Verification-Friendly Concurrent Balanced Binary Search Tree

Dana Drachsler, Technion, Israel

Joint work with: Martin Vechev, ETH, Switzerland Eran Yahav, Technion, Israel

Motivation

- Balanced *Binary Search Tree* (BST) is an efficient data-structure for storing unique elements
 - No repetitions are allowed
- Formal verification:
 - Given a program, prove some property
 - In the tree:
 - prove that repetitions of elements cannot occur

Motivation

- Formal verification was applied to the sequential algorithm (e.g. using Isabelle [6])
- However, in a concurrent setting, formal verification is more complicated

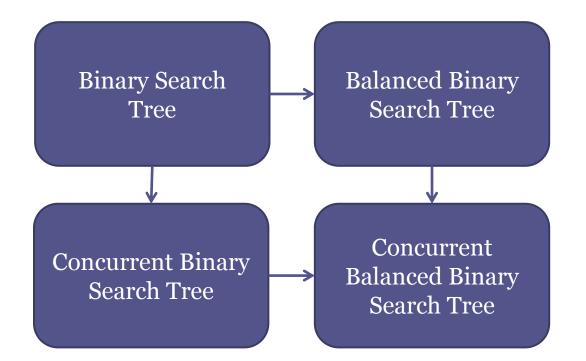
Motivation

- There seems to be a trade-off between algorithms that are easy to verify and algorithms that are practical
- A concurrent BST that is protected by a global lock is easy to verify
- Practical concurrent trees use sophisticated mechanisms
 - Many different cases to reason about
 - Harder to verify

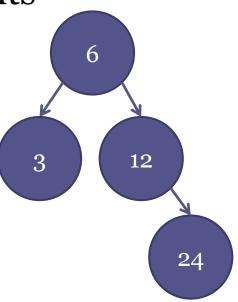
Goal

- We gap this trade-off by presenting a concurrent BST that is both practical and simple to reason about
- Our key idea:
 - Integrate the property into the algorithm
- We achieve a fine-grained locking balanced BST
- Our tree is very similar to the sequential tree
- Our mechanism allows breaking the proof into several separated proofs

Outline

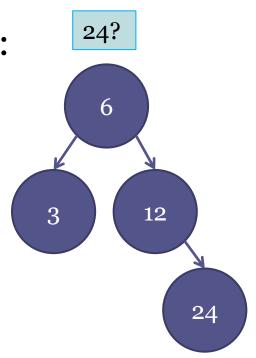


- A data-structure that stores elements
- Consists of nodes
- Each node represents an element
 Internal tree
- Each element has a unique key
 Repetitions are not allowed
- Each node in the tree holds:
 - The left sub-tree has elements with *smaller* keys
 - The right sub-tree has elements with *bigger* keys

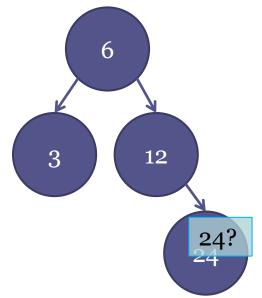


- In other words, BST maintains two types of invariants:
 - Set invariant
 - Each key appears at most once
 - BST invariants
 - For each node:
 - The keys in the left sub-tree are smaller
 - The keys in the right sub-tree are bigger

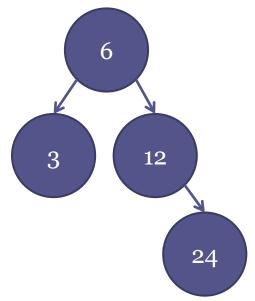
Supports the following operations:
Contains



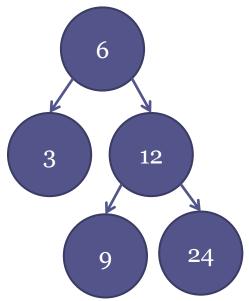
Supports the following operations: Contains



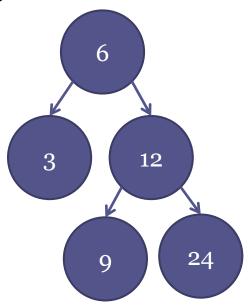
- Supports the following operations:
 - Insert
 - The new node is always a leaf



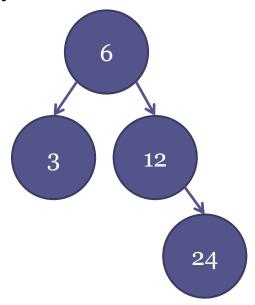
- Supports the following operations:
 - Insert
 - The new node is always a leaf



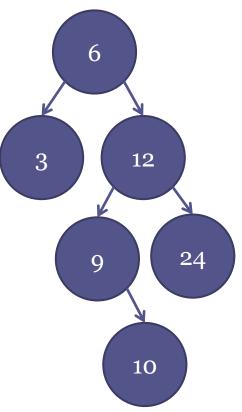
- Supports the following operations:
 - Remove
 - The removed node, *n*, may be:
 - A leaf



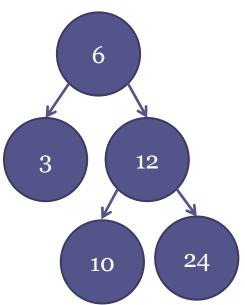
- Supports the following operations:
 - Remove
 - The removed node, *n*, may be:
 - A leaf



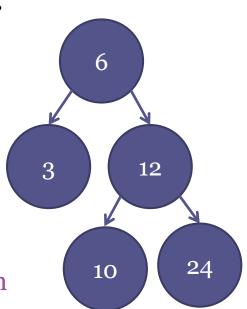
- Supports the following operations:
 - Remove
 - The removed node, *n*, may be:
 - A leaf
 - A parent of a single child
 - *n*'s parent is connected to *n*'s child



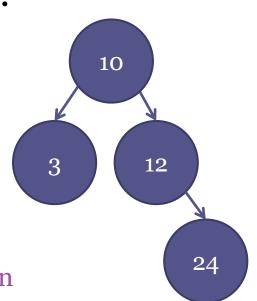
- Supports the following operations:
 - Remove
 - The removed node, *n*, may be:
 - A leaf
 - A parent of a single child
 - *n*'s parent is connected to *n*'s child



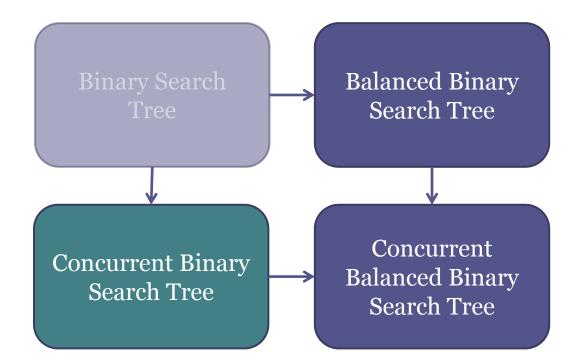
- Supports the following operations:
 - Remove
 - The removed node, *n*, may be:
 - A leaf
 - A parent of a single child *n*'s parent is connected to *n*'s child
 - A parent of two children *n*'s successor is relocated to *n*'s location



- Supports the following operations:
 - Remove
 - The removed node, *n*, may be:
 - A leaf
 - A parent of a single child *n*'s parent is connected to *n*'s child
 - A parent of two children *n*'s successor is relocated to *n*'s location

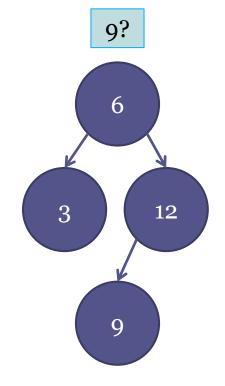


Outline



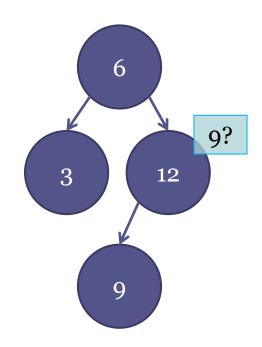
Consider the following tree:

Thread A searches for 9



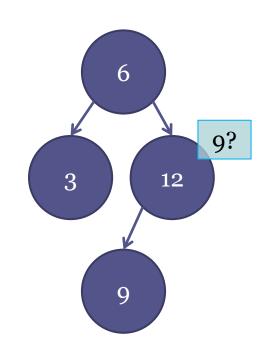
Consider the following tree:
 Thread A searches for 9

 and pauses



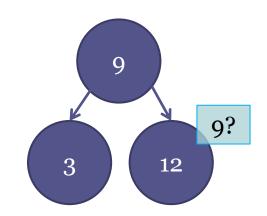
Consider the following tree:
 Thread A searches for 9

 and pauses
 Thread B removes 6

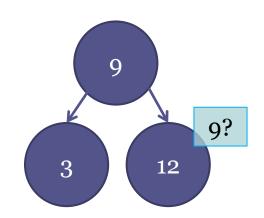


Consider the following tree:
 Thread A searches for 9

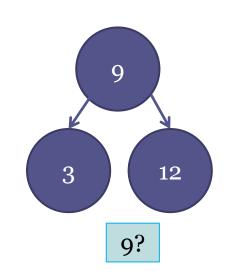
 and pauses
 Thread B removes 6



- Consider the following tree:
 - Thread A searches for 9
 - and pauses
 - Thread B removes 6
 - Thread A resumes the search

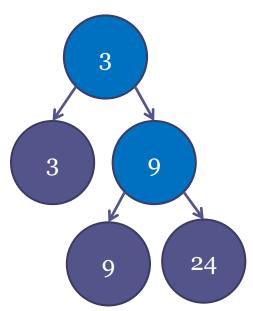


- Consider the following tree:
 - Thread A searches for 9
 - and pauses
 - Thread B removes 6
 - Thread A resumes the search and observes that 9 is not present

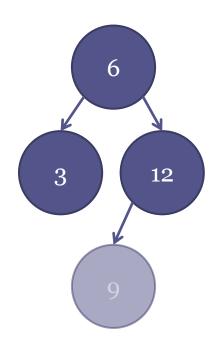


By not supporting the remove operation
Bender et al. [1]

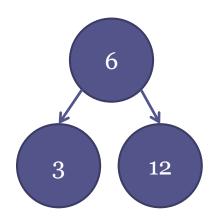
- By using external trees
 - Only leaves can be removed
 - Use more space than internal trees
 - Ellen et al. [4]



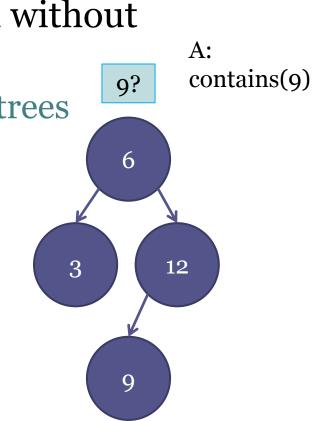
- Many concurrent algorithms for data-structures remove elements in two steps:
 - Marking the node as *logically* removed



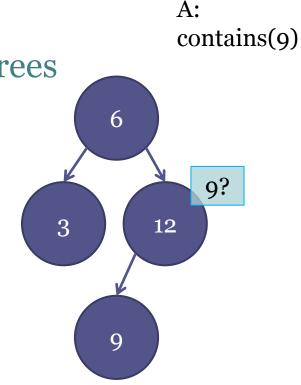
- Many concurrent algorithms for data-structures remove elements in two steps:
 - Marking the node as *logically* removed
 - Update pointers to *physically* remove the node



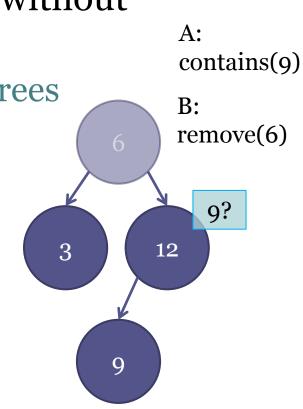
- By marking the node as removed without *physically* removing it
 - Also known as partially-external trees
 - Bronson et al. [2]
 - Crain et al. [3]



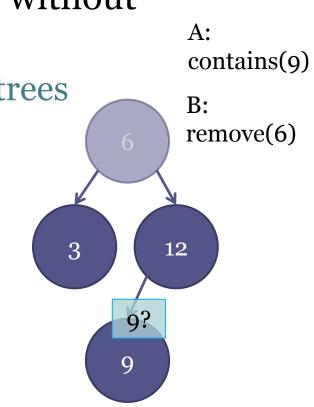
- By marking the node as removed without *physically* removing it
 - Also known as partially-external trees
 - Bronson et al. [2]
 - Crain et al. [3]



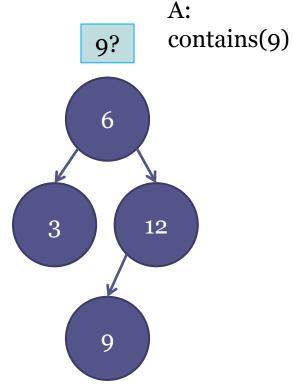
- By marking the node as removed without *physically* removing it
 - Also known as partially-external trees
 - Bronson et al. [2]
 - Crain et al. [3]



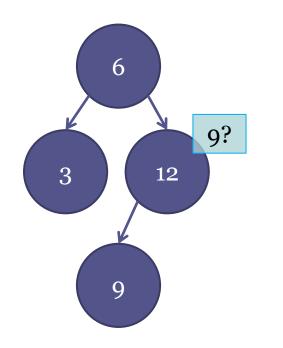
- By marking the node as removed without *physically* removing it
 - Also known as partially-external trees
 - Bronson et al. [2]
 - Crain et al. [3]



- By marking the node as removed without *physically* removing it
 - Howley et al. [5]



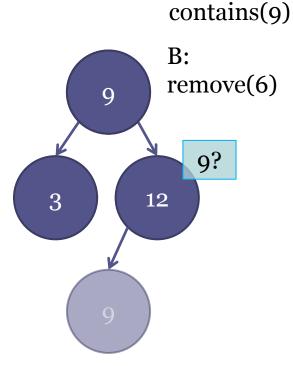
- By marking the node as removed without *physically* removing it
 - Howley et al. [5]



A:

contains(9)

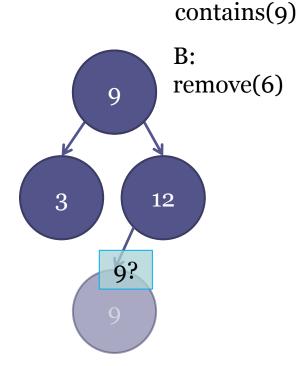
- By marking the node as removed without *physically* removing it
 - Howley et al. [5]



A:

How do others cope with this challenge?

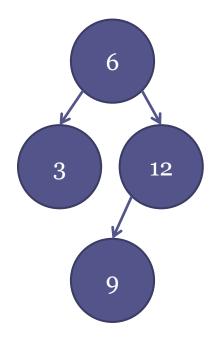
- By marking the node as removed without *physically* removing it
 - Howley et al. [5]



A:

How do others cope with this challenge?

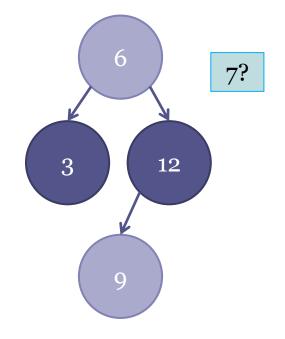
- These solutions leave removed nodes in the tree
- Is it possible to *physically* remove nodes?
- Trivial solution: use global lock



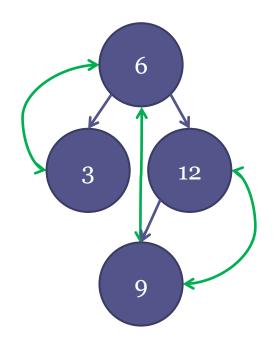
How do others cope with this challenge?

- These solutions leave removed nodes in the tree
- Is it possible to *physically* remove nodes?
- Trivial solution: use global lock
- <u>Observation</u>: To determine whether *k* is in the tree it is enough to have *p*, *s* such that: *p*, *s* belong to the tree

• Any $w \in (p, s)$ is not in the tree



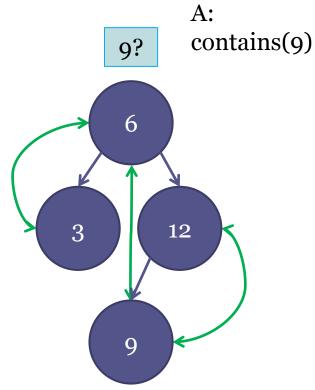
- Maintain the predecessor-successor relation
 The set layout
- Consult this relation before making final decisions



20

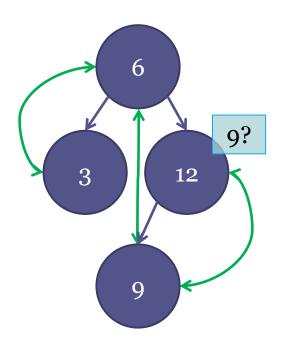
- Maintain the predecessor-successor relation

 The set layout
 ^A
 ^A
 ^{CC}
- Consult this relation before making final decisions



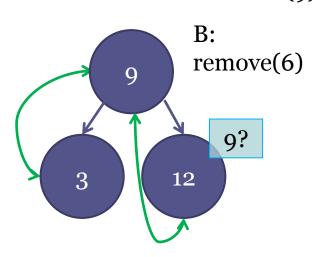
- Maintain the predecessor-successor relation

 The set layout
 A: contains(9)
- Consult this relation before making final decisions



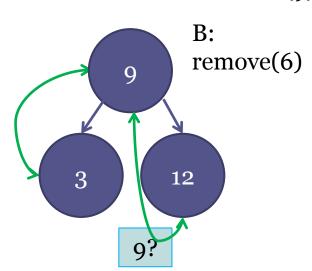
- Maintain the predecessor-successor relation

 A: contains(9)
- Consult this relation before making final decisions



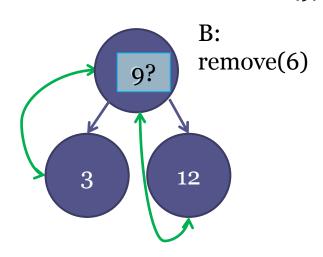
- Maintain the predecessor-successor relation

 A: contains(9)
- Consult this relation before making final decisions



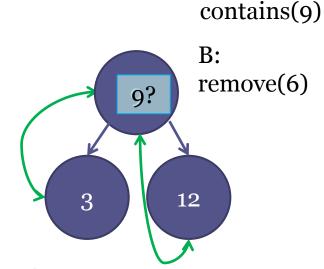
- Maintain the predecessor-successor relation

 A: contains(9)
- Consult this relation before making final decisions



- Maintain the predecessor-successor relation

 The set layout
 A:
- Consult this relation before making final decisions
- This relation allows us to lock the required nodes even if they are not adjacent



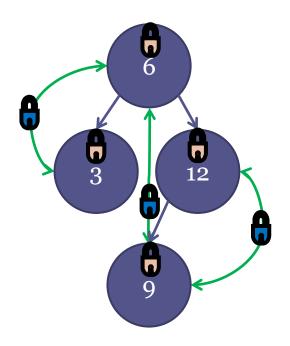
- Enjoy the benefits of the global lock
- While enabling more parallelism

Contains(k)

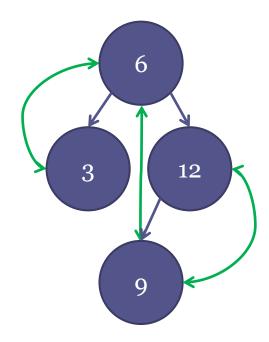
- Traverse the tree using the tree pointers
- If *k* was found
 - Return true
- Otherwise, upon reaching to a leaf *l*, confirm: *k* ∈ (*l*'s predecessor, *l*) or *k* ∈ (*l*, *l*'s successor)
 and return false
- This operation does not acquire locks

Update Operations

- The synchronization is based on locks
- Each update operation locks:
 The relevant nodes in the tree
 - The relevant intervals

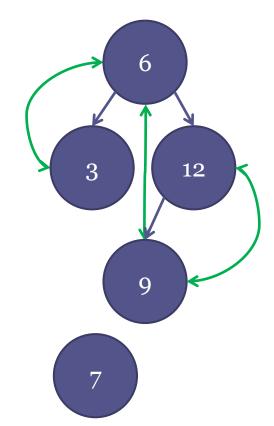


• Traverse the tree to find the location

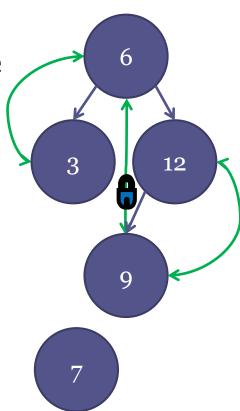


7

- Traverse the tree to find the location
- Let *l* be the node found

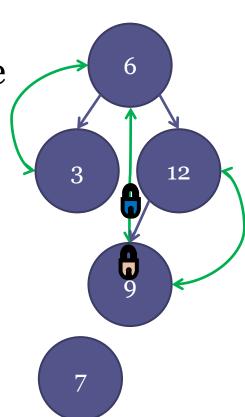


- Traverse the tree to find the location
- Let *l* be the node found
- If $k \le l$: lock *l*'s predecessor edge

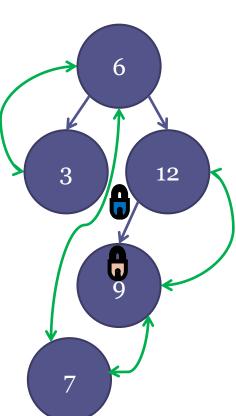


23

- Traverse the tree to find the location
- Let *l* be the node found
- If k ≤ l: lock l's predecessor edge
 Lock l

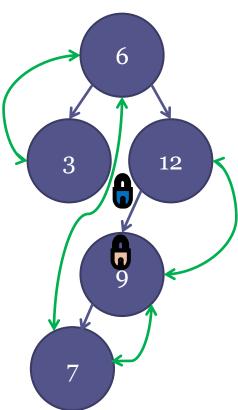


- Traverse the tree to find the location
- Let *l* be the node found
- If k ≤ l: lock l's predecessor edge
 Lock l
 - Update predecessor-successor

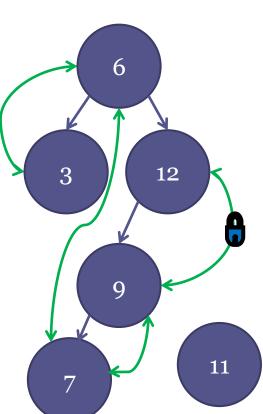


23

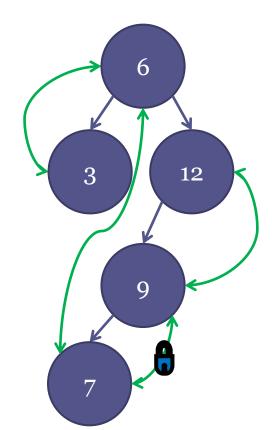
- Traverse the tree to find the location
- Let *l* be the node found
- If k ≤ l: lock l's predecessor edge
 Lock l
 - Update predecessor-successor
 - Add *k*



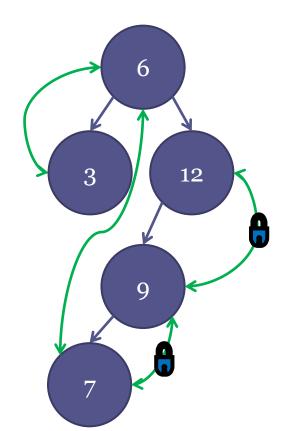
- Traverse the tree to find the location
- Let *l* be the node found
- If $k \leq l$: lock *l*'s predecessor edge
 - Lock l
 - Update predecessor-successor
 Add k
- Else: lock *l*'s successor
 - Symmetric.



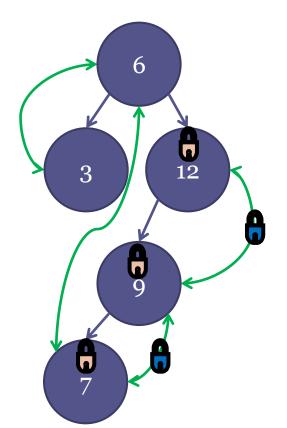
- Traverse the tree to find *k*
- Let *n* be the node found
- Lock *n*'s predecessor edge



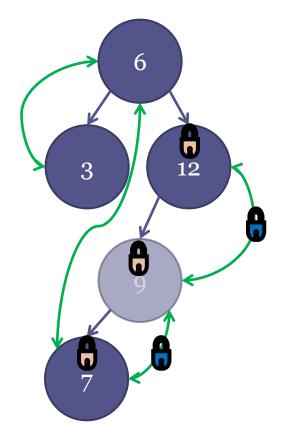
- Traverse the tree to find *k*
- Let *n* be the node found
- Lock n's predecessor edge
 Lock n's successor edge



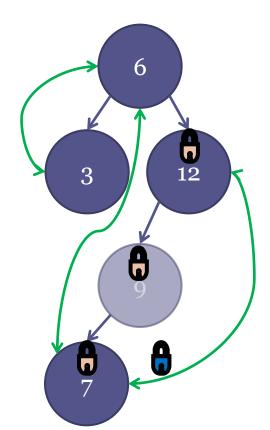
- Traverse the tree to find *k*
- Let *n* be the node found
- Lock *n*'s predecessor edge
 - Lock n's successor edge
 - Lock n, n's children and parent



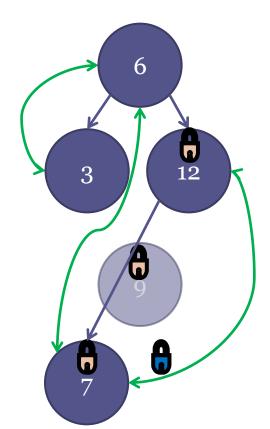
- Traverse the tree to find *k*
- Let *n* be the node found
- Lock *n*'s predecessor edge
 - Lock n's successor edge
 - Lock n, n's children and parent
 - If *n* has at most 1 child:
 - Mark *n* as removed



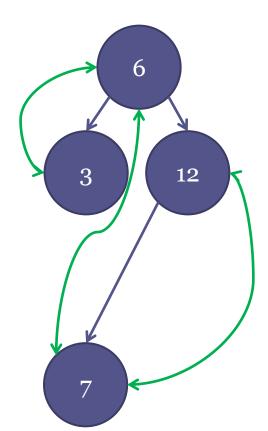
- Traverse the tree to find *k*
- Let *n* be the node found
- Lock *n*'s predecessor edge
 - Lock n's successor edge
 - Lock n, n's children and parent
 - If *n* has at most 1 child:
 - Mark *n* as removed
 - Update predecessor-successor



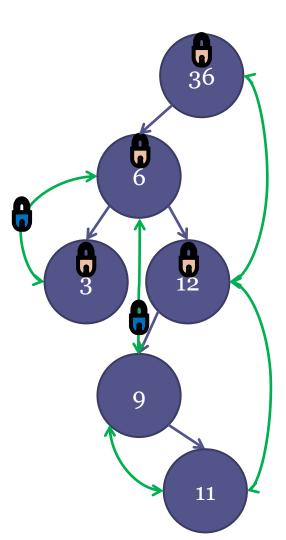
- Traverse the tree to find *k*
- Let *n* be the node found
- Lock *n*'s predecessor edge
 - Lock n's successor edge
 - Lock n, n's children and parent
 - If *n* has at most 1 child:
 - Mark *n* as removed
 - Update predecessor-successor
 - Connect *n*'s parent and child



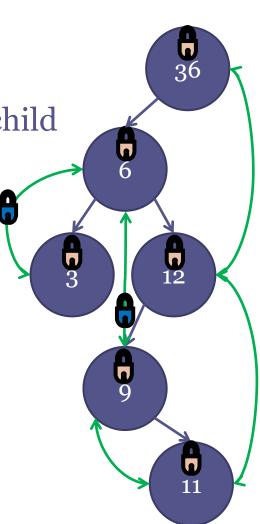
- Traverse the tree to find *k*
- Let *n* be the node found
- Lock *n*'s predecessor edge
 - Lock n's successor edge
 - Lock n, n's children and parent
 - If *n* has at most 1 child:
 - Mark *n* as removed
 - Update predecessor-successor
 - Connect *n*'s parent and child



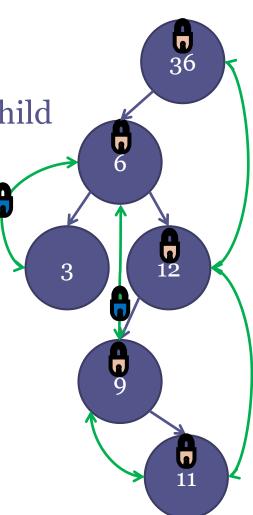
• If *n* has 2 children:



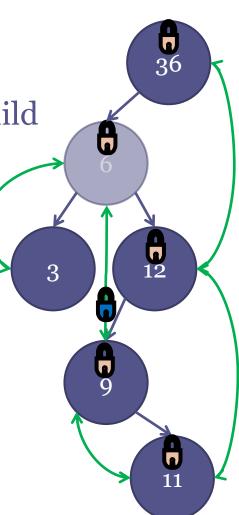
- If *n* has 2 children:
 - Lock *n*'s successor, its parent and child



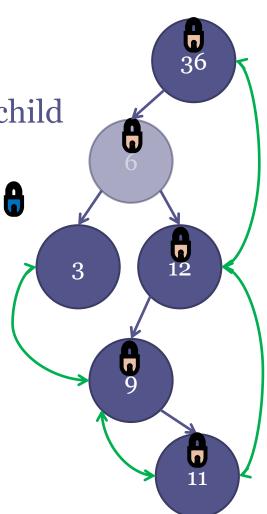
- If n has 2 children:
 - Lock *n*'s successor, its parent and child
 - Release *n*'s children locks



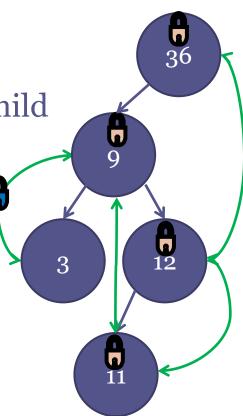
- If n has 2 children:
 - Lock *n*'s successor, its parent and child
 - Release *n*'s children locks
 - Mark *n* as removed



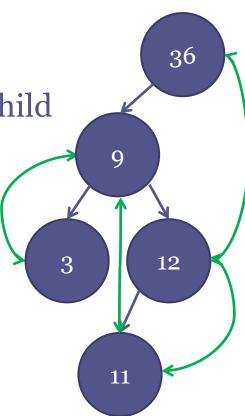
- If *n* has 2 children:
 - Lock *n*'s successor, its parent and child
 - Release *n*'s children locks
 - Mark *n* as removed
 - Update predecessor-successor



- If *n* has 2 children:
 - Lock *n*'s successor, its parent and child
 - Release *n*'s children locks
 - Mark *n* as removed
 - Update predecessor-successor
 - Connect the successor's parent to the successor's child and relocate *n*'s successor



- If *n* has 2 children:
 - Lock *n*'s successor, its parent and child
 - Release *n*'s children locks
 - Mark *n* as removed
 - Update predecessor-successor
 - Connect the successor's parent to the successor's child and relocate *n*'s successor



Update Operations Scheme

- Traverse the tree to find *k*
- Lock interval: [*p*, *s*]
- Confirm that the interval is *appropriate*:
 - $k \in [p, s]$
 - p is not marked as removed
- Lock tree locks
- Update predecessor-successor relation
- Update tree layout
- Release all locks

Correctness

• The BST maintains two invariants

- Set invariant
 - Protected by set-locks
- BST invariants
 - Protected by tree-locks
- The intervals allow us to separate the proof into two proofs

Correctness

Set invariant

Each key appears at most once

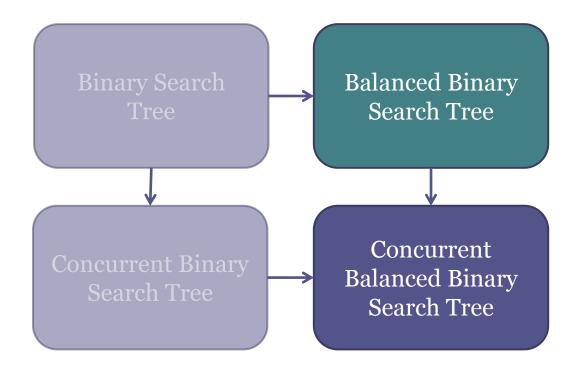
- A new key, k, is added only after locking an interval [p, s] such that k ∈ (p, s)
- k is not added if k = p or k = s
- *k* cannot be added concurrently by another thread

Correctness

• BST invariants

- For each node:
 - The keys in the left sub-tree are smaller
 - The keys in the right sub-tree are bigger
- The invariants may only be broken while updating the tree layout
- Any update operation locks all updated nodes
- Locks are released only after the BST invariants are held

Outline

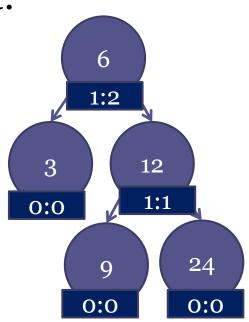


Balanced Binary Search Tree

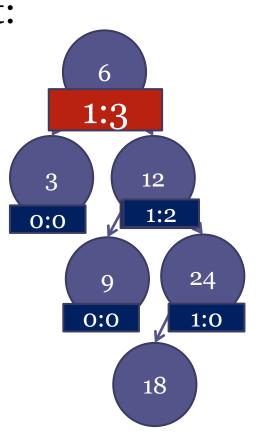
- In BST, insert, remove and contains run in $O(\log n)$ in *average*.
- In balanced BST, these operations run in $O(\log n)$ in the *worst case*.
- There are several known implementations for balanced BSTs

We will focus on AVL trees

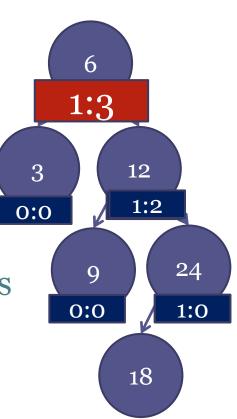
Each node maintains the invariant: The heights of the left and right sub-trees differ by at most 1



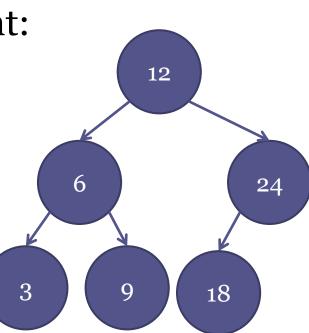
- Each node maintains the invariant:
 The heights of the left and right sub-trees differ by at most 1
- Insertion and removal may break the invariant



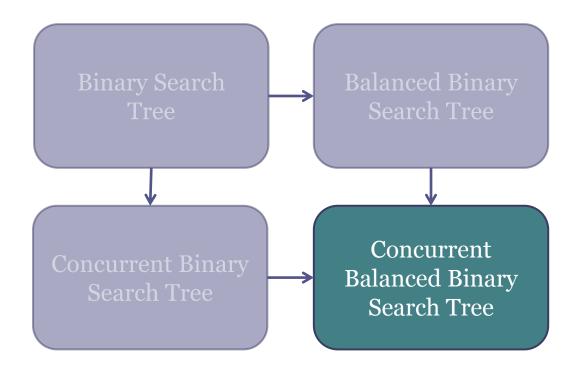
- Each node maintains the invariant:
 The heights of the left and right sub-trees differ by at most 1
- Insertion and removal may break the invariant
 - Rotations are applied to fix it
 - Rotations operate on adjacent nodes



- Each node maintains the invariant:
 The heights of the left and right sub-trees differ by at most 1
- Insertion and removal may break the invariant
 - Rotations are applied to fix it
 - Rotations operate on adjacent no



Outline



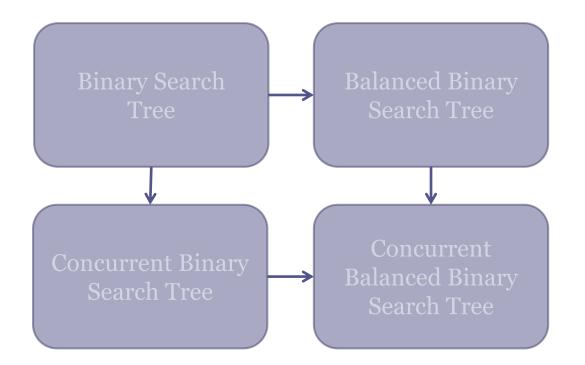
Balancing Our Tree

- After insertion or removal the tree is traversed bottom-up beginning from the point where an update has occurred
- If violation is detected, rotations are applied
 Only tree layout locks need to be acquired

Balancing Our Tree

- Rotations may lead to temporary disappearance of nodes from the tree layout
- However, the set-layout is unaffected by these rotations
- Since we consult the set-layout before making final decisions, this cannot lead to wrong decisions

Overview

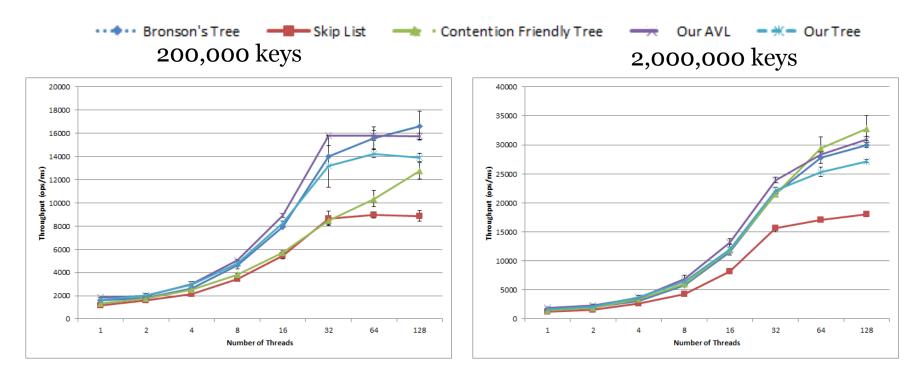


Evaluation

- We compared our tree to state-of-the-art implementations
- Experiments ran on a machine with 32 cores

Evaluation

• 90% contains, 9% insert, 1% remove



Summary

- We presented a practical concurrent balanced BST
- Our main insight is that maintaining explicitly the set layout results in a simpler algorithm for the concurrent balanced BST

Thank you!

References

[1] BENDER, M. A., FINEMAN, J. T., GILBERT, S., AND KUSZMAUL, B. C. Concurrent cache-oblivious b-trees. In SPAA (2005), pp. 228–237.

[2] BRONSON, N. G., CASPER, J., CHAFI, H., AND OLUKOTUN, K. A practical concurrent binary search tree. In PPoPP (2010), pp. 257–268.

[3] CRAIN, T., GRAMOLI, V., AND RAYNAL, M. A contention-friendly binary search tree. In Euro-Par (2013), pp. 229–240.

[4] ELLEN, F., FATOUROU, P., RUPPERT, E., AND VAN BREUGEL, F. Non-blocking binary search trees. In PODC (2010), pp. 131–140.

[5] HOWLEY, S. V., AND JONES, J. A non-blocking internal binary search tree. In Proceedings of the 24th ACM symposium on Parallelism in algorithms and architectures (2012), SPAA '12, pp. 161–171.

[6] Nipkow, T., Pusch, C.: AVL trees. In Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs. http://afp.sf.net/entries/AVL-Trees.shtml (2004) Formal proof development.