From simple combinatorial statements with difficult mathematical proofs to hard instances of SAT

Gabriel Istrate
West University of Timişoara, Romania

(joint work with Adrian Crãciun)

- This talk: "Theory A" (proof complexity), unpublished work.
- Naturally continues with experimental work on SAT benchmarks.
- One-line soundbite: Do combinatorial statements with difficult (mathematical) proofs correspond to "hard" instances of SAT ?
- I am not solving any major open problem in computational complexity

REMINDER: PROPOSITIONAL PROOF COMPLEXITY

- Proving that a formula is not satisfiable seems "harder" than finding a solution.
- Possible: proof systems for unsatisfiability, e.g. resolution
- $C \vee x, D \vee \bar{x} \rightarrow(C \vee D), x, \bar{x} \rightarrow \square$.
- Complexity= minimum length of a resolution proof.
- Lower bound for the running time of all DPLL algorithms !

Reminder: Propositional proof complexity (II)

- Resolution proof size may be exponential
- E.g. Pigeonhole formula(s): $P H P_{n}^{n-1}$ (Haken)
- $X_{i, j}=1$ "pigeon i goes to hole j ".
- $X_{i, 1} \vee X_{i, 2} \vee \ldots \vee X_{i, n-1}, 1 \leq i \leq n$ (each pigeon goes to (at least) one hole)
- $\overline{X_{k, j}} \vee \overline{X_{l, j}}$ (pigeons k and l do not go together to hole j).
- Resolution: clausal formulas. Stronger proof systems ?

Boundaries of proof complexity: Frege proofs

- Example, for concreteness [Hilbert Ackermann]
- propositional variables p_{1}, p_{2}, \ldots.
- Connectives \neg, \vee.
- Axiom schemas:

1. $\neg(A \vee A) \vee A$
2. $\neg A \vee(A \vee B)$
3. $\neg(A \vee B) \vee(B \vee A)$
4. $\neg(\neg A \vee B) \vee(\neg(C \vee A) \vee(C \vee B))$

- Rule: From A and $\neg A \vee B$ derive B.
- Cook-Reckhow: all Frege proof systems equivalent (polynomially simulate each other)
- Can prove PHP in polynomial size (Buss).
- Still exponential l.b. (2 $\left.2^{n^{\epsilon}}\right)$ if we restrict formula depth (bounded-depth Frege)

Boundary of Knowledge: Frege proofs (II)

- PHP (Buss): proof by counting
- Usual proof by induction: exponential size in Frege: reduction causes formula size to increase by a constant factor at every reduction step.
- Polynomial if we allow introducing new variables: $X \equiv \Phi(\bar{Y})$.
- Frege + new vars: extended Frege

OUR ORIGINAL IDEA/MOTIVATION

- Open question: Is extended Frege more powerful than Frege ?
- Most natural candidates for separation turned out to have subexponential Frege proofs.
- Perhaps translating into SAT a mathematical statement that is (mathematically) hard to prove would yield a natural candidate for the separation.
- Didn't quite work out: Our examples probably harder than extended Frege.
- Stated in 1955 (Martin Kneser, Jaresbericht DMV)
- Let $n \geq 2 k-1 \geq 1$. Let $c:\binom{n}{k} \rightarrow[n-2 k+1]$. Then there exist two disjoint sets A and B with $c(A)=c(B)$.
- Stated in 1955 (Martin Kneser, Jaresbericht DMV)
- Let $n \geq 2 k-1 \geq 1$. Let $c:\binom{n}{k} \rightarrow[n-2 k+1]$. Then there exist two disjoint sets A and B with $c(A)=c(B)$.
- $k=1$ Pigeonhole principle !
- $k=2,3$ combinatorial proofs (Stahl, Garey \& Johnson)
- $k \geq 4$ only proved in 1977 (Lovász) using Algebraic Topology.
- Combinatorial proofs known (Matousek, Ziegler). "hide" Alg. Topology
- No "purely combinatorial" proof known

Kneser's Conjecture (II)

- the chromatic number of a certain graph $K n_{n, k}$ (at least) $n-2 k+2$. (exact value)
- Vertices: $\binom{n}{k}$. Edges: disjoint sets.
- E.g. $k=2, n=5$: Petersen's graph has chromatic number (at least) three.

Stronger form: Schrijver's Theorem

- inner cycle in Petersen's graph already chromatic number three.
- $A \in\binom{n}{k}$ stable if it doesn't contain consecutive elements i, $i+1$ (including $n, 1$).
- Schrijver's Theorem: Kneser's conjecture holds when restricted to stable sets only.

Algebraic topology and graph colorings

- Dolnikov's theorem: generalization, lower bounds on the chromatic number of an arbitrary graph.
- In general not tight.
- Many other extensions.

Lovász-Kneser's Thm. as an (UnsAtisfiable) PROPOSITIONAL FORMULA

- naïve encoding $X_{A, k}=$ TRUE iff A colored with color k.
- $X_{A, 1} \vee X_{A, 2} \vee \ldots \vee X_{A, n-2 k+1}$ "every set is colored with (at least) one color"
- $\overline{X_{A, j}} \vee \overline{X_{B, j}}(A \cap B=\emptyset)$ "no two disjoint sets are colored with the same color"
- Fixed k : Kneser $_{k, n}$ has poly-size (in n).
- Extends encoding of PHP

OUR RESULTS IN A NUTSHELL

- Kneser $_{k, n}$ reduces to (is a special case of) Kneser $_{k+1, n-2}$.
- Thus all known lower bounds that hold for PHP (resolution, bd. Frege) hold for any Kneser $_{k}$.
- Cases with combinatorial proofs:
- $k=2$: polynomial size Frege proofs
- $k=3$: polynomial size extended Frege proofs
- $k \geq 4$: polynomial size implicit ${ }_{2}$ extended Frege proofs
- Implicit proofs: Krajicek (2002). Very powerful proof system(s). AFAIK: first concrete example.

Significance

- Proof complexity: counterpart, expressibility in (versions of) bounded arithmetic
- Reverse mathematics: what is the weakest proof system that can prove a certain result ?
- Stephen Cook: "bounded reverse mathematics"
- Implicit proofs seem to be needed for simulating arguments involving algebraic topology.
- Reasons: expenentially large objects and nonconstructive methods
- CONJECTURE: For $k \geq 4$ Kneser $_{k, n}$ requires exponential-size (extended) Frege proofs

What is Algebraic Topology and why can it PROVE LOWER BOUNDS ON CHROMATIC NUMBERS?

- Two objects similar if can continuously morph one into the other
- Cannot turn a donut into a sphere: Hole is an "obstruction" to contracting a circle going around the torus to a point.
- Can do that on a sphere.
- Continuous morphing should preserve contractibility.

How do we "measure" the "number of holes" (AND OTHER PROPERTIES)?

- algebraic objects (groups)
- Functorial: $G \rightarrow H$ implies $F(G) \rightarrow F(H)$.
- If $K \rightarrow F(G)$ but $K \nrightarrow F(H)$ then K acts as an obstruction to $G \rightarrow H$
- Coloring $=$ morphism of graphs.

Ingredient of Kneser proof: Borsuk-Ulam THM.

- Cannot map continuously and antipodally n-dim. sphere into a sphere of lower dimension (or ball into sphere)
- Obstruction: largest dimension of sphere that can be embedded continuously and antipodally into $F(G)$. As long as $F\left(K_{m}\right)$ "is a sphere".

From continuous to discrete

- A sphere is topologically equivalent to an octahedron
- simplicial complex: every subset of a face is a face.
- Simplex: purely combinatorially (sets that are simplices)

- Vertices: $\{ \pm 1, \pm 2, \ldots, \pm n\}$.
- Faces: subsets that do not contain no i and $-i$.
- Exponentially (in n) many faces !

Discrete Borsuk-Ulam: Tucker's lemma

- Antipodally Symmetric Triangulation T of the n-ball. Barycentric subdivision, one vertex for each face
- For any labeling of T with vertices from $\{ \pm 1, \ldots, \pm(n-1)\}$ antipodal on the boundary there exist two adjacent vertices $v \sim w$ with $c(v)=-c(w)$.
- Intuition: no continuous (a.k.a simplicial) antipodal map from the n-ball to the n-sphere.

KNESER FROM TUCKER $(k \geq 4)$

- Simulate "combinatorial" proof of Kneser (combination of two mathematical proofs)
- Tucker's lemma: unsatisfiable propositional formula. Kneser $_{k, n}$: variable substitution.
- barycentric dimension \Rightarrow exponentially large formula!
- Kneser follows from a new "low dimensional" Tucker lemma.
- Avoid barycentric subdivision. Instead (k+k) "skeleton"

KNESER FROM TUCKER $(k \geq 4)$

- Second obstacle: Tucker lemma is nonconstructive (PPAD complete).
- Given an (exponential size) graph with one vertex of odd degree, find another node of odd degree
- For Kneser: this exponential graph has very regular structure.

ImPLICIT PROOFS

- Krajicek (J. Symb. Logic 2004).
- Hierarchy: $i E F, i_{2} E F, i_{3} E F, \ldots$.
- ridiculously powerful: implicit resolution \equiv extended Frege.
- poly-size boolean circuit that is generating all formulas in an extended Frege proof + correctness proof
- if correctness proof itself implicit \Rightarrow second level. Correctness proof second level \Rightarrow third level ...

Implicit proofs: Kneser

- polynomial number of output gates $\Rightarrow \Phi_{0}, \ldots, \Phi_{t}{ }^{\prime \prime}$ small"
- extended Frege: renaming keeps formulas small.
- implicit proofs allows us to generate a proof of the odd degree argument
- soundness: exponentially large (but regular) \Rightarrow Kneser: second level

${\text { Reducing } \text { Kneser }_{n, k+1} \text { TO } \text { Kneser }_{n-2, k}, ~}_{\text {nen }}$

- There exists a variable substitution $\Phi_{k}: \operatorname{Var}\left(\right.$ Kneser $\left._{n, k+1}\right) \rightarrow \operatorname{Var}\left(\right.$ Kneser $\left._{n-2, k}\right)$ s.t. $\Phi_{k}\left(\right.$ Kneser $\left._{n, k+1}\right)$ consists precisely of the clauses of Kneser $_{n-2, k}$ (perhaps repeated and in a different order)
- Let $A \in\binom{n}{k+1}$. Define $\Phi_{k}\left(X_{A, i}\right)$ by:
- Case 1: $A_{\leq k} \subseteq[n-2]: \Phi_{k}\left(X_{A, i}\right)=Y_{A_{\leq k}, i}$
- Case 2: $A_{\leq k} \nsubseteq[n-2]:(n-1, n \in A)$ Let $A=P \cup\{n-1, n\},|P|=k-1$. Let $\lambda=\max \{j: j \leq n-2, j \notin P\}$. Define $\Phi_{k}\left(X_{A, i}\right)=Y_{P \cup\{\lambda\}, i}$
- Clause $X_{A, 1} \vee X_{A, 2} \vee \ldots \vee X_{A, n-2 k+1}$ maps to $Y_{B, 1} \vee Y_{B, 2} \vee \ldots \vee Y_{B, n-2 k+1}, B=A$ (Case 1).
- Clauses $\overline{X_{A, i}} \vee \overline{X_{B, i}}(A \cap B=\emptyset)$ map to $\overline{Y_{C, i}} \vee \overline{Y_{D, i}}$
- Case 2 cannot happen for both A and B. By case analysis $C \cap D=\emptyset$.

COMMENTS ON (OTHER) PROOFS

- Lower bounds Schrijver: Same substitution, slightly more complicated argument.
- $k=2$: counting proof, Stahl+ Buss PHP.
- For any color class $c^{-1}(\lambda)$ one of the following is true (assuming conclusion of Kneser does not hold):
- $\left|c^{-1}(\lambda)\right| \leq 3$.
- All sets $B \in c^{-1}(\lambda),\left|c^{-1}(\lambda)\right| \geq 4$, have one element in common (call such an element special).
- Frege systems can "count" (employing techniques developed by Buss) the number of special elements.
- $k=3$: Counting approach fails (technical reasons), have to settle for extended Frege.

From Kneser-Like results to hard SAT INSTANCES?

- $2^{\Omega(n)}$ resolution complexity. Are they hard in practice?
- At this point: only idea for subsequent work
- Want: small formulas.
- Kneser ${ }_{n, k}: \sim n^{k+1}$ variables, even more clauses.
- Schrijver ? Other versions of Dolnikov's Theorem? expander graph with tight bounds on the chromatic number
- Better encodings ? All intuitions should apply.
- Kneser, stable Kneser graphs: symmetries well understood. But: reason for unsatisfiability is more global

FURTHER POSSIBLE WORK

- Other proof systems: e.g. cutting planes $(\mathrm{k}=2)$, polynomial calculus, etc.
- (in progress) Topological obstructions: from graph coloring to CSP.
- Logics for implicit proof systems ?
- Topological arguments as sound (but incomplete) implicit proof systems
- if $K \nrightarrow L$ then a "proof of $A \nrightarrow B$ " is a pair of embeddings $(K \rightarrow A),(B \rightarrow L)$.
- Checking soundness ($K \nrightarrow L$) may not be polynomial. If K, L "standard objects" we could omit proof of $K \nrightarrow L$ from complexity
- Automated theorem proving ?

Thank you. Questions?

