$$

Standard normal form for rational functions GCD(numerator, denominator) = 1 Denominator is a monic polynomial

(Computable) Transcendental Extensions

Refine interval Interval arithmetic Refine coefficients and extension

Zero iff numerator is the zero polynomial If q(x) is not the zero polynomial, then $q(\pi)$ can't be zero, since π is transcendental.

Remark $\sqrt{\pi}$ is transcendental with respect to \mathbb{Q}

 $\sqrt{\pi}$ is not transcendental with respect to $\mathbb{Q}(\pi)$

Infinitesimal Extensions

Every infinitesimal extension is transcendental

Rational functions

 $sign(a_0 + a_1\epsilon + ... + a_n\epsilon^n)$ sign of first non zero coefficient

$$approx(\epsilon) = (0, \frac{1}{2^k})$$

Non-refinable intervals $approx\left(\frac{1}{\epsilon}\right) = (2^k, \infty)$

Algebraic Extensions

 $K(\alpha)$ α is a root of a polynomial with coefficients in K

Encoding α as polynomial + interval does not work K may not be Archimedian Roots can be infinitely close to each other. Roots can be greater than any Real.

Thom's Lemma

We can always distinguish the roots of a polynomial in a RCF using the signs of the derivatives

Algebraic Extensions

Roots: $-\sqrt{1/\epsilon}, \sqrt{1/\epsilon}, \sqrt[3]{1/\epsilon}$

Three roots of $\epsilon^2 x^5 - \epsilon x^3 - \epsilon x^2 + 1 \in (\mathbb{Q}(\epsilon))[x]$

$$\begin{array}{l} (\epsilon^2 x^5 - \epsilon x^3 - \epsilon x^2 + 1, (-\infty, 0), \{\}) \\ (\epsilon^2 x^5 - \epsilon x^3 - \epsilon x^2 + 1, (0, \infty), \quad \{60\epsilon^2 x^2 - 6\epsilon > 0\}) \\ (\epsilon^2 x^5 - \epsilon x^3 - \epsilon x^2 + 1, (0, \infty), \quad \{60\epsilon^2 x^2 - 6\epsilon < 0\}) \end{array}$$

Algebraic Extensions

Given $H = \{h_1, ..., h_n\}$, signdet(H, p, a, b)Feasible sign assignments of H at roots of p in (a, b)Based on Sturm-Tarski Theorem Ben-Or et al algorithm.

 $sign(q(\alpha))$ where $\alpha = (p, (a, b), S)$ R = signdet(poly(S), p, (a, b))

if $S \cup \{q = 0\} \in R$ then $q(\alpha) = 0$, if $S \cup \{q > 0\} \in R$ then $q(\alpha) > 0$, if $S \cup \{q < 0\} \in R$ then $q(\alpha) < 0$. The procedure MkInfinitesimal creates a new infinitesimal extension, while Pi and E return π and e respectively. In the following example, we extract the first (and only) root of the polynomial $x^3 + \epsilon x^2 + (\sqrt{2} + \pi) x - \pi$.

1/epsilon

amounts of

fun! :-)

Compute with infinitesimals and transcendentals online!

않 🖁 🖣 🛡

```
z3rc1
Explore the RCF package using Python
    1 # Create Pi, Euler's constants and an infinitesimal.
    2 pi = Pi()
    3 e = E()
    4 eps = MkInfinitesimal()
    6 print("Let r0 be the first root of x^4 + -2*eps*x^3 + (eps^2 + -4)*x^2 + 4*eps*x + -2*eps
    7 r0 = MkRoots([4 - 2*eps**2, 4*eps, (eps**2 - 4), -2*eps, 1])[0]
    8 print(r0)
    9 print("")
   10
   11 print("Let r1 be the first root of (-1*eps**6 + 8*eps**4 + -20*eps**2 + 16)*r0 + -8*eps**
   12 r1 = MkRoots([(-1*eps**6 + 8*eps**4 + -20*eps**2 + 16)*r0 + -8*eps**5 + 32*eps**3 + -32*e
   13 print(r1)
   14 print("")
   15
   16 print("Let r2 be the first root of x^5 + 3*x^3 + r1*x^2 - 1")
   17 r2 = MkRoots([-1, 0, r1, 3, 1])[0]
   18 print(r2)
   19 print("")
   21 print("Let r3 be the first root of x^5 + r1*x^3 + pi*r2*x^2 - 3")
   22 r3 = MkRoots([-3, 0, pi*r2, r1, 0, 1])[0]
              home permalink
             '⊨' shortcut: Alt+B
```

← → C ise4fun.com/Z3RCF/tower8

Research

Back to optimization...

Key difficulty: Sweeping L to R

- We use coordinate function y to represent the objective function
- Then, we need to *sweep* along all possible values of y from Left to Right
- After CAD projection, we can do this
- But, what about with nlsat?

VS

where to start? how to move to `next' region?

Monday, October 21, 13

Key idea: RCFs containing infinitesimals!

-1/epsilon

where to start? how to move to `next' region?

Key idea: RCFs containing infinitesimals!

where to start? how to move to `next' region?
Key difficulty: Sweeping L to R

Key idea: RCFs containing infinitesimals!

-1/epsilon rr+epsilon

where to start? how to move to `next' region?

Monday, October 21, 13

```
procedure Min(F(\vec{x}, y))
   G := true
   \epsilon := MkInfinitesimal() (* create an infinitesimal value *)
   loop
      r := \operatorname{Min}_0(G)
      case r of
         unsat \Rightarrow return unsat
         unbounded \Rightarrow v := -\frac{1}{\epsilon}
         (\inf, a) \Rightarrow v := a + \epsilon
         (\min, a) \Rightarrow v := a
      end
      case Check(F(\vec{x}, y), \{y \mapsto v\}) of
         sat \Rightarrow return r
         (unsat, S) \Rightarrow G := G \land S
      end
   end
```

Min_0: Procedure for Univariate Optimization Problem
Check: Procedure for SAT Modulo Assignment Problem,
with support for RCFs containing *infinitesimals*,
and satisfying the *finite decomposition* property.

The RCF Optimization Problem

Input: A quantifier-free RCF formula $F(\vec{x}, y)$.

Output (with 'is (un)sat' meaning 'is (un)satisfiable over \mathbb{R} '):

unsat,if $F(\vec{x}, y)$ is unsat,unbounded,if for all v exists w < v s.t. $F(\vec{x}, w)$ is sat,(inf, a),if for all $v \leq a$, $F(\vec{x}, a)$ is unsat, andfor all $\epsilon > 0$ exists $v \in (a, a + \epsilon)$ s.t. $F(\vec{x}, v)$ is sat,(min, a),if $F(\vec{x}, a)$ is sat, and for all v < a, $F(\vec{x}, v)$ is unsat.

Conclusion

 A CDCL-like approach to exact nonlinear global optimization over the real numbers (and all RCFs)

Three main conceptual ingredients:

CAD-based approach to optimization eager method for nonlinear optimization, in Mathematica v9.x

nlsat/mcsat - existential CAD `on demand'

lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

computable nonstandard RCFs

computable RCFs containing infinitesimals (de Moura - Passmore, 2013)

Thank you!