From simple combinatorial statements with difficult mathematical proofs to hard instances of SAT

Gabriel Istrate West University of Timișoara, Romania

(joint work with Adrian Craciun)

CAUTION

- This talk: "Theory A" (proof complexity), unpublished work.
- Naturally continues with experimental work on SAT benchmarks.
- One-line soundbite: Do combinatorial statements with difficult (mathematical) proofs correspond to "hard" instances of SAT ?
- I am not solving any major open problem in computational complexity

Reminder: Propositional proof complexity

- Proving that a formula is not satisfiable seems "harder" than finding a solution.
- ► Possible: proof systems for unsatisfiability, e.g. resolution
- $C \lor x, D \lor \overline{x} \to (C \lor D), x, \overline{x} \to \Box$.
- Complexity= minimum length of a resolution proof.
- Lower bound for the running time of all DPLL algorithms !

REMINDER: PROPOSITIONAL PROOF COMPLEXITY (II)

- Resolution proof size may be exponential
- E.g. Pigeonhole formula(s): PHP_n^{n-1} (Haken)
- $X_{i,j} = 1$ "pigeon *i* goes to hole *j*".
- ► $X_{i,1} \lor X_{i,2} \lor \ldots \lor X_{i,n-1}$, $1 \le i \le n$ (each pigeon goes to (at least) one hole)
- $\overline{X_{k,j}} \vee \overline{X_{l,j}}$ (pigeons *k* and *l* do not go together to hole *j*).
- ► Resolution: clausal formulas. Stronger proof systems ?

BOUNDARIES OF PROOF COMPLEXITY: FREGE PROOFS

- ► Example, for concreteness [Hilbert Ackermann]
 - propositional variables p_1, p_2, \ldots
 - ► Connectives ¬, ∨.
 - Axiom schemas:
 - 1. $\neg (A \lor A) \lor A$
 - 2. $\neg A \lor (A \lor B)$
 - 3. $\neg (A \lor B) \lor (B \lor A)$
 - 4. $\neg(\neg A \lor B) \lor (\neg (C \lor A) \lor (C \lor B))$
 - Rule: From *A* and $\neg A \lor B$ derive B.
- Cook-Reckhow: all Frege proof systems equivalent (polynomially simulate each other)
- Can prove *PHP* in polynomial size (Buss).
- ▶ Still exponential l.b. (2^{n^e}) if we restrict formula depth (bounded-depth Frege)

BOUNDARY OF KNOWLEDGE: FREGE PROOFS (II)

- ► PHP (Buss): proof by counting
- Usual proof by induction: exponential size in Frege: reduction causes formula size to increase by a constant factor at every reduction step.
- Polynomial if we allow introducing new variables: $X \equiv \Phi(\overline{Y})$.
- Frege + new vars: extended Frege

OUR ORIGINAL IDEA / MOTIVATION

- Open question: Is extended Frege more powerful than Frege ?
- Most natural candidates for separation turned out to have subexponential Frege proofs.
- Perhaps translating into SAT a mathematical statement that is (mathematically) hard to prove would yield a natural candidate for the separation.
- Didn't quite work out: Our examples probably harder than extended Frege.

KNESER'S CONJECTURE

- Stated in 1955 (Martin Kneser, Jaresbericht DMV)
- ► Let $n \ge 2k 1 \ge 1$. Let $c : \binom{n}{k} \to [n 2k + 1]$. Then there exist two disjoint sets *A* and *B* with c(A) = c(B).

KNESER'S CONJECTURE

- ► Stated in 1955 (Martin Kneser, Jaresbericht DMV)
- ► Let $n \ge 2k 1 \ge 1$. Let $c : \binom{n}{k} \to [n 2k + 1]$. Then there exist two disjoint sets *A* and *B* with c(A) = c(B).
- k = 1 Pigeonhole principle !
- ► k = 2, 3 combinatorial proofs (Stahl, Garey & Johnson)
- *k* ≥ 4 only proved in 1977 (Lovász) using Algebraic Topology.
- Combinatorial proofs known (Matousek, Ziegler). "hide" Alg. Topology
- No "purely combinatorial" proof known

KNESER'S CONJECTURE (II)

- ► the chromatic number of a certain graph $Kn_{n,k}$ (at least) n 2k + 2. (exact value)
- Vertices: $\binom{n}{k}$. Edges: disjoint sets.
- ► E.g. k = 2, n = 5: Petersen's graph has chromatic number (at least) three.

STRONGER FORM: SCHRIJVER'S THEOREM

- inner cycle in Petersen's graph already chromatic number three.
- ► $A \in \binom{n}{k}$ stable if it doesn't contain consecutive elements *i*, *i* + 1 (including *n*, 1).
- Schrijver's Theorem: Kneser's conjecture holds when restricted to stable sets only.

ALGEBRAIC TOPOLOGY AND GRAPH COLORINGS

- Dolnikov's theorem: generalization, lower bounds on the chromatic number of an arbitrary graph.
- ► In general not tight.
- Many other extensions.

LOVÁSZ-KNESER'S THM. AS AN (UNSATISFIABLE) PROPOSITIONAL FORMULA

- naïve encoding $X_{A,k} = TRUE$ iff A colored with color k.
- ► X_{A,1} ∨ X_{A,2} ∨ ... ∨ X_{A,n-2k+1} "every set is colored with (at least) one color"
- ► $\overline{X_{A,j}} \lor \overline{X_{B,j}}$ ($A \cap B = \emptyset$) "no two disjoint sets are colored with the same color"
- Fixed *k*: $Kneser_{k,n}$ has poly-size (in *n*).
- Extends encoding of PHP

OUR RESULTS IN A NUTSHELL

- *Kneser*_{*k*,*n*} reduces to (is a special case of) *Kneser*_{*k*+1,*n*-2}.
- Thus all known lower bounds that hold for PHP (resolution, bd. Frege) hold for any Kneser_k.
- Cases with combinatorial proofs:
 - k = 2: polynomial size Frege proofs
 - k = 3: polynomial size <u>extended</u> Frege proofs
- ► $k \ge 4$: polynomial size implicit₂ extended Frege proofs
- Implicit proofs: Krajicek (2002). Very powerful proof system(s). AFAIK: first concrete example.

SIGNIFICANCE

- Proof complexity: counterpart, expressibility in (versions of) bounded arithmetic
- Reverse mathematics: what is the weakest proof system that can prove a certain result ?
- ► Stephen Cook: "bounded reverse mathematics"
- Implicit proofs seem to be needed for simulating arguments involving algebraic topology.
- Reasons: exponentially large objects and nonconstructive methods
- ► <u>CONJECTURE</u>: For $k \ge 4$ Kneser_{k,n} requires exponential-size (extended) Frege proofs

WHAT IS ALGEBRAIC TOPOLOGY AND WHY CAN IT PROVE LOWER BOUNDS ON CHROMATIC NUMBERS?

- Two objects similar if can continuously morph one into the other
- Cannot turn a donut into a sphere: Hole is an "obstruction" to contracting a circle going around the torus to a point.
- Can do that on a sphere.
- Continuous morphing should preserve contractibility.

How do we "measure" the "number of holes" (and other properties) ?

- algebraic objects (groups)
- Functorial: $G \to H$ implies $F(G) \to F(H)$.
- If $K \to F(G)$ but $K \not\to F(H)$ then *K* acts as an obstruction to $G \to H$
- Coloring = morphism of graphs.

INGREDIENT OF KNESER PROOF: BORSUK-ULAM THM.

- Cannot map continuously and antipodally *n*-dim. sphere into a sphere of lower dimension (or ball into sphere)
- ► Obstruction: largest dimension of sphere that can be embedded continuously and antipodally into F(G). As long as F(K_m) "is a sphere".

FROM CONTINUOUS TO DISCRETE

- ► A sphere is topologically equivalent to an octahedron
- simplicial complex: every subset of a face is a face.
- Simplex: purely combinatorially (sets that are simplices)

- Vertices: $\{\pm 1, \pm 2, \ldots, \pm n\}$.
- Faces: subsets that do not contain no i and -i.
- Exponentially (in n) many faces !

DISCRETE BORSUK-ULAM: TUCKER'S LEMMA

- Antipodally Symmetric Triangulation *T* of the *n*-ball. Barycentric subdivision, one vertex for each face
- ► For any labeling of *T* with vertices from {±1,...,±(n-1)} antipodal on the boundary there exist two adjacent vertices v ~ w with c(v) = -c(w).
- ► Intuition: no continuous (a.k.a simplicial) antipodal map from the *n*-ball to the *n*-sphere.

KNESER FROM TUCKER ($k \ge 4$)

- Simulate "combinatorial" proof of Kneser (combination of two mathematical proofs)
- ► Tucker's lemma: unsatisfiable propositional formula. *Kneser_{k,n}*: variable substitution.
- ► barycentric dimension ⇒ exponentially large formula !
- ► Kneser follows from a new "low dimensional" Tucker lemma.
- ► Avoid barycentric subdivision. Instead (k+k) "skeleton"

KNESER FROM TUCKER ($k \ge 4$)

- Second obstacle: Tucker lemma is <u>nonconstructive</u> (PPAD complete).
- Given an (exponential size) graph with one vertex of odd degree, find another node of odd degree
- ► For Kneser: this exponential graph has very regular structure.

IMPLICIT PROOFS

- ► Krajicek (J. Symb. Logic 2004).
- Hierarchy: iEF, i_2EF , i_3EF ,
- ► ridiculously powerful: implicit resolution \equiv extended Frege.
- poly-size boolean circuit that is generating all formulas in an extended Frege proof + correctness proof
- ▶ if correctness proof itself implicit ⇒ second level.
 Correctness proof second level ⇒ third level ...

IMPLICIT PROOFS: KNESER

- ► polynomial number of output gates $\Rightarrow \Phi_0, \dots, \Phi_t$ "small"
- extended Frege: renaming keeps formulas small.
- implicit proofs allows us to generate a proof of the odd degree argument
- ► soundness: exponentially large (but regular) ⇒ Kneser: second level

REDUCING *Kneser*_{n,k+1} TO *Kneser*_{n-2,k}

• There exists a variable substitution

 Φ_k : $Var(Kneser_{n,k+1}) \rightarrow Var(Kneser_{n-2,k})$ s.t. $\Phi_k(Kneser_{n,k+1})$ consists precisely of the clauses of $Kneser_{n-2,k}$ (perhaps repeated and in a different order)

• Let $A \in \binom{n}{k+1}$. Define $\Phi_k(X_{A,i})$ by:

- ► Clause $X_{A,1} \lor X_{A,2} \lor \ldots \lor X_{A,n-2k+1}$ maps to $Y_{B,1} \lor Y_{B,2} \lor \ldots \lor Y_{B,n-2k+1}$, B = A (Case 1).
- Clauses $\overline{X_{A,i}} \vee \overline{X_{B,i}}$ ($A \cap B = \emptyset$) map to $\overline{Y_{C,i}} \vee \overline{Y_{D,i}}$
- ► Case 2 cannot happen for both *A* and *B*. By case analysis $C \cap D = \emptyset$.

COMMENTS ON (OTHER) PROOFS

- Lower bounds Schrijver: Same substitution, slightly more complicated argument.
- k = 2: counting proof, Stahl+ Buss PHP.
- For any color class c⁻¹(λ) one of the following is true (assuming conclusion of Kneser does not hold):
 - $\bullet |c^{-1}(\lambda)| \leq 3.$
 - ► All sets $B \in c^{-1}(\lambda)$, $|c^{-1}(\lambda)| \ge 4$, have one element in common (call such an element special).
 - Frege systems can "count" (employing techniques developed by Buss) the number of special elements.
- ► k = 3: Counting approach fails (technical reasons), have to settle for extended Frege.

FROM KNESER-LIKE RESULTS TO HARD SAT INSTANCES ?

- $2^{\Omega(n)}$ resolution complexity. Are they hard in practice ?
- ► At this point: only idea for subsequent work
- Want: small formulas.
- *Kneser*_{*n,k*}: ~ n^{k+1} variables, even more clauses.
- Schrijver ? Other versions of Dolnikov's Theorem ? expander graph with tight bounds on the chromatic number
- Better encodings ? All intuitions should apply.
- Kneser, stable Kneser graphs: symmetries well understood. But: reason for unsatisfiability is more global

FURTHER POSSIBLE WORK

- Other proof systems: e.g. cutting planes (k=2), polynomial calculus, etc.
- (in progress) Topological obstructions: from graph coloring to CSP.
- Logics for implicit proof systems ?
- Topological arguments as sound (but incomplete) implicit proof systems
 - if $K \not\rightarrow L$ then a "proof of $A \not\rightarrow B$ " is a pair of embeddings $(K \rightarrow A), (B \rightarrow L)$.
 - ► Checking soundness (K → L) may not be polynomial. If K, L "standard objects" we could omit proof of K → L from complexity
- Automated theorem proving ?

Thank you. Questions ?