
Verification-Aided Regression Testing

Fabrizio Pastore1 Leonardo Mariani1

Antti E. J. Hyvärinen2 Grigory Fedyukovich2

Natasha Sharygina2 Ondrej Sery2 Stephan Sehestedt3

Ali Muhammed4

1University of Milano-Bicocca, Italy

2University of Lugano, Switzerland

3ABB Corporate Research, Ladenburg, Germany

4VTT Technical Research Centre, Tampere, Finland

October 17, 2013



Motivation

• Regression testing is an integral part of many software
development processes

• Given an upgrade of a software, does it satisfy a validation test
suite passed by the base version of the software

• The detection of faults depends critically on the quality of the
validation test suite

• This work aims at reducing the dependency on the test suite
by

(i) automatically producing properties that hold for the base
version

(ii) automatically identifying and checking on the upgraded
program only the properties that the developer intends the
upgrade to preserve

(iii) Reporting faults not revealed by the regression tests

• We use dynamic property generation together with bounded
model checking to achieve the goal.



Regression Testing & Dynamic Property Detection

Dynamic properties

Program

Monitoring and inference

Tests

• The main purpose of regression testing is to validate that an
already tested code has not been broken by an upgrade

• Property detection aims at identifying “likely invariants” by
observing the program behavior on the validation suite

• This work deals with properties expressed as assertions



Bounded Model Checking

• Given the C source code of a program P, we generate Boolean
representation φP of an unwound version of the program

• Each loop is inlined up to a fixed bound k
• Each function call is inlined
• The inlined version is converted to a bit-precise representation

as an instance of the propositional satisfiability problem
• Heap operations and reference arguments are mostly ignored

• Any assertion a in the source code is converted into a Boolean
formula φa, negated, and conjoined with the program,
resulting in φP ∧ ¬φa

• The satisfying truth assignments of φP ∧ ¬φa correspond to
the executions of P which repeat each loop at most k times
and violate the assertion a



Verification-Aided Regression Testing (VART)

Phase 1: property generation Phase 2: checking

base tests for base upgrade tests

counterexamples

Regression problems

Inter−version Property verification

Non−regression

properties

Verified properties

for base

Intra−version Property verification

for base

Dynamic properties

base program
upgraded

program

Monitoring and filteringMonitoring and inference

Verified properties



VART Phase 1: monitoring and inference

Monitoring and inference

Dynamic properties

base tests

for base

base program upgraded
program

• Generates a large number of dynamic properties

• Based on observing the base program behavior in the
regression test suite

• To limit the number of generated properties, only locations
“likely affected by the change” are monitored

• Uses the Daikon invariant generator



VART Phase 1: Detecting Dynamic Properties

• Dynamic properties are collected by monitoring the base
version while it executes its regression test suite

• To keep number of generated assertions sustainable, the
property generation is localized to places affected by the
change

• The modified functions are identified, and monitoring is done
on unchanged statements in functions

• that contain changes
• that call functions that contain changes; and
• that are called by the functions that contain changes.



VART Phase 1: Generating Verified Properties

for base

Verified properties

for base

Intra−version Property verification

φP ∧ ¬φa

Base program PDynamic properties a

• Dynamic properties often
overfit the regression test,
resulting in large number of
false positives

• We reduce the number of
false positives with BMC,
passing forward only true
assertions a (for which the
SAT check φP ∧ ¬φa

returns unsatisfiable).

• The scope of BMC is limited to the call trees rooted at the
callers of the function containing the changes

• Rest of the program treated non-deterministically



VART Phase 2: Filtering Verified Properties

Monitoring and filtering

properties

Non−regression

upgrade testsfor base

Verified properties
upgraded

program

• Some properties that hold for the previous version might be
intentionally broken by the developer

• The regression test suite for the upgrade is used to filter out
such verified but outdated properties



VART Phase 2: Upgrade Checking

Regression problems

counterexamples

Non−regression

Inter−version Property verification
φP ′ ∧ ¬φa

upgraded
program P ′

properties a

• Finally, the non-regression properties are checked against the
upgrade P ′ using BMC

• Properties reported as false or unreachable indicate the
presence of faults



Implementation

• VART is implemented for C programs

• Generation of dynamic properties is implemented on top of
the Radar tool [PMG13] using GDB and Daikon [ECGN01]

• Model checking with eVolCheck [FSS13]

• Support also for CBMC

[PMG13] F. Pastore, L. Mariani, and A. Goffi. RADAR a tool for
debugging regression problems in C/C++ Software. ICSE Tool
Demo Track, 2013.
[ECGN01] M. D. Ernst, J. Cockrell, W. G. Griswold, and D.
Notkin. Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on Software
Engineering, 27(2): 99-123, 2001.
[FSS13] G. Fedyukovich, O. Sery, and N. Sharygina: eVolCheck:
Incremental Upgrade Checker for C. TACAS 2013.



Empirical Evaluation: Insufficient test suite

• We test VART in detecting faults in the implementation of
the Grep utility

• Different degrees of coverage using Grep regression test suite

• Faults are injected from the SIR repository (total 11)

Revealed Faults
Test suite Testing VART TP FP

Cov20 3 5 5 0
Cov50 7 8 2 0
MRT 10 10 0 0

• Cov20 — 20 % coverage, Cov50 — 50 % coverage MRT —
smallest subset of tests that gives the same coverage as full
test suite

• TP — true positives, FP – false positives



Empirical evaluation: case studies

Subject Test suite
App. Size (LOCS) Size Dyn. Prop Non-Reg Prop TP FP

VTT 488 1000 1045 658 15 0
Sort 4653 427 356 2 1 0
Grep 590 817 3303 51 3 0

• VTT is a motion trajectory control system executed by a
robotic arm designed to perform maintenance tasks in the Iter
fusion reactor

• Regression test consist of random inputs as 12 numbers

• Grep and Sort are the GNU coreutil tools with their respective
test suites

• Faults inserted from mailing lists and SIR
• Identified faults are not revealed by the available test suites



Conclusions

• Regression testing is widely used, but compelling test suites
are difficult to design

• VART can detect faults that are undetected by the test suites
by

• Automatically producing properties from the base version test
suite

• filtering out the properties intentionally broken by the upgrade
• reporting faults and counterexamples not revealed by tests

• Empirical evaluation shows that VART complements and
increases the effectiveness of regression testing


