
Verification-Friendly Concurrent 

Balanced Binary Search Tree 
Dana Drachsler, Technion, Israel 

 

Joint work with: 

Martin Vechev, ETH, Switzerland  

Eran Yahav, Technion, Israel 



Motivation 

• Balanced Binary Search Tree (BST) is an 
efficient data-structure for storing unique 
elements 

▫ No repetitions are allowed 

• Formal verification:  

▫ Given a program, prove some property 

▫ In the tree:  

 prove that repetitions of elements cannot occur 

 

 

 

2 



Motivation 

• Formal verification was applied to the sequential 
algorithm (e.g. using Isabelle [6]) 

• However, in a concurrent setting, formal 
verification is more complicated 

 

3 



Motivation 

• There seems to be a trade-off between 
algorithms that are easy to verify and algorithms 
that are practical 

• A concurrent BST that is protected by a global 
lock is easy to verify 

• Practical concurrent trees use sophisticated 
mechanisms 

▫ Many different cases to reason about 

▫ Harder to verify 

 

4 



Goal 

• We gap this trade-off by presenting a concurrent 
BST that is both practical and simple to reason 
about 

• Our key idea:  

▫ Integrate the property into the algorithm 

• We achieve a fine-grained locking balanced BST 

• Our tree is very similar to the sequential tree 

• Our mechanism allows breaking the proof into 
several separated proofs 

 

5 



Outline 

Binary Search 
Tree 

Balanced Binary 
Search Tree 

Concurrent Binary 
Search Tree 

Concurrent 
Balanced Binary 

Search Tree 

6 



Binary Search Tree 

• A data-structure that stores elements 

• Consists of nodes  

• Each node represents an element 

▫ Internal tree 

• Each element has a unique key 

▫ Repetitions are not allowed 

• Each node in the tree holds: 

▫ The left sub-tree has elements with smaller keys 

▫ The right sub-tree has elements with bigger keys 

 

7 

6 

3 12 

24 



Binary Search Tree 

• In other words, BST maintains two types of 
invariants: 

▫ Set invariant 

 Each key appears at most once 

▫ BST invariants 

 For each node: 

 The keys in the left sub-tree are smaller 

 The keys in the right sub-tree are bigger 

 

 

 

 

 

8 



Binary Search Tree 

• Supports the following operations: 

▫ Contains 

 
6 

3 12 

24 

24? 

9 



Binary Search Tree 

• Supports the following operations: 

▫ Contains 

 
6 

3 12 

24 
24? 

9 



Binary Search Tree 

• Supports the following operations: 

▫ Insert 

 The new node is always a leaf 

 

6 

3 12 

9 24 24 

10 



Binary Search Tree 

• Supports the following operations: 

▫ Insert 

 The new node is always a leaf 

 

6 

3 12 

9 24 

10 



Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 

                           

 

 

 

 

6 

3 12 

9 24 

11 



Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 

 

 

 

6 

3 12 

24 

11 



Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 

 A parent of a single child 

▫ 𝑛’s parent is connected to 𝑛’s child 

 

 

 

 

 

6 

3 12 

9 24 

10 

11 



Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 

 A parent of a single child 

▫ 𝑛’s parent is connected to 𝑛’s child 

 

 

 

 

 

6 

3 12 

24 10 

11 



Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 

 A parent of a single child 

▫ 𝑛’s parent is connected to 𝑛’s child 

 A parent of two children 

▫ 𝑛’s successor is relocated to 𝑛’s location 

 

 

 

 

 

6 

3 12 

24 10 

11 



Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 

 A parent of a single child 

▫ 𝑛’s parent is connected to 𝑛’s child 

 A parent of two children 

▫ 𝑛’s successor is relocated to 𝑛’s location 

 

 

 

 

 

3 12 

24 

10 

11 



Outline 

Balanced Binary 
Search Tree 

Concurrent Binary 
Search Tree 

Concurrent 
Balanced Binary 

Search Tree 

12 



Challenges in Concurrent BST 

• Consider the following tree: 

▫ Thread A searches for 9 

            

                    

                              

                                    

6 

3 12 

9 

9? 

13 



Challenges in Concurrent BST 

• Consider the following tree: 

▫ Thread A searches for 9 

and pauses 

                    

                              

                                    

6 

3 12 

9 

9? 

13 



Challenges in Concurrent BST 

• Consider the following tree: 

▫ Thread A searches for 9 

and pauses 

▫ Thread B removes 6 

                              

                                    

6 

3 12 

9 

9? 

13 



Challenges in Concurrent BST 

• Consider the following tree: 

▫ Thread A searches for 9 

and pauses 

▫ Thread B removes 6 

                              

                                    

3 12 

9 

9? 

13 



Challenges in Concurrent BST 

• Consider the following tree: 

▫ Thread A searches for 9 

and pauses 

▫ Thread B removes 6 

▫ Thread A resumes the search  

                                    

3 12 

9 

9? 

13 



Challenges in Concurrent BST 

• Consider the following tree: 

▫ Thread A searches for 9 

and pauses 

▫ Thread B removes 6 

▫ Thread A resumes the search  

and observes that 9 is not present 

 

3 12 

9 

9? 

13 



How do others cope with this 

challenge? 
• By not supporting the remove operation 

▫ Bender et al. [1] 

14 



How do others cope with this 

challenge? 
• By using external trees 

▫ Only leaves can be removed 

▫ Use more space than internal trees 

▫ Ellen et al. [4] 

3 

3 9 

9 24 

15 



How do others cope with this 

challenge? 
• Many concurrent algorithms for data-structures 

remove elements in two steps: 

▫ Marking the node as logically  

removed 

                                

                    

 

 

 

 

6 

3 12 

16 



How do others cope with this 

challenge? 
• Many concurrent algorithms for data-structures 

remove elements in two steps: 

▫ Marking the node as logically  

removed 

▫ Update pointers to physically  

remove the node 

 

 

 

 

6 

3 12 

16 



How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it  

▫ Also known as partially-external trees 

▫ Bronson et al. [2] 

▫ Crain et al. [3] 

 

 

 

6 

3 12 

9 

9? 

17 

A: 
contains(9) 



How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it  

▫ Also known as partially-external trees 

▫ Bronson et al. [2] 

▫ Crain et al. [3] 

 

 

 

6 

3 12 

9 

9? 

17 

A: 
contains(9) 



How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it  

▫ Also known as partially-external trees 

▫ Bronson et al. [2] 

▫ Crain et al. [3] 

 

 

 

3 12 

9 

9? 

17 

A: 
contains(9) 

B: 
remove(6) 



How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it  

▫ Also known as partially-external trees 

▫ Bronson et al. [2] 

▫ Crain et al. [3] 

 

 

 

3 12 

9 

9? 

17 

A: 
contains(9) 

B: 
remove(6) 



How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it 

▫ Howley et al. [5] 

6 

3 12 

9 

9? 

18 

A: 
contains(9) 



How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it 

▫ Howley et al. [5] 

6 

3 12 

9 

9? 

18 

A: 
contains(9) 



How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it 

▫ Howley et al. [5] 

6 

3 12 

9? 

9 

18 

A: 
contains(9) 

B: 
remove(6) 



How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it 

▫ Howley et al. [5] 

6 

3 12 

9? 

9 

18 

A: 
contains(9) 

B: 
remove(6) 



How do others cope with this 

challenge? 
• These solutions leave removed nodes in the tree 

• Is it possible to physically remove nodes? 

• Trivial solution: use global lock 

                            

                                 

                               
                        

                            

 

19 

6 

3 12 

9 



How do others cope with this 

challenge? 
• These solutions leave removed nodes in the tree 

• Is it possible to physically remove nodes? 

• Trivial solution: use global lock 

• Observation: To determine  

whether 𝑘 is in the tree it is  

enough to have 𝑝, 𝑠 such that: 

▫ 𝑝, 𝑠 belong to the tree 

▫ Any 𝑤 ∈ 𝑝, 𝑠  is not in the tree                 

                            

 

19 

6 

3 12 

9 

7? 



Our Approach 

• Maintain the predecessor-successor relation 

▫ The set layout 

• Consult this relation before  

making final decisions 

                                  

                                  

                   

                                       

                                   

 

 

6 

3 12 

9 

20 



Our Approach 

• Maintain the predecessor-successor relation 

▫ The set layout 

• Consult this relation before  

making final decisions 

                                  

                                  

                   

                                       

                                   

 

 

6 

3 12 

9 

9? 

20 

A: 
contains(9) 



Our Approach 

• Maintain the predecessor-successor relation 

▫ The set layout 

• Consult this relation before  

making final decisions 

                                  

                                  

                   

                                       

                                   

 

 

6 

3 12 

9 

9? 

20 

A: 
contains(9) 



Our Approach 

• Maintain the predecessor-successor relation 

▫ The set layout 

• Consult this relation before  

making final decisions 

                                  

                                  

                   

                                       

                                   

 

 

3 12 

9 

9? 

20 

A: 
contains(9) 

B: 
remove(6) 



Our Approach 

• Maintain the predecessor-successor relation 

▫ The set layout 

• Consult this relation before  

making final decisions 

                                  

                                  

                   

                                       

                                   

 

 

3 12 

9 

9? 

20 

A: 
contains(9) 

B: 
remove(6) 



Our Approach 

• Maintain the predecessor-successor relation 

▫ The set layout 

• Consult this relation before  

making final decisions 

                                  

                                  

                   

                                       

                                   

 

 

3 12 

9 9? 

20 

A: 
contains(9) 

B: 
remove(6) 



Our Approach 

• Maintain the predecessor-successor relation 

▫ The set layout 

• Consult this relation before  

making final decisions 

• This relation allows us to lock  

the required nodes even if they  

are not adjacent  

▫ Enjoy the benefits of the global lock 

▫ While enabling more parallelism   

 

 

3 12 

9 9? 

20 

A: 
contains(9) 

B: 
remove(6) 



Contains(k) 

• Traverse the tree using the tree pointers 

• If 𝑘 was found 

▫ Return true 

• Otherwise, upon reaching to a leaf 𝑙, confirm: 

▫ 𝑘 ∈ (𝑙′s predecessor, 𝑙) or 𝑘 ∈ 𝑙, 𝑙′s successor  

▫ and return false 

 

• This operation does not acquire locks 

 

47 



Update Operations 

• The synchronization is based on locks 

• Each update operation locks: 

▫ The relevant nodes in the tree 

▫ The relevant intervals 

 

22 

6 

3 12 

9 



Insert(k) 

• Traverse the tree to find the location 

        

 6 

3 12 

9 

7 

23 



Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 
6 

3 12 

9 

7 

23 



Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 

 

6 

3 12 

9 

7 

23 



Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 

▫ Lock 𝑙 

6 

3 12 

9 

7 

23 



Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 

▫ Lock 𝑙 

▫ Update predecessor-successor 

 

6 

3 12 

9 

7 

23 



Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 

▫ Lock 𝑙 

▫ Update predecessor-successor 

▫ Add 𝑘           

 

6 

3 12 

9 

7 

23 



Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 

▫ Lock 𝑙 

▫ Update predecessor-successor 

▫ Add 𝑘 

• Else: lock 𝑙’s successor 

▫ Symmetric. 

            

 

6 

3 12 

9 

7 
11 

23 



Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

                         

                                

                           
                  

                             

                             

 

6 

3 12 

9 

7 

24 



Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 

                                

                           
                  

                             

                             

 

6 

3 12 

9 

7 

24 



Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 

▫ Lock 𝑛, 𝑛’s children and parent 

                           
                  

                             

                             

 

6 

3 12 

9 

7 

24 



Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 

▫ Lock 𝑛, 𝑛’s children and parent 

▫ If 𝑛 has at most 1 child: 

 Mark 𝑛 as removed 

6 

3 12 

7 

24 



Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 

▫ Lock 𝑛, 𝑛’s children and parent 

▫ If 𝑛 has at most 1 child: 

 Mark 𝑛 as removed 

 Update predecessor-successor 

6 

3 12 

7 

24 



Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 

▫ Lock 𝑛, 𝑛’s children and parent 

▫ If 𝑛 has at most 1 child: 

 Mark 𝑛 as removed 

 Update predecessor-successor 

 Connect 𝑛’s parent and child 

6 

3 12 

7 

24 



Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 

▫ Lock 𝑛, 𝑛’s children and parent 

▫ If 𝑛 has at most 1 child: 

 Mark 𝑛 as removed 

 Update predecessor-successor 

 Connect 𝑛’s parent and child 

6 

3 12 

7 

24 



Remove(k) 

▫ If 𝑛 has 2 children: 

                                         

                           

                  

                             

                                 

                       

 

6 

3 12 

9 

11 

36 

25 



Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

                           

                  

                             

                                 

                       

 

6 

3 12 

9 

11 

36 

25 



Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

 Release 𝑛’s children locks 

                  

                             

                                 

                       

 

6 

3 12 

9 

11 

36 

25 



Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

 Release 𝑛’s children locks 

 Mark 𝑛 as removed 

                             

                                 

                       

 

3 12 

9 

11 

36 

25 



Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

 Release 𝑛’s children locks 

 Mark 𝑛 as removed 

 Update predecessor-successor 

                                 

                       

 

3 12 

9 

11 

36 

25 



Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

 Release 𝑛’s children locks 

 Mark 𝑛 as removed 

 Update predecessor-successor 

 Connect the successor’s parent  

to the successor’s child and relocate  

𝑛’s successor 

 

3 12 

9 

11 

36 

25 



Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

 Release 𝑛’s children locks 

 Mark 𝑛 as removed 

 Update predecessor-successor 

 Connect the successor’s parent  

to the successor’s child and relocate  

𝑛’s successor 

 

3 12 

9 

11 

36 

25 



Update Operations Scheme 

• Traverse the tree to find 𝑘 

• Lock interval: [𝑝, 𝑠]  

• Confirm that the interval is appropriate:  

▫ 𝑘 ∈ [𝑝, 𝑠]  

▫ 𝑝 is not marked as removed 

• Lock tree locks 

• Update predecessor-successor relation 

• Update tree layout 

• Release all locks 

 

70 



Correctness 

• The BST maintains two invariants 

▫ Set invariant 

 Protected by set-locks 

▫ BST invariants 

 Protected by tree-locks 

• The intervals allow us to separate the proof into 
two proofs 

 

27 



Correctness 

• Set invariant 

▫ Each key appears at most once 

• A new key, 𝑘, is added only after locking an 
interval 𝑝, 𝑠  such that 𝑘 ∈ (𝑝, 𝑠) 

• 𝑘 is not added if 𝑘 = 𝑝 or 𝑘 = 𝑠 

• 𝑘 cannot be added concurrently by another 
thread 

 

72 



Correctness 

• BST invariants 

▫ For each node: 

 The keys in the left sub-tree are smaller 

 The keys in the right sub-tree are bigger 

• The invariants may only be broken while 
updating the tree layout 

• Any update operation locks all updated nodes 

• Locks are released only after the BST invariants 
are held 

 

73 



Outline 

Balanced Binary 
Search Tree 

Concurrent 
Balanced Binary 

Search Tree 

30 



Balanced Binary Search Tree 

• In BST, insert, remove and contains run in 
𝑂 log 𝑛  in average. 

• In balanced BST, these operations run in 
𝑂(log 𝑛) in the worst case. 

• There are several known implementations for 
balanced BSTs 

▫ We will focus on AVL trees 

75 



AVL Trees 

• Each node maintains the invariant: 

▫ The heights of the left and right  

sub-trees differ by at most 1 

                                  

               

                                 

                                     

 

 

6 

3 12 

9 24 

0:0 0:0 

0:0 1:1 

1:2 

32 



AVL Trees 

• Each node maintains the invariant: 

▫ The heights of the left and right  

sub-trees differ by at most 1 

• Insertion and removal may break  

the invariant 

                                 

                                     

 

 

6 

3 12 

9 24 

18 

0:0 0:0 

0:0 1:1 

1:2 

1:0 

1:2 

1:3 

32 



AVL Trees 

• Each node maintains the invariant: 

▫ The heights of the left and right  

sub-trees differ by at most 1 

• Insertion and removal may break  

the invariant 

▫ Rotations are applied to fix it 

▫ Rotations operate on adjacent nodes 

 

 

6 

3 12 

9 24 

18 

0:0 0:0 

0:0 1:1 

1:2 

1:0 

1:2 

1:3 

32 



AVL Trees 

• Each node maintains the invariant: 

▫ The heights of the left and right  

sub-trees differ by at most 1 

• Insertion and removal may break  

the invariant 

▫ Rotations are applied to fix it 

▫ Rotations operate on adjacent nodes 

 

6 

3 

12 

9 

24 

18 

33 



Outline 

Concurrent 
Balanced Binary 

Search Tree 

34 



Balancing Our Tree 

• After insertion or removal the tree is traversed 
bottom-up beginning from the point where an 
update has occurred 

• If violation is detected, rotations are applied 

▫ Only tree layout locks need to be acquired 

 

35 



Balancing Our Tree 

• Rotations may lead to temporary disappearance 
of nodes from the tree layout 

• However, the set-layout is unaffected by these 
rotations 

• Since we consult the set-layout before making 
final decisions, this cannot lead to wrong 
decisions 

 

36 



Overview 

37 



Evaluation  

• We compared our tree to state-of-the-art 
implementations 

• Experiments ran on a machine with 32 cores 

 

 

 

 

38 



Evaluation  

 

 

39 

200,000 keys 2,000,000 keys 

• 90% contains, 9% insert, 1% remove 

 

 

 

 



Summary 

• We presented a practical concurrent balanced 
BST 

• Our main insight is that maintaining explicitly 
the set layout results in a simpler algorithm for 
the concurrent balanced BST  

 

40 

   Thank you! 



References 
[1] BENDER, M. A., FINEMAN, J. T., GILBERT, S., AND KUSZMAUL, B. C. Concurrent cache-oblivious b-trees. In 
SPAA (2005), pp. 228–237. 

 

[2] BRONSON, N. G., CASPER, J., CHAFI, H., AND OLUKOTUN, K. A practical concurrent binary search tree. In 
PPoPP (2010), pp. 257–268. 

 

[3]  CRAIN, T., GRAMOLI, V., AND RAYNAL, M. A contention-friendly binary search tree. In Euro-Par (2013), pp. 
229–240. 

 

[4] ELLEN, F., FATOUROU, P., RUPPERT, E., AND VAN BREUGEL, F. Non-blocking binary search trees. In PODC 
(2010), pp. 131–140. 

 

[5] HOWLEY, S. V., AND JONES, J. A non-blocking internal binary search tree. In Proceedings of the 24th ACM 
symposium on Parallelism in algorithms and architectures (2012), SPAA ’12, pp. 161–171. 

 

[6] Nipkow, T., Pusch, C.: AVL trees. In Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs. 
http://afp.sf.net/entries/AVL-Trees.shtml (2004) Formal proof development. 

 

41 


