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Motivation 

• Balanced Binary Search Tree (BST) is an 
efficient data-structure for storing unique 
elements 

▫ No repetitions are allowed 

• Formal verification:  

▫ Given a program, prove some property 

▫ In the tree:  

 prove that repetitions of elements cannot occur 
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Motivation 

• Formal verification was applied to the sequential 
algorithm (e.g. using Isabelle [6]) 

• However, in a concurrent setting, formal 
verification is more complicated 
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Motivation 

• There seems to be a trade-off between 
algorithms that are easy to verify and algorithms 
that are practical 

• A concurrent BST that is protected by a global 
lock is easy to verify 

• Practical concurrent trees use sophisticated 
mechanisms 

▫ Many different cases to reason about 

▫ Harder to verify 
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Goal 

• We gap this trade-off by presenting a concurrent 
BST that is both practical and simple to reason 
about 

• Our key idea:  

▫ Integrate the property into the algorithm 

• We achieve a fine-grained locking balanced BST 

• Our tree is very similar to the sequential tree 

• Our mechanism allows breaking the proof into 
several separated proofs 
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Binary Search Tree 

• A data-structure that stores elements 

• Consists of nodes  

• Each node represents an element 

▫ Internal tree 

• Each element has a unique key 

▫ Repetitions are not allowed 

• Each node in the tree holds: 

▫ The left sub-tree has elements with smaller keys 

▫ The right sub-tree has elements with bigger keys 
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Binary Search Tree 

• In other words, BST maintains two types of 
invariants: 

▫ Set invariant 

 Each key appears at most once 

▫ BST invariants 

 For each node: 

 The keys in the left sub-tree are smaller 

 The keys in the right sub-tree are bigger 
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Binary Search Tree 

• Supports the following operations: 

▫ Contains 
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Binary Search Tree 

• Supports the following operations: 

▫ Insert 

 The new node is always a leaf 
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Binary Search Tree 
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Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 
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Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 

 A parent of a single child 

▫ 𝑛’s parent is connected to 𝑛’s child 
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Binary Search Tree 
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Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 

 A parent of a single child 

▫ 𝑛’s parent is connected to 𝑛’s child 

 A parent of two children 

▫ 𝑛’s successor is relocated to 𝑛’s location 
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Binary Search Tree 

• Supports the following operations: 

▫ Remove 

 The removed node, 𝑛, may be: 

 A leaf 

 A parent of a single child 
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Challenges in Concurrent BST 

• Consider the following tree: 

▫ Thread A searches for 9 

            

                    

                              

                                    

6 

3 12 

9 

9? 

13 



Challenges in Concurrent BST 

• Consider the following tree: 
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Challenges in Concurrent BST 
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Challenges in Concurrent BST 

• Consider the following tree: 

▫ Thread A searches for 9 

and pauses 

▫ Thread B removes 6 

▫ Thread A resumes the search  

and observes that 9 is not present 
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How do others cope with this 

challenge? 
• By not supporting the remove operation 

▫ Bender et al. [1] 
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How do others cope with this 

challenge? 
• By using external trees 

▫ Only leaves can be removed 

▫ Use more space than internal trees 

▫ Ellen et al. [4] 

3 

3 9 

9 24 

15 



How do others cope with this 

challenge? 
• Many concurrent algorithms for data-structures 

remove elements in two steps: 

▫ Marking the node as logically  

removed 
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How do others cope with this 

challenge? 
• Many concurrent algorithms for data-structures 

remove elements in two steps: 

▫ Marking the node as logically  

removed 

▫ Update pointers to physically  

remove the node 
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How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it  

▫ Also known as partially-external trees 

▫ Bronson et al. [2] 

▫ Crain et al. [3] 
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How do others cope with this 

challenge? 
• By marking the node as removed without 

physically removing it 

▫ Howley et al. [5] 
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How do others cope with this 

challenge? 
• These solutions leave removed nodes in the tree 

• Is it possible to physically remove nodes? 

• Trivial solution: use global lock 
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How do others cope with this 

challenge? 
• These solutions leave removed nodes in the tree 

• Is it possible to physically remove nodes? 

• Trivial solution: use global lock 

• Observation: To determine  

whether 𝑘 is in the tree it is  

enough to have 𝑝, 𝑠 such that: 

▫ 𝑝, 𝑠 belong to the tree 

▫ Any 𝑤 ∈ 𝑝, 𝑠  is not in the tree                 
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Our Approach 

• Maintain the predecessor-successor relation 

▫ The set layout 

• Consult this relation before  

making final decisions 
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Our Approach 

• Maintain the predecessor-successor relation 

▫ The set layout 

• Consult this relation before  

making final decisions 

• This relation allows us to lock  

the required nodes even if they  

are not adjacent  

▫ Enjoy the benefits of the global lock 

▫ While enabling more parallelism   
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Contains(k) 

• Traverse the tree using the tree pointers 

• If 𝑘 was found 

▫ Return true 

• Otherwise, upon reaching to a leaf 𝑙, confirm: 

▫ 𝑘 ∈ (𝑙′s predecessor, 𝑙) or 𝑘 ∈ 𝑙, 𝑙′s successor  

▫ and return false 

 

• This operation does not acquire locks 
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Update Operations 

• The synchronization is based on locks 

• Each update operation locks: 

▫ The relevant nodes in the tree 

▫ The relevant intervals 
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Insert(k) 

• Traverse the tree to find the location 
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Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 
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Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 

▫ Lock 𝑙 
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Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 

▫ Lock 𝑙 

▫ Update predecessor-successor 
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Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 

▫ Lock 𝑙 

▫ Update predecessor-successor 

▫ Add 𝑘           
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Insert(k) 

• Traverse the tree to find the location 

• Let 𝑙  be the node found 

• If 𝑘 ≤ 𝑙: lock 𝑙’s predecessor edge 

▫ Lock 𝑙 

▫ Update predecessor-successor 

▫ Add 𝑘 

• Else: lock 𝑙’s successor 

▫ Symmetric. 
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Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 
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Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 
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Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 

▫ Lock 𝑛, 𝑛’s children and parent 
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Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 

▫ Lock 𝑛, 𝑛’s children and parent 

▫ If 𝑛 has at most 1 child: 

 Mark 𝑛 as removed 
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Remove(k) 

• Traverse the tree to find 𝑘 

• Let 𝑛  be the node found 

• Lock 𝑛’s predecessor edge 

▫ Lock 𝑛’s successor edge 

▫ Lock 𝑛, 𝑛’s children and parent 

▫ If 𝑛 has at most 1 child: 

 Mark 𝑛 as removed 

 Update predecessor-successor 

 Connect 𝑛’s parent and child 
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Remove(k) 

▫ If 𝑛 has 2 children: 
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Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 
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Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

 Release 𝑛’s children locks 
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Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 
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Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

 Release 𝑛’s children locks 

 Mark 𝑛 as removed 

 Update predecessor-successor 

                                 

                       

 

3 12 

9 

11 

36 

25 



Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

 Release 𝑛’s children locks 

 Mark 𝑛 as removed 

 Update predecessor-successor 

 Connect the successor’s parent  

to the successor’s child and relocate  

𝑛’s successor 
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Remove(k) 

▫ If 𝑛 has 2 children: 

 Lock 𝑛’s successor, its parent and child 

 Release 𝑛’s children locks 

 Mark 𝑛 as removed 

 Update predecessor-successor 

 Connect the successor’s parent  

to the successor’s child and relocate  
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Update Operations Scheme 

• Traverse the tree to find 𝑘 

• Lock interval: [𝑝, 𝑠]  

• Confirm that the interval is appropriate:  

▫ 𝑘 ∈ [𝑝, 𝑠]  

▫ 𝑝 is not marked as removed 

• Lock tree locks 

• Update predecessor-successor relation 

• Update tree layout 

• Release all locks 
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Correctness 

• The BST maintains two invariants 

▫ Set invariant 

 Protected by set-locks 

▫ BST invariants 

 Protected by tree-locks 

• The intervals allow us to separate the proof into 
two proofs 
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Correctness 

• Set invariant 

▫ Each key appears at most once 

• A new key, 𝑘, is added only after locking an 
interval 𝑝, 𝑠  such that 𝑘 ∈ (𝑝, 𝑠) 

• 𝑘 is not added if 𝑘 = 𝑝 or 𝑘 = 𝑠 

• 𝑘 cannot be added concurrently by another 
thread 
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Correctness 

• BST invariants 

▫ For each node: 

 The keys in the left sub-tree are smaller 

 The keys in the right sub-tree are bigger 

• The invariants may only be broken while 
updating the tree layout 

• Any update operation locks all updated nodes 

• Locks are released only after the BST invariants 
are held 
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Balanced Binary Search Tree 

• In BST, insert, remove and contains run in 
𝑂 log 𝑛  in average. 

• In balanced BST, these operations run in 
𝑂(log 𝑛) in the worst case. 

• There are several known implementations for 
balanced BSTs 

▫ We will focus on AVL trees 
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AVL Trees 

• Each node maintains the invariant: 

▫ The heights of the left and right  

sub-trees differ by at most 1 
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AVL Trees 

• Each node maintains the invariant: 

▫ The heights of the left and right  

sub-trees differ by at most 1 

• Insertion and removal may break  

the invariant 
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AVL Trees 

• Each node maintains the invariant: 

▫ The heights of the left and right  

sub-trees differ by at most 1 

• Insertion and removal may break  

the invariant 

▫ Rotations are applied to fix it 

▫ Rotations operate on adjacent nodes 
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AVL Trees 

• Each node maintains the invariant: 

▫ The heights of the left and right  

sub-trees differ by at most 1 

• Insertion and removal may break  

the invariant 

▫ Rotations are applied to fix it 

▫ Rotations operate on adjacent nodes 
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Balancing Our Tree 

• After insertion or removal the tree is traversed 
bottom-up beginning from the point where an 
update has occurred 

• If violation is detected, rotations are applied 

▫ Only tree layout locks need to be acquired 
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Balancing Our Tree 

• Rotations may lead to temporary disappearance 
of nodes from the tree layout 

• However, the set-layout is unaffected by these 
rotations 

• Since we consult the set-layout before making 
final decisions, this cannot lead to wrong 
decisions 
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Evaluation  

• We compared our tree to state-of-the-art 
implementations 

• Experiments ran on a machine with 32 cores 
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Evaluation  
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200,000 keys 2,000,000 keys 

• 90% contains, 9% insert, 1% remove 

 

 

 

 



Summary 

• We presented a practical concurrent balanced 
BST 

• Our main insight is that maintaining explicitly 
the set layout results in a simpler algorithm for 
the concurrent balanced BST  
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   Thank you! 
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