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CAUTION

I This talk: ”Theory A” (proof complexity), unpublished
work.

I Naturally continues with experimental work on SAT
benchmarks.

I One-line soundbite: Do combinatorial statements with
difficult (mathematical) proofs correspond to ”hard”
instances of SAT ?

I I am not solving any major open problem in computational
complexity



REMINDER: PROPOSITIONAL PROOF COMPLEXITY

I Proving that a formula is not satisfiable seems ”harder”
than finding a solution.

I Possible: proof systems for unsatisfiability, e.g. resolution
I C ∨ x, D ∨ x→ (C ∨D), x, x→ �.
I Complexity= minimum length of a resolution proof.
I Lower bound for the running time of all DPLL algorithms !



REMINDER: PROPOSITIONAL PROOF COMPLEXITY (II)

I Resolution proof size may be exponential
I E.g. Pigeonhole formula(s): PHPn−1

n (Haken)
I Xi,j = 1 ”pigeon i goes to hole j”.
I Xi,1 ∨ Xi,2 ∨ . . . ∨ Xi,n−1, 1 ≤ i ≤ n (each pigeon goes to (at

least) one hole)
I Xk,j ∨ Xl,j (pigeons k and l do not go together to hole j).
I Resolution: clausal formulas. Stronger proof systems ?



BOUNDARIES OF PROOF COMPLEXITY: FREGE PROOFS

I Example, for concreteness [Hilbert Ackermann]
I propositional variables p1, p2, . . . .
I Connectives ¬,∨.
I Axiom schemas:

1. ¬(A ∨ A) ∨ A
2. ¬A ∨ (A ∨ B)
3. ¬(A ∨ B) ∨ (B ∨ A)
4. ¬(¬A ∨ B) ∨ (¬(C ∨ A) ∨ (C ∨ B))

I Rule: From A and ¬A ∨ B derive B.

I Cook-Reckhow: all Frege proof systems equivalent
(polynomially simulate each other)

I Can prove PHP in polynomial size (Buss).
I Still exponential l.b. (2nε) if we restrict formula depth

(bounded-depth Frege)



BOUNDARY OF KNOWLEDGE: FREGE PROOFS (II)

I PHP (Buss): proof by counting
I Usual proof by induction: exponential size in Frege:

reduction causes formula size to increase by a constant
factor at every reduction step.

I Polynomial if we allow introducing new variables:
X ≡ Φ(Y).

I Frege + new vars: extended Frege



OUR ORIGINAL IDEA/MOTIVATION

I Open question: Is extended Frege more powerful than
Frege ?

I Most natural candidates for separation
turned out to have subexponential Frege proofs.

I Perhaps translating into SAT a mathematical statement
that is (mathematically) hard to prove would yield a
natural candidate for the separation.

I Didn’t quite work out: Our examples probably harder than
extended Frege.



KNESER’S CONJECTURE

I Stated in 1955 (Martin Kneser, Jaresbericht DMV)
I Let n ≥ 2k− 1 ≥ 1. Let c :

(n
k

)
→ [n− 2k + 1]. Then there

exist two disjoint sets A and B with c(A) = c(B).

I k = 1 Pigeonhole principle !
I k = 2, 3 combinatorial proofs (Stahl, Garey & Johnson)
I k ≥ 4 only proved in 1977 (Lovász) using Algebraic

Topology.
I Combinatorial proofs known (Matousek, Ziegler). ”hide”

Alg. Topology
I No ”purely combinatorial” proof known
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KNESER’S CONJECTURE (II)

I the chromatic number of a certain graph Knn,k (at least)
n− 2k + 2. (exact value)

I Vertices:
(n

k

)
. Edges: disjoint sets.

I E.g. k = 2, n = 5: Petersen’s graph has chromatic number
(at least) three.



STRONGER FORM: SCHRIJVER’S THEOREM

I inner cycle in Petersen’s graph already chromatic number
three.

I A ∈
(n

k

)
stable if it doesn’t contain consecutive elements i,

i + 1 (including n, 1).
I Schrijver’s Theorem: Kneser’s conjecture holds when

restricted to stable sets only.



ALGEBRAIC TOPOLOGY AND GRAPH COLORINGS

I Dolnikov’s theorem: generalization, lower bounds on the
chromatic number of an arbitrary graph.

I In general not tight.
I Many other extensions.



LOVÁSZ-KNESER’S THM. AS AN (UNSATISFIABLE)
PROPOSITIONAL FORMULA

I naı̈ve encoding XA,k = TRUE iff A colored with color k.
I XA,1 ∨ XA,2 ∨ . . . ∨ XA,n−2k+1 ”every set is colored with (at

least) one color”
I XA,j ∨ XB,j (A ∩ B = ∅) ”no two disjoint sets are colored

with the same color”
I Fixed k: Kneserk,n has poly-size (in n).
I Extends encoding of PHP



OUR RESULTS IN A NUTSHELL

I Kneserk,n reduces to (is a special case of) Kneserk+1,n−2.
I Thus all known lower bounds that hold for PHP

(resolution, bd. Frege) hold for any Kneserk.
I Cases with combinatorial proofs:

I k = 2: polynomial size Frege proofs
I k = 3: polynomial size extended Frege proofs

I k ≥ 4: polynomial size implicit2 extended Frege proofs
I Implicit proofs: Krajicek (2002). Very powerful proof

system(s). AFAIK: first concrete example.



SIGNIFICANCE

I Proof complexity: counterpart, expressibility in (versions
of) bounded arithmetic

I Reverse mathematics: what is the weakest proof system
that can prove a certain result ?

I Stephen Cook: ”bounded reverse mathematics”

I Implicit proofs seem to be needed for simulating
arguments involving algebraic topology.

I Reasons: exponentially large objects and nonconstructive
methods

I CONJECTURE: For k ≥ 4 Kneserk,n requires
exponential-size (extended) Frege proofs



WHAT IS ALGEBRAIC TOPOLOGY AND WHY CAN IT

PROVE LOWER BOUNDS ON CHROMATIC NUMBERS ?
I Two objects similar if can continuously morph one into the

other
I Cannot turn a donut into a sphere: Hole is an

”obstruction” to contracting a circle going around the torus
to a point.

I Can do that on a sphere.
I Continuous morphing should preserve contractibility.



HOW DO WE ”MEASURE” THE ”NUMBER OF HOLES”
(AND OTHER PROPERTIES) ?

I algebraic objects (groups)
I Functorial: G→ H implies F(G)→ F(H).
I If K→ F(G) but K 6→ F(H) then K acts as an obstruction to

G→ H
I Coloring = morphism of graphs.



INGREDIENT OF KNESER PROOF: BORSUK-ULAM

THM.
I Cannot map continuously and antipodally n-dim. sphere

into a sphere of lower dimension (or ball into sphere)
I Obstruction: largest dimension of sphere that can be

embedded continuously and antipodally into F(G). As
long as F(Km) ”is a sphere”.



FROM CONTINUOUS TO DISCRETE

I A sphere is topologically equivalent to an octahedron
I simplicial complex: every subset of a face is a face.
I Simplex: purely combinatorially (sets that are simplices)

I Vertices: {±1,±2, . . . ,±n}.
I Faces: subsets that do not contain no i and −i.
I Exponentially (in n) many faces !



DISCRETE BORSUK-ULAM: TUCKER’S LEMMA
I Antipodally Symmetric Triangulation T of the n-ball.

Barycentric subdivision, one vertex for each face
I For any labeling of T with vertices from {±1, . . . ,±(n− 1)}

antipodal on the boundary there exist two adjacent
vertices v ∼ w with c(v) = −c(w).

I Intuition: no continuous (a.k.a simplicial) antipodal map
from the n-ball to the n-sphere.



KNESER FROM TUCKER (k ≥ 4)

I Simulate ”combinatorial” proof of Kneser (combination of
two mathematical proofs)

I Tucker’s lemma: unsatisfiable propositional formula.
Kneserk,n: variable substitution.

I barycentric dimension⇒ exponentially large formula !
I Kneser follows from a new ”low dimensional” Tucker

lemma.
I Avoid barycentric subdivision. Instead (k+k) ”skeleton”



KNESER FROM TUCKER (k ≥ 4)

I Second obstacle: Tucker lemma is nonconstructive (PPAD
complete).

I Given an (exponential size) graph with one vertex of odd
degree, find another node of odd degree

I For Kneser: this exponential graph has very regular
structure.



IMPLICIT PROOFS

I Krajicek (J. Symb. Logic 2004).
I Hierarchy: iEF, i2EF, i3EF, . . ..
I ridiculously powerful: implicit resolution ≡ extended

Frege.
I poly-size boolean circuit that is generating all formulas in

an extended Frege proof + correctness proof
I if correctness proof itself implicit⇒ second level.

Correctness proof second level⇒ third level . . .

a b

c

00 . . . 0, 00 . . . 1
. . . , 111 . . . 1

Φ0, . . . ,Φt



IMPLICIT PROOFS: KNESER

I polynomial number of output gates⇒ Φ0, . . . ,Φt ”small”
I extended Frege: renaming keeps formulas small.
I implicit proofs allows us to generate a proof of the odd

degree argument
I soundness: exponentially large (but regular)⇒ Kneser:

second level



REDUCING Knesern,k+1 TO Knesern−2,k

I There exists a variable substitution
Φk : Var(Knesern,k+1)→ Var(Knesern−2,k) s.t. Φk(Knesern,k+1)
consists precisely of the clauses of Knesern−2,k (perhaps
repeated and in a different order)

I Let A ∈
( n

k+1

)
. Define Φk(XA,i) by:

I Case 1: A≤k ⊆ [n− 2]: Φk(XA,i) = YA≤k,i
I Case 2: A≤k 6⊆ [n− 2]: (n− 1,n ∈ A)

Let A = P ∪ {n− 1,n}, |P| = k− 1. Let
λ = max{j : j ≤ n− 2, j 6∈ P}. Define Φk(XA,i) = YP∪{λ},i

I Clause XA,1 ∨ XA,2 ∨ . . . ∨ XA,n−2k+1 maps to
YB,1 ∨ YB,2 ∨ . . . ∨ YB,n−2k+1, B = A (Case 1).

I Clauses XA,i ∨ XB,i (A ∩ B = ∅) map to YC,i ∨ YD,i

I Case 2 cannot happen for both A and B. By case analysis
C ∩D = ∅.



COMMENTS ON (OTHER) PROOFS

I Lower bounds Schrijver: Same substitution, slightly more
complicated argument.

I k = 2: counting proof, Stahl+ Buss PHP.
I For any color class c−1(λ) one of the following is true

(assuming conclusion of Kneser does not hold):
I |c−1(λ)| ≤ 3.
I All sets B ∈ c−1(λ), |c−1(λ)| ≥ 4, have one element in

common (call such an element special).
I Frege systems can ”count” (employing techniques

developed by Buss) the number of special elements.

I k = 3: Counting approach fails (technical reasons), have to
settle for extended Frege.



FROM KNESER-LIKE RESULTS TO HARD SAT
INSTANCES ?

I 2Ω(n) resolution complexity. Are they hard in practice ?
I At this point: only idea for subsequent work
I Want: small formulas.
I Knesern,k: ∼ nk+1 variables, even more clauses.
I Schrijver ? Other versions of Dolnikov’s Theorem ?

expander graph with tight bounds on the chromatic
number

I Better encodings ? All intuitions should apply.
I Kneser, stable Kneser graphs: symmetries well

understood. But: reason for unsatisfiability is more global



FURTHER POSSIBLE WORK

I Other proof systems: e.g. cutting planes (k=2), polynomial
calculus, etc.

I (in progress) Topological obstructions: from graph
coloring to CSP.

I Logics for implicit proof systems ?
I Topological arguments as sound (but incomplete) implicit

proof systems
I if K 6→ L then a ”proof of A 6→ B” is a pair of embeddings

(K→ A), (B→ L).
I Checking soundness (K 6→ L) may not be polynomial. If

K,L ”standard objects” we could omit proof of K 6→ L from
complexity

I Automated theorem proving ?



Thank you. Questions ?


