Linear Temporal Logic

• Safety : something bad never happens

A counterexample is an finite execution leading to something bad happening (e.g. an assertion violation).

• Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good happens (e.g. the program does not terminate).

Verification of Reactive Systems

- Classical verification à la Floyd-Hoare considered three problems:
 - Partial Correctness :

 $\{\varphi\} \mathbf{P} \{\psi\}$ iff for any $s \models \varphi$, if *P* terminates on *s*, then $P(s) \models \psi$

- Total Correctness :

 $\{\varphi\} \mathbf{P} \{\psi\}$ iff for any $s \models \varphi$, *P* terminates on *s* and $P(s) \models \psi$

– Termination :

$$P$$
 terminates on s

- Need to reason about infinite computations :
 - systems that are in continuous interaction with their environment
 - servers, control systems, etc.
 - e.g. "every request is eventually answered"

Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states
- Each state in the sequence gives an interpretation to the atomic propositions
- Temporal operators indicate in which states a formula should be interpreted

Example 1 Consider the sequence of states:

 $\{p,q\} \ \{\neg p,\neg q\} \ (\{\neg p,q\} \ \{p,q\})^{\omega}$

Starting from position 2, q holds forever. \Box

Kripke Structures

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a finite alphabet of *atomic propositions*.

A *Kripke structure* is a tuple $K = \langle S, s_0, \rightarrow, L \rangle$ where:

- S is a set of *states*,
- $s_0 \in S$ a designated *initial state*,
- \rightarrow : $S \times S$ is a transition relation,
- $L: S \to 2^{\mathcal{P}}$ is a labeling function.

Paths in Kripke Structures

A *path* in K is an infinite sequence $\pi : s_0, s_1, s_2...$ such that, for all $i \ge 0$, we have $s_i \to s_{i+1}$.

By $\pi(i)$ we denote the *i*-th state on the path.

By π_i we denote the suffix $s_i, s_{i+1}, s_{i+2} \dots$

 $\inf(\pi) = \{ s \in S \mid s \text{ appears infinitely often on } \pi \}$

If S is finite and π is infinite, then $\inf(\pi) \neq \emptyset$.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- atomic proposition symbols p, q, r, \ldots ,
- boolean connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$,
- temporal connectives $\bigcirc, \Box, \diamondsuit, \mathcal{U}, \mathcal{R}$.

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if φ and ψ are formulae, then $\neg \varphi$ and $\varphi \bullet \psi$, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ are also formulae.
- if φ and ψ are formulae, then $\bigcirc \varphi$, $\Box \varphi$, $\diamond \varphi$, $\varphi \mathcal{U} \psi$ and $\varphi \mathcal{R} \psi$ are formulae,
- nothing else is a formula.

- \bigcirc is read at the next time (in the next state)
- \Box is read always in the future (in all future states)
- \diamond is read eventually (in some future state)
- \mathcal{U} is read until
- \mathcal{R} is read releases

Linear Temporal Logic: Semantics

Derived meanings:

 $\begin{array}{lll} K,\pi\models\Diamond\varphi & \Longleftrightarrow & K,\pi\models\top\mathcal{U}\varphi\\ K,\pi\models\Box\varphi & \Longleftrightarrow & K,\pi\models\neg\Diamond\neg\varphi\\ K,\pi\models\varphi\mathcal{R}\psi & \Longleftrightarrow & K,\pi\models\neg(\neg\varphi\mathcal{U}\neg\psi) \end{array}$

- p holds throughout the execution of the system (p is invariant) : $\Box p$
- whenever p holds, q is bound to hold in the future : $\Box(p \to \Diamond q)$
- p holds infinitely often : $\Box \diamondsuit p$
- p holds forever starting from a certain point in the future : $\Diamond \Box p$
- $\Box(p \to \bigcirc(\neg q \mathcal{U} r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where r is true, which must occur.
- $p\mathcal{R}q$: q is true unless this obligation is released by p being true in a previous state.

Theorem 1 LTL and FOL on infinite words have the same expressive power.

From LTL to FOL:

Tr(q)	—	$p_q(t)$
$Tr(\neg \varphi)$	=	$\neg Tr(\varphi)$
$Tr(\varphi \wedge \psi)$	=	$Tr(\varphi) \wedge Tr(\psi)$
$Tr(\bigcirc \varphi)$	=	$Tr(\varphi)[t+1/t]$
$Tr(\varphi \mathcal{U}\psi)$	=	$\exists x . Tr(\psi)[x/t] \land \forall y . y < x \to Tr(\varphi)[y/t]$

The direction from FOL to LTL is done using *star-free* sets.

Definition 1 A language $L \subseteq \Sigma^{\omega}$ is said to be non-counting iff: $\exists n_0 \forall n \ge n_0 \forall u, v \in \Sigma^* \forall \beta \in \Sigma^{\omega} . uv^n \beta \in L \iff uv^{n+1} \beta \in L$

Example 2 0^*1^{ω} is non-counting. Let $n_0 = 2$. We have three cases: 1. $u, v \in 0^*$ and $\beta \in 0^*1^{\omega}$:

$$\forall n \ge n_0 \ . \ uv^n \beta \in L$$

2. $u \in 0^*, v \in 0^*1^* \text{ and } \beta \in 1^{\omega}$:

$$\forall n \ge n_0 \, . \, uv^n \beta \notin L$$

3. $u \in 0^*1^*$, $v \in 1^*$ and $\beta \in 1^{\omega}$:

$$\forall n \ge n_0 \ . \ uv^n \beta \in L$$

Conversely, a language $L \subseteq \Sigma^{\omega}$ is said to be *counting* iff:

 $\forall n_0 \exists n \ge n_0 \exists u, v \in \Sigma^* \exists \beta \in \Sigma^\omega . (uv^n \beta \notin L \land uv^{n+1} \beta \in L) \lor (uv^n \beta \in L \land uv^{n+1} \beta \notin L)$

Example 3 $(00)^*1^{\omega}$ is counting.

Given n_0 take the next even number $n \ge n_0$, $u = \epsilon$, v = 0 and $\beta = 1^{\omega}$. Then $uv^n \beta \in (00)^* 1^{\omega}$ and $uv^{n+1} \beta \notin (00)^* 1^{\omega}$. \Box

Proposition 1 Each LTL-definable ω -language is non-counting.

 $\exists n_0 \forall n \ge n_0 \forall u, v \in \Sigma^* \forall \beta \in \Sigma^\omega \ . \ uv^n \beta \models \varphi \iff uv^{n+1} \beta \models \varphi$

By induction on the structure of φ :

- $\varphi = a : \text{choose } n_0 = 1.$
- $\varphi = \neg \psi$: choose the same n_0 as for ψ .
- $\varphi = \psi_1 \wedge \psi_2$: let n_1 for ψ_1 and n_2 for ψ_2 , and choose $n_0 = \max(n_1, n_2)$.

$\underline{LTL} < \underline{S1S}$

- $\varphi = \bigcirc \psi$: let n_1 for ψ and choose $n_0 = n_1 + 1$.
 - we show $\forall n \ge n_0$. $(uv^n \beta)_1 \models \psi \equiv (uv^{n+1}\beta)_1 \models \psi$

- case
$$u \neq \epsilon$$
, i.e. $u = au'$:

$$(au'v^{n}\beta)_{1} \models \psi \iff u'v^{n}\beta \models \psi \iff$$
$$u'v^{n+1}\beta \models \psi \iff (au'v^{n}\beta)_{1} \models \psi$$

- case $u = \epsilon, v = av'$:

$$((av')^{n}\beta)_{1} \models \psi \iff v'(av')^{n-1}\beta \models \psi \iff v'(av')^{n}\beta \models \psi \iff ((av')^{n+1}\beta)_{1} \models \psi$$

- $\varphi = \psi_1 \mathcal{U} \psi_2$: let n_1 for ψ_1 and n_2 for ψ_2 , and choose $n_0 = \max(n_1, n_2) + 1$.
 - we show $\forall n \ge n_0$. $uv^n \beta \models \psi_1 \mathcal{U} \psi_2 \Rightarrow uv^{n+1} \beta \models \psi_1 \mathcal{U}$
 - we have $(uv^n\beta)_j \models \psi_2$ and $\forall i < j$. $(uv^n\beta)_i \models \psi_1$ for some $j \ge 0$
 - case $j \leq |u|$: $(uv^{n+1}\beta)_j \models \psi_2$ and $\forall i < j$. $(uv^{n+1}\beta)_i \models \psi_1$
 - $\operatorname{case} j > |u|: \operatorname{let} j' = j + |v|$
 - * $(uv^{n+1}\beta)_{j'} = (uv^n\beta)_j \models \psi_2$
 - * for all $|u| + |v| \le i < j + |v|$. $(uv^{n+1}\beta)_i = (uv^n\beta)_{i-|v|} \models \psi_1$
 - * for all i < |u| + |v|. $((uv)v^n\beta)_i \models \psi_1 \Leftarrow ((uv)v^{n-1}\beta)_i \models \psi_1$
 - the direction \Leftarrow is left to the reader.

Theorem 2 LTL is strictly less expressive than S1S.

LTL Model Checking

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often)
- Given an LTL formula φ over a set of atomic propositions \mathcal{P} , specifying all bad behaviors, we build a Büchi automaton A_{φ} that accepts all sequences over $2^{\mathcal{P}}$ satisfying φ .

Q: Since $LTL \subset S1S$, this automaton can be built, so why bother?

• Check whether $\mathcal{L}(A_{\varphi}) \cap \mathcal{L}(K) = \emptyset$. In case it is not, we obtain a counterexample.

Generalized Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A = \langle S, I, T, \mathcal{F} \rangle$, where:

- S is a finite set of *states*,
- $I \subseteq S$ is a set of *initial states*,
- $T \subseteq S \times \Sigma \times S$ is a *transition relation*,
- $\mathcal{F} = \{F_1, \ldots, F_k\} \subseteq 2^S$ is a set of *sets of final states*.

A run π of a GBA is said to be *accepting* iff, for all $1 \le i \le k$, we have

 $\inf(\pi) \cap F_i \neq \emptyset$

GBA and **BA** are equivalent

Let
$$A = \langle S, I, T, \mathcal{F} \rangle$$
, where $\mathcal{F} = \{F_1, \dots, F_k\}$.

Build $A' = \langle S', I', T', F' \rangle$:

- $S' = S \times \{1, \dots, k\},$
- $I' = I \times \{1\},$

•
$$(\langle s, i \rangle, a, \langle t, j \rangle) \in T'$$
 iff $(s, t) \in T$ and:
 $-j = i$ if $s \notin F_i$,
 $-j = (i \mod k) + 1$ if $s \in F_i$.

• $F' = F_1 \times \{1\}.$

The idea of the construction

Let $K = \langle S, s_0, \rightarrow, L \rangle$ be a Kripke structure over a set of atomic propositions $\mathcal{P}, \pi : \mathbb{N} \to S$ be an infinite path through K, and φ be an LTL formula.

To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.

Closure

Let φ be an LTL formula written in negation normal form.

The *closure* of φ is the set $Cl(\varphi) \in 2^{\mathcal{L}(LTL)}$:

- $\varphi \in Cl(\varphi)$
- $\bigcirc \psi \in Cl(\varphi) \Rightarrow \psi \in Cl(\varphi)$
- $\psi_1 \bullet \psi_2 \in Cl(\varphi) \Rightarrow \psi_1, \psi_2 \in Cl(\varphi)$, for all $\bullet \in \{\land, \lor, \mathcal{U}, \mathcal{R}\}$.

Example 4 $Cl(\Diamond p) = Cl(\top \mathcal{U}p) = \{\Diamond p, p, \top\} \Box$

Q: What is the size of the closure relative to the size of φ ?

Labeling rules

Given $\pi: \mathbb{N} \to 2^{\mathcal{P}}$ and φ , we define $\tau: \mathbb{N} \to 2^{Cl(\varphi)}$ as follows:

- for $p \in \mathcal{P}$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \notin \pi(i)$
- if $\psi_1 \wedge \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ and $\psi_2 \in \tau(i)$
- if $\psi_1 \lor \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ or $\psi_2 \in \tau(i)$

$\begin{array}{lll} \varphi \mathcal{U}\psi & \iff & \psi \lor (\varphi \land \bigcirc (\varphi \mathcal{U}\psi)) \\ \varphi \mathcal{R}\psi & \iff & \psi \land (\varphi \lor \bigcirc (\varphi \mathcal{R}\psi)) \end{array}$

- if $\bigcirc \psi \in \tau(i)$ then $\psi \in \tau(i+1)$
- if $\psi_1 \mathcal{U} \psi_2 \in \tau(i)$ then either $\psi_2 \in \tau(i)$, or $\psi_1 \in \tau(i)$ and $\psi_1 \mathcal{U} \psi_2 \in \tau(i+1)$
- if $\psi_1 \mathcal{R} \psi_2 \in \tau(i)$ then $\psi_2 \in \tau(i)$ and either $\psi_1 \in \tau(i)$ or $\psi_1 \mathcal{R} \psi_2 \in \tau(i+1)$

Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above
- $\varphi \in \tau(0)$, and
- if $\psi_1 \mathcal{U} \psi_2 \in \tau(i)$, then for some $j \ge i$, $\psi_2 \in \tau(j)$ (the eventuality condition)

Building the GBA $A_{\varphi} = \langle S, I, T, \mathcal{F} \rangle$

The automaton A_{φ} is the set of labeling rules + the eventuality condition(s) !

- $\Sigma = 2^{\mathcal{P}}$ is the alphabet
- $S \subseteq 2^{Cl(\varphi)}$, such that, for all $s \in S$:
 - $-\varphi_1 \land \varphi_2 \in s \Rightarrow \varphi_1 \in s \text{ and } \varphi_2 \in s$
 - $\varphi_1 \lor \varphi_2 \in s \Rightarrow \varphi_1 \in s \text{ or } \varphi_2 \in s$
- $I = \{s \in S \mid \varphi \in s\},$
- $(s, \alpha, t) \in T$ iff:
 - for all $p \in \mathcal{P}$, $p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \notin \alpha$,

$$- \bigcirc \psi \in s \Rightarrow \psi \in t,$$

- $-\psi_1 \mathcal{U}\psi_2 \in s \Rightarrow \psi_2 \in s \text{ or } [\psi_1 \in s \text{ and } \psi_1 \mathcal{U}\psi_2 \in t]$
- $-\psi_1 \mathcal{R}\psi_2 \in s \Rightarrow \psi_2 \in s \text{ and } [\psi_1 \in s \text{ or } \psi_1 \mathcal{R}\psi_2 \in t]$

Building the GBA $A_{\varphi} = \langle S, I, T, \mathcal{F} \rangle$

- for each eventuality $\phi \mathcal{U}\psi \in Cl(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ
- it is sufficient to ensure that, for each $\phi \mathcal{U}\psi \in Cl(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi \mathcal{U}\psi$ and ψ appear
- let $\phi_1 \mathcal{U} \psi_1, \ldots \phi_n \mathcal{U} \psi_n$ be the "until" subformulae of φ

 $\mathcal{F} = \{F_1, \dots, F_n\}, \text{ where:}$ $F_i = \{s \in S \mid \phi_i \mathcal{U}\psi_i \in s \text{ and } \psi_i \in s \text{ or } \phi_i \mathcal{U}\psi_i \notin s\}$

for all $1 \leq i \leq n$.