Solving quantified formulas in SMT by finite model finding

A. Reynolds¹

C. Tinelli¹

A. Goel²

S. Krstic²

C. Barrett³

M. Deters³

¹ The University of Iowa

² Intel Corporation

³ New York University

Sample SMT Query

```
S, P, R: type
                          null: R
                          valid: Array(R, Bool)
                          count: Array(R, Int)
Definitions
                          ref: Array(P, R)
                          empty: S
                          mem: (S, P) -> Bool
                          add, remove: (S, P) -> S
                         \forall x : R. count[x] > 0 \Rightarrow valid[x]
                         \forall x : P. \neg mem(empty, x)
    Axioms
                         \forall x : S, y, z : P. mem(add(x, y), z) \Rightarrow (z = y \lor mem(x, z))
                         \forall x : S, y, z : P. mem( remove( x, y ), z ) \Rightarrow ( z \neq y \land mem( x, z ) )
                   \neg (... \forallx. (ref[x] != null => valid[ref[x]]) ...)
                                Property to verify
```

Handling Verification Conditions with Quantifiers

Handling Verification Conditions with Quantifiers Verification condition for property P SMT Solver UNSAT SAT known Candidate Model Model Property P is verified Manul Need method Inspection for answering SAT

Quantifiers in SMT

- Quantifiers and theories do not play well together
- Current approaches: instantiation
 - generate ground instances of quantified input formulas
 - 2. check their satisfiability
 - 3. repeat

Quantifier Instantiation

■Setting:

- G = {ground formulas} $({f(a) = b \lor f(a) = c, c+1 = b})$

■Main questions:

- Which instances of Q do we add to G?
- ■When can we answer SAT?

Main Instantiation Approaches

■Pattern-Based

- Determine instantiations heuristically
 - Based on matching terms in Q with (ground) terms in G
- Usually unable to answer SAT

■ Model-Based

- Construct from a model of G a candidate model M for Q
- Look for instances of Q that are falsified by M
- Can answer SAT by determining absence of such instances

This Work: Finite Model Finding

- ■Main Idea
 - Generate finite candidate model:
 - model that treats the uninterpreted sorts as finite domains
 - Instantiate exhaustively over domain elements
 - Answer SAT if exhaustive instantiation admits same model

This Work: Finite Model Finding

- Applicable when universal quantifiers range only over
 - uninterpreted sorts
 - ■finite built-in sorts (finite datatypes, bit vectors, ...)
- ■Practical when
 - relatively small models exist
 - redundant instances are avoided

Contributions

- ■A finite model finding method fully integrated into the DPLL(T) [CAV'13]
- ■An efficient candidate model representation [CADE'13]
- ■A simple but powerful notion of instance redundancy [CADE'13]

Our Method: Overview

- Wish to find reasonably small models
 - Impose cardinality constraints on uninterpreted sorts
 - Try models with domains of size 1, 2, 3, ...
- What this requires:
 - Control to DPLL(T) search for postulating cardinalities
 - Solver for EUF + cardinality constraints
 - Instantiation strategy for avoiding redundant instances

EUF + (Finite) Cardinality Constraints

$$|S| \leq k$$

- ■Meaning: cardinality of sort S is at most k
- Consider wlog only term-generated models
 - ie, domain of S is an equivalence relation over ground terms

DPLL(T) for EUF + FCC

- Idea: try to find models of size 1, 2, 3, ...
 - Choose $(|S| \le 1)^d$ as first decision literal
 - If fail, then try $(|S| \le 2)^d$, etc.

- For each sort S, maintain disequality graph $G_S = (V, E)$
 - V are equivalence classes of ground terms of sort S
 - E represent disequalities between terms in those classes
- Example. $f(a) \neq a, f(a) \neq c, f(c) = c$ becomes:

- Consider sort S with cardinality constraint $|S| \le k$
- Check if G_S is k-colorable
 - If *not*, then we have a conflict ($C \Rightarrow \neg |S| \le k$)
 - C explanation of sub-graph of G_S that is not k-colorable
 - Otherwise, then we *cannot* be sure a model of size k exists:
 - merging eq classes may have consequences for the theory

- Solution: explicitly shrink model
- Use splitting on demand:
 - Add lemma ($a = c \lor a \ne c$) and explore the branch a = c first
 - If successful, # of equivalence classes is reduced by one
 - If unsuccessful,
 - a theory conflict/backtrack will occur
 - may or may not involve cardinality constraints

- ■Good heuristics for EUF+CC solver must be:
 - able to recognize efficiently when G_S is not k-colorable
 - good at suggesting merges
- ■Solution: use a region-based approach
 - Partition G_S into *regions* with high edge density
 - Advantages:
 - Likely to find (k+1)-cliques
 - Can suggest relevant merges

Region-Based Approach

■ Partition the graph G_S into regions

- Maintain the invariant:
 - Any (k+1)-clique is completely contained in a region
- Thus, we only need to search for cliques locally to regions
 - Regions with \leq k nodes can be ignored

Region-Based Approach

 $|S| \leq 2$

- Within each region with size > k:
 - Maintain a watched set of k+1 nodes
 - If these nodes form a clique, report a conflict
 - Otherwise, split on equalities over unlinked nodes

+ Region-Based Approach

■ Continue merging nodes until all regions have $\leq k$ nodes

Region-Based Approach

 $|S| \leq 2$

- All regions have \leq k terms
 - k-colorability is guaranteed
 - However, still unsure a model of size k exists
 - again, due to theory consequences

+ Posion P

Region-Based Approach

- Must shrink the model explicitly
 - Combine regions based on heuristics
 - For example, # links between regions

Region-Based Approach

 $|S| \leq 2$

- Continue merging regions and nodes until we have until \leq k nodes overall
 - Then we have minimal model for sort S

EUF + FCC Summary

- For $|S| \le k$, maintain a node partition into regions
 - At weak effort check,
 - if any (k+1)- cliques exist, report them as conflicts clauses
 - At strong effort check,
 - if # representatives for sort $S \le k$
 - return SAT
 - else if there is any region R, |R| > k
 - split on an equality between nodes in R
 - else
 - combine regions, repeat strong effort check
- Both checks are constant time

Finite Model Finding

- ■Use DPLL(T) to guide search to small models
- ■Why small models?
 - Easier to test against quantifiers
 - Assuming model is small,
 - Instantiate quantifiers exhaustively over domain
 - If model does not *change*, it satisfies quantified formulas, can answer SAT

+ Instantiation: Example

■ Current assertions: $f(a) \neq c$, $b \neq d$, $\forall xy$. $f(x) \neq g(y)$

Instantiation: Example

- Current assertions: $f(a) \neq c$, $b \neq d$, $\forall xy$. $f(x) \neq g(y)$
- Find minimal model M of ground part:

Instantiation: Example

- Current assertions: $f(a) \neq c$, $b \neq d$, $\forall xy$. $f(x) \neq g(y)$
- Instantiate quantifiers with representatives a, c:

Instantiation: Example

- Current assertions: $f(a) \neq c$, $b \neq d$, $\forall xy$. $f(x) \neq g(y)$
- Try to incorporate new nodes into M

Success:

M satisfies $\forall xy$. $f(x) \neq g(y)$

Answer SAT

Beyond explicit exhaustive instantiation

- ■For φ in Q with n variables each with domain size k,
 - naïvely checking satisfiability of φ requires kn instantiations
 - Feasible only if both k and n are relatively small

Beyond explicit exhaustive instantiation

- ■We use smarter techniques:
 - ■Extend model of G to full candidate model M likely to satisfy Q
 - Use term indexing techniques to represent
 M compactly
 - ■Use M to recognize entire sets of instances of Q that can be ignored
 - ■Add to G remaining instances of Q that are falsified by M

⁺Anatomy of Finite Model Finding

*Anatomy of Finite Model Finding

*Anatomy of Finite Model Finding

*Anatomy of Finite Model Finding

Implementation

- ■Fully functional implementation in CVC4
- A number of alternative configurations:
 - cvc4 (no Finite Model Finding)
 - **cvc4+f** (FMF with regions)
 - **cvc4+f-r** (FMT without regions)
 - **cvc4+fm** (f + model-based instant.)
 - **cvc4+fmh** (fm + heuristic instant.)

Experimental Evaluation 1

Benchmarks

- Derived from real verification examples from Intel
- Both SAT and UNSAT
 - SAT benchmarks generated by removing necessary assumptions
- Many theories:
 - EUF, arithmetic, arrays, algebraic data types
- Quantifiers only over uninterpreted sorts

Experimental Results 1

Sat	german		refcount		agree		apg		bmk	
	(45)		(6)		(42)		(19)		(37)	
	solved	time	solved	time	solved	time	solved	time	solved	time
cvc3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
yices	2	0.02	0	0.0	0	0.0	0	0.0	0	0.0
z 3	45	1.1	1	7.0	0	0.0	0	0.0	0	0.0
cvc4	2	0.00	0	0.00	0	0.0	0	0.0	0	0.0
cvc4+f	45	0.3	6	0.1	42	15.5	18	200.0	36	1201.5
cvc4+f-r	45	0.3	6	0.1	42	18.6	15	364.3	34	720.4

Unsat	german		refcount		agree		apg		bmk	
	(145)		(40)		(488)		(304)		(244)	
	solved	time	solved	time	solved	time	solved	time	solved	time
cvc3	145	0.4	40	0.2	457	6.8	267	77.0	229	76.2
yices	145	1.8	40	7.0	488	1475.4	304	35.8	244	25.3
z 3	145	1.9	40	0.9	488	10.6	304	12.2	244	5.3
cvc4	145	0.1	40	0.2	484	6.8	304	11.2	244	2.9
cvc4+f	145	0.8	40	0.4	476	3782.1	298	2252.5	242	1507.0
cvc4+f-r	145	0.4	40	0.2	475	1574.3	294	3836.0	240	1930.5

Times in seconds timeout = 600s

Experimental Evaluation 2

Benchmarks

- Proof obligations produced by Isabelle prover
- 11,187 sat and unsat benchmarks

Experimental Results 2

SAT	z3	cvc4	cvc4+f	cvc4+fm	cvc4+fmh
Arrow_Order	3	0	22	26	26
FFT	19	9	138	139	151
FTA	24	0	172	171	174
Hoare	46	0	153	151	159
NS_Shared	10	0	56	49	60
QEpres	49	0	79	80	81
StrongNorm	1	0	12	12	12
TwoSquares	17	8	59	59	60
TypeSafe	11	0	69	69	78
Total	180	17	760	756	801

+Experimental Results 3 (TPTP)

■ Model-Based Instantiation is often essential

Conclusion

- ■Finite model finding with DPLL(T)
 - Uses solver for EUF + cardinality constraints
 - Finds minimal models for ground constraints
 - Uses model-based instantiation to test quantifiers
- Practical approach for some classes of verification problems
 - Can answer SAT quickly in many cases
 - Competitive with state of the art in SMT
 - Orthogonal to other approaches to quantifiers

Further Work

$$\forall x_1 \dots x_n : Int.$$

$$L_1 \le X_1 \le U_1 \land \dots \land L_n \le X_n \le U_n \Longrightarrow F[X_1 \dots X_n]$$

with
$$x_i \notin FV(L_i, U_i)$$
, for $i < j$

Example

$$\forall x y. \ 0 \le x \le 20 \land 0 \le y \le f(x) \Longrightarrow P(x, y)$$

Further Work

- ■Incremental bounds on size of solutions over built-in structured types:
 - string length
 - list length
 - tree height
 - **...**

