
Linear Temporal Logic



Safety vs. Liveness

• Safety : something bad never happens

A counterexample is an finite execution leading to something bad

happening (e.g. an assertion violation).

• Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good

happens (e.g. the program does not terminate).



Verification of Reactive Systems

• Classical verification à la Floyd-Hoare considered three problems:

– Partial Correctness :

{ϕ} P {ψ} iff for any s |= ϕ, if P terminates on s, then P (s) |= ψ

– Total Correctness :

{ϕ} P {ψ} iff for any s |= ϕ, P terminates on s and P (s) |= ψ

– Termination :

P terminates on s

• Need to reason about infinite computations :

– systems that are in continuous interaction with their environment

– servers, control systems, etc.

– e.g. “every request is eventually answered”



Reasoning about infinite sequences of states

• Linear Temporal Logic is interpreted on infinite sequences of states

• Each state in the sequence gives an interpretation to the atomic

propositions

• Temporal operators indicate in which states a formula should be

interpreted

Example 1 Consider the sequence of states:

{p, q} {¬p,¬q} ({¬p, q} {p, q})ω

Starting from position 2, q holds forever. 2



Kripke Structures

Let P = {p, q, r, . . .} be a finite alphabet of atomic propositions.

A Kripke structure is a tuple K = 〈S, s0,−→, L〉 where:

• S is a set of states,

• s0 ∈ S a designated initial state,

• −→ : S × S is a transition relation,

• L : S → 2P is a labeling function.



Paths in Kripke Structures

A path in K is an infinite sequence π : s0, s1, s2 . . . such that, for all

i ≥ 0, we have si −→ si+1.

By π(i) we denote the i-th state on the path.

By πi we denote the suffix si, si+1, si+2 . . ..

inf(π) = {s ∈ S | s appears infinitely often on π}

If S is finite and π is infinite, then inf(π) 6= ∅.



Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

• atomic proposition symbols p, q, r, . . .,

• boolean connectives ¬,∨,∧,→,↔,

• temporal connectives ©,2,3,U ,R.

The set of LTL formulae is defined inductively, as follows:

• any atomic proposition is a formula,

• if ϕ and ψ are formulae, then ¬ϕ and ϕ • ψ, for • ∈ {∨,∧,→,↔} are

also formulae.

• if ϕ and ψ are formulae, then ©ϕ, 2ϕ, 3ϕ, ϕUψ and ϕRψ are

formulae,

• nothing else is a formula.



Temporal Operators

• © is read at the next time (in the next state)

• 2 is read always in the future (in all future states)

• 3 is read eventually (in some future state)

• U is read until

• R is read releases



Linear Temporal Logic: Semantics

K,π |= p ⇐⇒ p ∈ L(π(0))

K,π |= ¬ϕ ⇐⇒ K,π 6|= ϕ

K,π |= ϕ ∧ ψ ⇐⇒ K,π |= ϕ and K,π |= ψ

K,π |= ©ϕ ⇐⇒ K,π1 |= ϕ

K,π |= ϕUψ ⇐⇒ there exists k ∈ N such that K,πk |= ψ

and K,πi |= ϕ for all 0 ≤ i < k

Derived meanings:

K,π |= 3ϕ ⇐⇒ K,π |= ⊤Uϕ

K,π |= 2ϕ ⇐⇒ K,π |= ¬3¬ϕ

K,π |= ϕRψ ⇐⇒ K,π |= ¬(¬ϕU¬ψ)



Examples

• p holds throughout the execution of the system (p is invariant) : 2p

• whenever p holds, q is bound to hold in the future : 2(p→ 3q)

• p holds infinitely often : 23p

• p holds forever starting from a certain point in the future : 32p

• 2(p→ ©(¬qUr)) holds in all sequences such that if p is true in a

state, then q remains false from the next state and until the first state

where r is true, which must occur.

• pRq : q is true unless this obligation is released by p being true in a

previous state.



LTL ≡ FOL

Theorem 1 LTL and FOL on infinite words have the same expressive

power.

From LTL to FOL:

Tr(q) = pq(t)

Tr(¬ϕ) = ¬Tr(ϕ)

Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ)

Tr(©ϕ) = Tr(ϕ)[t+ 1/t]

Tr(ϕUψ) = ∃x . Tr(ψ)[x/t] ∧ ∀y . y < x→ Tr(ϕ)[y/t]

The direction from FOL to LTL is done using star-free sets.



LTL < S1S

Definition 1 A language L ⊆ Σω is said to be non-counting iff:

∃n0∀n ≥ n0∀u, v ∈ Σ∗∀β ∈ Σω . uvnβ ∈ L ⇐⇒ uvn+1β ∈ L

Example 2 0∗1ω is non-counting. Let n0 = 2. We have three cases:

1. u, v ∈ 0∗ and β ∈ 0∗1ω :

∀n ≥ n0 . uv
nβ ∈ L

2. u ∈ 0∗, v ∈ 0∗1∗ and β ∈ 1ω :

∀n ≥ n0 . uv
nβ 6∈ L

3. u ∈ 0∗1∗, v ∈ 1∗ and β ∈ 1ω :

∀n ≥ n0 . uv
nβ ∈ L

2



LTL < S1S

Conversely, a language L ⊆ Σω is said to be counting iff:

∀n0∃n ≥ n0∃u, v ∈ Σ∗∃β ∈ Σω . (uvnβ 6∈ L∧uvn+1β ∈ L)∨(uvnβ ∈ L∧uvn+1β 6∈ L)

Example 3 (00)∗1ω is counting.

Given n0 take the next even number n ≥ n0, u = ǫ, v = 0 and β = 1ω.

Then uvnβ ∈ (00)∗1ω and uvn+1β 6∈ (00)∗1ω. 2



LTL < S1S

Proposition 1 Each LTL-definable ω-language is non-counting.

∃n0∀n ≥ n0∀u, v ∈ Σ∗∀β ∈ Σω . uvnβ |= ϕ ⇐⇒ uvn+1β |= ϕ

By induction on the structure of ϕ :

• ϕ = a : choose n0 = 1.

• ϕ = ¬ψ : choose the same n0 as for ψ.

• ϕ = ψ1 ∧ ψ2 : let n1 for ψ1 and n2 for ψ2, and choose

n0 = max(n1, n2).



LTL < S1S

• ϕ = ©ψ : let n1 for ψ and choose n0 = n1 + 1.

– we show ∀n ≥ n0 . (uvnβ)1 |= ψ ≡ (uvn+1β)1 |= ψ

– case u 6= ǫ, i.e. u = au′ :

(au′vnβ)1 |= ψ ⇐⇒ u′vnβ |= ψ ⇐⇒

u′vn+1β |= ψ ⇐⇒ (au′vnβ)1 |= ψ

– case u = ǫ, v = av′ :

((av′)nβ)1 |= ψ ⇐⇒ v′(av′)n−1β |= ψ ⇐⇒

v′(av′)nβ |= ψ ⇐⇒ ((av′)n+1β)1 |= ψ



LTL < S1S

• ϕ = ψ1Uψ2 : let n1 for ψ1 and n2 for ψ2, and choose

n0 = max(n1, n2) + 1.

– we show ∀n ≥ n0 . uv
nβ |= ψ1Uψ2 ⇒ uvn+1β |= ψ1U

– we have (uvnβ)j |= ψ2 and ∀i < j . (uvnβ)i |= ψ1 for some j ≥ 0

– case j ≤ |u|: (uvn+1β)j |= ψ2 and ∀i < j . (uvn+1β)i |= ψ1

– case j > |u|: let j′ = j + |v|

∗ (uvn+1β)j′ = (uvnβ)j |= ψ2

∗ for all |u| + |v| ≤ i < j + |v| . (uvn+1β)i = (uvnβ)i−|v| |= ψ1

∗ for all i < |u| + |v| . ((uv)vnβ)i |= ψ1 ⇐ ((uv)vn−1β)i |= ψ1

– the direction ⇐ is left to the reader.

Theorem 2 LTL is strictly less expressive than S1S.



LTL Model Checking



System verification using LTL

• Let K be a model of a reactive system (finite computations can be

turned into infinite ones by repeating the last state infinitely often)

• Given an LTL formula ϕ over a set of atomic propositions P ,

specifying all bad behaviors, we build a Büchi automaton Aϕ that

accepts all sequences over 2P satisfying ϕ.

Q: Since LTL ⊂ S1S, this automaton can be built, so why bother?

• Check whether L(Aϕ) ∩ L(K) = ∅. In case it is not, we obtain a

counterexample.



Generalized Büchi Automata

Let Σ = {a, b, . . .} be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is A = 〈S, I, T,F〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T ⊆ S × Σ × S is a transition relation,

• F = {F1, . . . , Fk} ⊆ 2S is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all 1 ≤ i ≤ k, we have

inf(π) ∩ Fi 6= ∅



GBA and BA are equivalent

Let A = 〈S, I, T,F〉, where F = {F1, . . . , Fk}.

Build A′ = 〈S′, I ′, T ′, F ′〉:

• S′ = S × {1, . . . , k},

• I ′ = I × {1},

• (〈s, i〉, a, 〈t, j〉) ∈ T ′ iff (s, t) ∈ T and:

– j = i if s 6∈ Fi,

– j = (i mod k) + 1 if s ∈ Fi.

• F ′ = F1 × {1}.



The idea of the construction

Let K = 〈S, s0,→, L〉 be a Kripke structure over a set of atomic

propositions P , π : N → S be an infinite path through K, and ϕ be an

LTL formula.

To determine whether K,π |= ϕ, we label π with sets of subformulae of ϕ

in a way that is compatible with LTL semantics.



Closure

Let ϕ be an LTL formula written in negation normal form.

The closure of ϕ is the set Cl(ϕ) ∈ 2L(LTL):

• ϕ ∈ Cl(ϕ)

• ©ψ ∈ Cl(ϕ) ⇒ ψ ∈ Cl(ϕ)

• ψ1 • ψ2 ∈ Cl(ϕ) ⇒ ψ1, ψ2 ∈ Cl(ϕ), for all • ∈ {∧,∨,U ,R}.

Example 4 Cl(3p) = Cl(⊤Up) = {3p, p,⊤}2

Q: What is the size of the closure relative to the size of ϕ ?



Labeling rules

Given π : N → 2P and ϕ, we define τ : N → 2Cl(ϕ) as follows:

• for p ∈ P, if p ∈ τ(i) then p ∈ π(i), and if ¬p ∈ τ(i) then p 6∈ π(i)

• if ψ1 ∧ ψ2 ∈ τ(i) then ψ1 ∈ τ(i) and ψ2 ∈ τ(i)

• if ψ1 ∨ ψ2 ∈ τ(i) then ψ1 ∈ τ(i) or ψ2 ∈ τ(i)



Labeling rules

ϕUψ ⇐⇒ ψ ∨ (ϕ ∧©(ϕUψ))

ϕRψ ⇐⇒ ψ ∧ (ϕ ∨©(ϕRψ))

• if ©ψ ∈ τ(i) then ψ ∈ τ(i+ 1)

• if ψ1Uψ2 ∈ τ(i) then either ψ2 ∈ τ(i), or ψ1 ∈ τ(i) and

ψ1Uψ2 ∈ τ(i+ 1)

• if ψ1Rψ2 ∈ τ(i) then ψ2 ∈ τ(i) and either ψ1 ∈ τ(i) or

ψ1Rψ2 ∈ τ(i+ 1)



Interpreting labelings

A sequence π satisfies a formula ϕ if one can find a labeling τ satisfying:

• the labeling rules above

• ϕ ∈ τ(0), and

• if ψ1Uψ2 ∈ τ(i), then for some j ≥ i, ψ2 ∈ τ(j) (the eventuality

condition)



Building the GBA Aϕ = 〈S, I, T,F〉

The automaton Aϕ is the set of labeling rules + the eventuality

condition(s) !

• Σ = 2P is the alphabet

• S ⊆ 2Cl(ϕ), such that, for all s ∈ S :

– ϕ1 ∧ ϕ2 ∈ s⇒ ϕ1 ∈ s and ϕ2 ∈ s

– ϕ1 ∨ ϕ2 ∈ s⇒ ϕ1 ∈ s or ϕ2 ∈ s

• I = {s ∈ S | ϕ ∈ s},

• (s, α, t) ∈ T iff:

– for all p ∈ P, p ∈ s⇒ p ∈ α, and ¬p ∈ s⇒ p 6∈ α,

– ©ψ ∈ s⇒ ψ ∈ t,

– ψ1Uψ2 ∈ s⇒ ψ2 ∈ s or [ψ1 ∈ s and ψ1Uψ2 ∈ t]

– ψ1Rψ2 ∈ s⇒ ψ2 ∈ s and [ψ1 ∈ s or ψ1Rψ2 ∈ t]



Building the GBA Aϕ = 〈S, I, T,F〉

• for each eventuality φUψ ∈ Cl(ϕ), the transition relation ensures that

this will appear until the first occurrence of ψ

• it is sufficient to ensure that, for each φUψ ∈ Cl(ϕ), one goes

infinitely often either through a state in which this does not appear,

or through a state in which both φUψ and ψ appear

• let φ1Uψ1, . . . φnUψn be the “until” subformulae of ϕ

F = {F1, . . . , Fn}, where:

Fi = {s ∈ S | φiUψi ∈ s and ψi ∈ s or φiUψi 6∈ s}

for all 1 ≤ i ≤ n.


