! The University of Iowa

2 Intel Corporation
3 New York University

+
SMT-Based Verification

Verification
Condition

System Spec
+ Properties Verifier

Verification
Condition

SMT
solver

Invalid

Sample SMT Query

S, P, R:type
null : R
valid: Array(R, Bool)

.o count: Array(R, Int)
Definitions < 4 Array(P, R)

empty:S
mem : (S, P) -> Bool
add, remove : (S, P) ->S

|

: R. count[x] > 0 = valid[x]

. : P. = mem(empty, X
Axioms _ {empty, x)

:S,y,z:P.mem(add(x,y),z)=(z=yv mem(x,z))
:S,y,z:P.mem(remove(x,y),z)=(zzyAamem(x,z))

—

= (... Vx. (ref[x] != null => valid[ref[x]]) ...)

\ J
1

Property to verify

Handling Verification Conditions
with Quantifiers

Verification
condition for
property P

SMT
Solver

Unknown

Candidate
Model

Manual
Inspection

Handling Verification Conditions
with Quantifiers

Verification
condition for
property P

SMT
Solver

.
Candidate

Model
N
Manu 1 Need method
Inspectio. for answering SAT

+
Quantifiers in SMT

m Quantifiers and theories do not play well
together

m Current approaches: instantiation

1. generate ground instances of quantified
input formulas

2. check their satisfiability
3. repeat

+
Quantifier Instantiation

mSetting:
= Q = {quantified formulas} ({Vx. f(x) =g(x) +4, ..})
m= G = {ground formulas} ({f(a)=b v f(a) =c, c+1=Db})

mMain questions:
mWhich instances of Q do we add to G?
m When can we answer SAT?

+
Main Instantiation Approaches

mPattern-Based
m Determine instantiations heuristically

m Based on matching terms in Q with (ground)
terms in G

m Usually unable to answer SAT

m Model-Based

m Construct from a model of G a candidate model M
for Q

m Look for instances of Q that are falsified by M

m Can answer SAT by determining absence of such
instances

==
This Work: Finite Model Finding

mMain Idea
m Generate finite candidate model:

mmodel that treats the uninterpreted sorts
as finite domains

m[nstantiate exhaustively over domain
elements

m Answer SAT if exhaustive instantiation
admits same model

==
This Work: Finite Model Finding

mApplicable when universal quantifiers
range only over
muninterpreted sorts

mfinite built-in sorts (finite datatypes, bit
vectors, ...)

mPractical when
mrelatively small models exist
mredundant instances are avoided

+
Contributions

mA finite model finding method fully
integrated into the DPLL(T) [CAV’13]

mAn efficient candidate model
representation [CADE’13]

mA simple but powerful notion of
instance redundancy [CADE’13]

+
Our Method: Overview

m Wish to find reasonably small models
m Impose cardinality constraints on uninterpreted sorts
m Try models with domains of size 1, 2, 3, ...

m What this requires:
m Control to DPLL(T) search for postulating cardinalities
m Solver for EUF + cardinality constraints
m Instantiation strateqgy for avoiding redundant instances

EUF + (Finite) Cardinality
Constraints

m Extend EUF solver to handle (propositional)
atoms of the form:

S| <k
mMeaning: cardinality of sort S is at most k

m Consider wlog only term-generated
models

m ie, domain of S is an equivalence relation over ground
terms

DPLL(T) for EUF + FCC

m Idea: try to find models of size 1, 2, 3, ...

m Choose (|S| < 1)¢ as first decision literal
m If fail, then try (|S| < 2)4, etc.

(8] =1)¢ X -[8] =1

(ISs| =2)¢ 3 -[8]| =2
Search for
models
of size=1
(IS| =33 -8 =3

If none exist,
search for
models
of size=2

etc.

EUF + Cardinality Constraints

m For each sort S, maintain disequality graph Gg = (V, E)
m V are equivalence classes of ground terms of sort S
m E represent disequalities between terms in those classes

m Example. f(a)=a,f(a)=c,{(c) =c becomes:

+
EUF + Cardinality Constraints

m Consider sort S with cardinality constraint |S| <k

m Check if G4 is k-colorable
m If not, then we have a conflict (C S| <k)
m C explanation of sub-graph of Gq that is not k-colorable
m Otherwise, then we cannot be sure a model of size k exists:

m merging eq classes may have consequences for the theory

S| <2

+
EUF + Cardinality Constraints

m Solution: explicitly shrink model

m Use splitting on demand:
m Addlemma (a =c v a=c) and explore the branch a = ¢ first
m If successful, # of equivalence classes is reduced by one
m If unsuccessful,
m a theory conflict/backtrack will occur

m may or may not involve cardinality constraints

S| <2

+
EUF + Cardinality Constraints

m Good heuristics for EUF+CC solver must be:

= able to recognize efficiently when Ggq is not k-
colorable

m good at suggesting merges

mSolution: use a region-based approach
m Partition Gq into regions with high edge density
m Advantages:
m Likely to find (k+1)-cliques
m Can suggest relevant merges

+
Region-Based Approach

m Partition the graph Gg into regions

S| <2
m Maintain the invariant:
m Any (k+1)-clique is completely contained in a region

m Thus, we only need to search for cliques locally to regions
m Regions with < k nodes can be ignored

Region-Based Approach

S| <2
m Within each region with size > k:
m Maintain a watched set of k+1 nodes
m [f these nodes form a clique, report a conflict
m Otherwise, split on equalities over unlinked nodes

+
Region-Based Approach

S| <2

m Continue merging nodes until all regions have < k
nodes

Region-Based Approach

S| <2
m All regions have < k terms
m k-colorability is guaranteed
m However, still unsure a model of size k exists
m again, due to theory consequences

Region-Based Approach

o TN Em o o o o E——
- O . . O . . S .

S| <2

m Must shrink the model explicitly
m Combine regions based on heuristics
m For example, # links between regions

Region-Based Approach

S| <2

m Continue merging regions and nodes until we have
until < k nodes overall

®m Then we have minimal model for sort S

+
EUF + FCC Summary

m For |S|< k, maintain a node partition into regions
m At weak effort check,
m if any (k+1)- cliques exist, report them as conflicts clauses
m At strong effort check,
m if # representatives for sort S < k
m return SAT
m else if there is any region R, |R| > k
m split on an equality between nodes in R
m else

m combine regions, repeat strong effort check

m Both checks are constant time

==
Finite Model Finding

mUse DPLL(T) to guide search to small models
m Why small models?

m Easier to test against quantifiers
m Assuming model is small,
m Instantiate quantifiers exhaustively over domain

m If model does not change, it satisfies quantified
formulas, can answer SAT

+
Instantiation: Example

m Current assertions: f(a)=c, b=d, Vxy. f(x)=g(vy)

®0
.

+
Instantiation: Example

m Current assertions: f(a)=c, b=d, Vxy.f(x)=g(y)

m Find minimal model M of ground part:

+
Instantiation: Example

m Current assertions: f(a)=c, b=d, Vxy.f(x)=g(y)

m Instantiate quantifiers with representatives a, c:

00 e

+
Instantiation: Example

m Current assertions: f(a)=c, b=d, Vxy.f(x)=g(vy)

m Try to incorporate new nodes into M

Success:
M satisfies Vxy. f(x) =g(v)

Answer SAT

Beyond explicit exhaustive
instantiation

mFor ¢ in Q with n variables each with
domain size k,
mnaively checking satisfiability of ¢ requires
k" instantiations

mFeasible only if both k and n are relatively
small

+
Beyond explicit exhaustive

instantiation

mWe use smarter techniques:

mExtend model of G to full candidate model M
likely to satisfy O

mUse term indexing techniques to represent
M compactly

mUse M to recognize entire sets of instances of
Q that can be 1ignored

m Add to G remaining instances of Q that are
falsified by M

* Anatomy of Finite Model Finding

Formula

Satisfying assignment M

Theory

Solvers

Theory conflicts

M is T-Inconsistent M is T-Consistent

* Anatomy of Finite Model Finding

Formula Satisfying assignment M

Theory

Solvers

M is T-Consistent

FCC Solver

Cardinality conflicts, splits

M is not minimal M is minimal

* Anatomy of Finite Model Finding

Formula Satisfying assignment M

Theory

Solvers

M is T-Consistent

FCC Solver

M is minimal

Relevant

instantiations Exhaustive Quant.
Instantiation

Filter Based on No new instantiations

SAT

* Anatomy of Finite Model Finding

Formula

Satisfying assignment M

Theory

Solvers

Relevant
instantiations

M is T-Consistent

FCC Solver

M is minimal

No new instantiations

Instantiations Exhaustive Quant.

Instantiation

Filter Based on No new instantiations

Model S AT

==

Implementation

m Fully functional implementation in CVC4

m A number of alternative configurations:

cvcd
cvcé+f
cvcd+f-x
cvc4+im
cvcd+fmh

(no Finite Model Finding)
(FMF with regions)

(FMT without regions)

(f + model-based instant.)
(fm + heuristic instant.)

Experimental Evaluation 1

Benchmarks
m Derived from real verification examples from Intel

m Both SAT and UNSAT

m SAT benchmarks generated by removing
necessary assumptions

m Many theories:
m EUF, arithmetic, arrays, algebraic data types

m Quantifiers only over uninterpreted sorts

==
Experimental Results 1

Sat german refcount agree apg bmk
(45) (6) (42) (19) (37)
solved [time|solved [time|solved| time|solved| time|solved| time
cvel 0 00f O 0.0 O 0.0 O 00 O 0.0
yices 2 10.021 O 0.0 O 0.0 O 00| O 0.0
z3 45 1.1 1 700 O 0.0 O 00 O 0.0
cved 2 10.001 O 10.00] O 0.0 O 00 O 0.0
cved+f 45 03| 6 0.1 42 15.5| 18 200.01 36 |1201.5
cved+f-r | 45 03] 6 0.1{ 42 18.6f 15 364.3| 34 720.4
Unsat german refcount agree apg bmk
(145) (40) (488) (304) (244)
solved [time|solved [time|solved| time|solved| time|solved| time
cvel 145 | 0.4 40 0.2] 457 6.8 267 77.0| 229 76.2
yices 145 | 1.8 40 7.0] 488 [1475.4| 304 35.8| 244 25.3
z3 145 | 1.9 40 0.9 488 10.6| 304 12.2| 244 5.3
cved 145 | 0.1| 40 0.2| 484 6.8 304 11.2| 244 2.9
cved+f 145 | 0.8 40 0.4 476 (3782.1| 298 [2252.5| 242 |1507.0
cved+f-r | 145 | 04| 40 0.2 475 [(1574.3| 294 [3836.0f 240 [1930.5

Times in seconds timeout = 600s

Experimental Evaluation 2

Benchmarks
m Proof obligations produced by Isabelle prover

m11,187 sat and unsat benchmarks

==
Experimental Results 2

SAT z3 cvcd cvcd+f cvcd+fm [cvcd+fmh
Arrow_Order | 3 0 22 26 26
FFT 19 9 138 139 151
FTA 24 0 172 171 174
Hoare 46 O 153 151 159
NS _Shared |10 O 56 49 60
QEpres 49 0 79 80 81
StrongNorm | 1 0 12 12 12
TwoSquares | 17 8 59 59 60
TypeSafe 11 O 69 69 78
Total 180 17 760 756 801

Timeout = 300s

+Experimental Results 3 (TPTP)

le+9| |
- cved+f
| cved+fm ~

5 8IOO 8l50 9IOO 9ISO 1(300
Solved

m Model-Based Instantiation is often essential

+
Conclusion

mFinite model finding with DPLL(T)
m Uses solver for EUF + cardinality constraints
m Finds minimal models for ground constraints

m Uses model-based instantiation to test quantifiers

mPractical approach for some classes of
verification problems

m Can answer SAT quickly in many cases
m Competitive with state of the art in SMT
m Orthogonal to other approaches to quantifiers

+
Further Work

mBounded quantification over the integers
VX, ... x. :Int.

L <x;SU; A AL Sx, SU = F[x;..x]

with x, € FV(L, U;), fori<]j

m Example

Vxy. 0<x<20A0<y<f(x)=P(x,y)

+
Further Work

mIncremental bounds on size of solutions
over built-in structured types:

m string length
m list length
m tree height

Thanks

