Interpolation for resolution and superposition ${ }^{1}$

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona
Verona, Italy
November, 2012
${ }^{1}$ Joint work with Moa Johansson

Motivation

Objective: interpolation system for non-ground refutations

Solution: a two-stage approach

A complete interpolation system

What is interpolation?

- Extracts interpolants from proofs
- Interpolant: a formula in between formulæ
- Proof of inconsistency of A and $B: A, B \vdash \perp$
- Interpolant I:
- $A \vdash I$
- $I, B \vdash \perp$
- I: only shared symbols

Why interpolation?

Theorem proving support of system analysis/synthesis:

- Model Checking:

Interpolants as over-approximations of images or pre-images

- Counter-Example Guided Abstraction Refinement: Interpolants to refine abstractions
- Automated invariant generation: Interpolants as candidate invariants: formulæ with quantifiers, alternating quantifiers

Why resolution and superposition?

- At the heart of state-of-the-art theorem provers
- Decision procedures for decidable theories, fragments
- Integration with SMT-solvers
- Complete reasoning on formulæ with quantifiers
- Instantiation heuristics in SMT-solvers: incomplete, fragile, demanding on users

Interpolation system

- Given refutation of $A \cup B$ extracts interpolant of (A, B)
- Associates partial interpolant to every clause in refutation
- Every inference: Partial interpolant of conclusion defined inductively from those of premises
- Partial interpolant of \square is interpolant of (A, B)
- Complete for inference system: for all its refutations gives interpolant
- Proof of completeness: show that partial interpolants are such

What is a partial interpolant?

- C occurs in a refutation of $A \wedge B$
- $A \wedge B \vdash C$
- $A \wedge B \wedge \neg C \vdash \perp$
- Interpolant of $A \wedge \neg C$ and $B \wedge \neg C$
- $(A \wedge \neg C, B \wedge \neg C)$ may share more symbols than (A, B)
- Use projections

Colors

Symbol:

- A-colored: in A but not in B
- B-colored: in B but not in A
- Transparent: in both

Term/atom/literal/clause:

- Transparent: all symbols transparent
- A-colored: all symbols in A and at least one A-colored
- B-colored: all symbols in B and at least one B-colored
- Otherwise: $A B$-mixed

Projections and Partial Interpolants

- $\left.C\right|_{A}: A$-colored and transparent literals of C
- $\left.C\right|_{B}: B$-colored and transparent literals of C
- \perp if empty
- Partial interpolant $\operatorname{PI}(C)$: interpolant of $A \wedge \neg\left(\left.C\right|_{A}\right)$ and $B \wedge \neg\left(\left.C\right|_{B}\right)$:
- $A \wedge \neg\left(\left.C\right|_{A}\right) \vdash P I(C)$
- $B \wedge \neg\left(\left.C\right|_{B}\right) \wedge P I(C) \vdash \perp$
- PI(C) transparent

Interpolation for propositional/ground resolution

All literals are input literals:
either A-colored or B-colored or transparent:

- $C \in A: P I(C)=\perp$
- $C \in B: P I(C)=T$
- $C \vee D$ resolvent of $p_{1}: L \vee C$ and $p_{2}: \neg L \vee D$:
- L is A-colored: $P I(C \vee D)=P I\left(p_{1}\right) \vee P I\left(p_{2}\right)$
- L is B-colored: $P I(C \vee D)=P I\left(p_{1}\right) \wedge P I\left(p_{2}\right)$
- L is transparent: $P I(C \vee D)=\left(L \vee P I\left(p_{1}\right)\right) \wedge\left(\neg L \vee P I\left(p_{2}\right)\right)$

How about non-ground proofs?

Inferences apply substitutions: mix symbols and therefore colors:

- Even in inferences with no $A B$-mixed literals: $\neg P(x, b) \vee C$ and $P(a, y) \vee D$ with $x \notin \operatorname{Var}(C), y \notin \operatorname{Var}(D)$, $\sigma=\{x \leftarrow a, y \leftarrow b\}$ yield $(C \vee D) \sigma$:
$\neg P(a, b)$ and $P(a, b) A B$-mixed:
case analysis of ground interpolation system does not suffice

How about non-ground proofs?

Inferences apply substitutions: mix symbols and therefore colors:

- Even in inferences with no $A B$-mixed literals: $\neg P(x, b) \vee C$ and $P(a, y) \vee D$ with $x \notin \operatorname{Var}(C), y \notin \operatorname{Var}(D)$, $\sigma=\{x \leftarrow a, y \leftarrow b\}$ yield $(C \vee D) \sigma$:
$\neg P(a, b)$ and $P(a, b) A B$-mixed:
case analysis of ground interpolation system does not suffice
- Even in inferences involving only one color: $p_{1}: L(x, a) \vee R(x)$ and $p_{2}: \neg L(c, y) \vee Q(y)$ with $\sigma=\{x \leftarrow c, y \leftarrow a\}$ yield $R(c) \vee Q(a)$:
$\left(P I\left(p_{1}\right) \vee P I\left(p_{2}\right)\right) \sigma$ not necessarily transparent!

A two-stage approach

Idea: separate entailment and transparency requirements.

- I stage: provisional interpolant \hat{l} such that $A \vdash \hat{l}$ and $B, \hat{l} \vdash \perp$ may contain colored symbols
- II stage: apply lifting to turn \hat{l} in interpolant by replacing colored terms by quantified variables

Labels track where literals come from

- c: $C \in A$: for all $L \in C, \operatorname{label}(L, c)=\mathbf{A}$
- $c: C \in B:$ for all $L \in C, \operatorname{label}(L, c)=\mathbf{B}$
- $c:(C \vee D) \sigma$ resolvent of $p_{1}: L \vee C$ and $p_{2}: \neg L^{\prime} \vee D$: $m \in C:$ label $(m \sigma, c)=\operatorname{label}\left(m, p_{1}\right)$
$m \in D: \operatorname{label}(m \sigma, c)=\operatorname{label}\left(m, p_{2}\right)$
- $c:(C \vee L[r] \vee D) \sigma$ paramodulant of $p_{1}: s \simeq r \vee C$ into $p_{2}: L\left[s^{\prime}\right] \vee D:$
label $(L[r] \sigma, c)=\operatorname{label}\left(L\left[s^{\prime}\right], p_{2}\right)$

Factoring, Superposition, Simplification, Equational Factoring

Labeled Projections and Provisional Partial Interpolants

- $\left.C\right|_{\mathbf{A}}$: literals of C labeled \mathbf{A}
- $\left.C\right|_{\mathbf{B}}$: literals of C labeled \mathbf{B}
$-\perp$ if empty
Commute with substitutions: resolvent $(C \vee D) \sigma$
$\left.(C \vee D) \sigma\right|_{\mathbf{A}}=\left(\left.\left.C\right|_{\mathbf{A}} \vee D\right|_{\mathbf{A}}\right) \sigma$
- Provisional partial interpolant $\widehat{P I}(C)$: provisional interpolant of $A \wedge \neg\left(\left.C\right|_{\mathbf{A}}\right)$ and $B \wedge \neg\left(\left.C\right|_{\mathbf{B}}\right)$:
- $A \wedge \neg\left(\left.C\right|_{A}\right) \vdash \widehat{P I}(C)$
- $B \wedge \neg\left(\left.C\right|_{B}\right) \wedge \widehat{P I}(C) \vdash \perp$
- $\widehat{P I}(\square)$ provisional interpolant of (A, B)

Objective: interpolation system for non-ground refutations
 Solution: a two-stage approach
 A complete interpolation system

Provisional interpolation system

- $C \in A: \widehat{P I}(C)=\perp$
- $C \in B: \widehat{P I}(C)=\top$
- $c:(C \vee D) \sigma$ resolvent of $p_{1}: L \vee C$ and $p_{2}: \neg L^{\prime} \vee D$:
- label $\left(L, p_{1}\right)=\operatorname{label}\left(\neg L^{\prime}, p_{2}\right)=\mathbf{A}: \widehat{P I}(c)=\left(\widehat{P I}\left(p_{1}\right) \vee \widehat{P I}\left(p_{2}\right)\right) \sigma$
- label $\left(L, p_{1}\right)=\operatorname{label}\left(\neg L^{\prime}, p_{2}\right)=\mathbf{B}: \widehat{P I}(c)=\left(\widehat{P I}\left(p_{1}\right) \wedge \widehat{P I}\left(p_{2}\right)\right) \sigma$
- label $\left(L, p_{1}\right)=\mathbf{A}$ and label $\left(\neg L^{\prime}, p_{2}\right)=\mathbf{B}$:
$\widehat{P l}(c)=\left[\left(L \vee \widehat{P I}\left(p_{1}\right)\right) \wedge \widehat{P I}\left(p_{2}\right)\right] \sigma$
- label $\left(L, p_{1}\right)=\mathbf{B}$ and label $\left(\neg L^{\prime}, p_{2}\right)=\mathbf{A}:$
$\widehat{P I}(c)=\left[\widehat{P I}\left(p_{1}\right) \wedge\left(\neg L^{\prime} \vee \widehat{P I}\left(p_{2}\right)\right)\right] \sigma$

Provisional interpolation system

- $c:(C \vee L[r] \vee D) \sigma$ paramodulant of $p_{1}: s \simeq r \vee C$ and $p_{2}: L\left[s^{\prime}\right] \vee D:$
- label $\left(s \simeq r, p_{1}\right)=\operatorname{label}\left(L\left[s^{\prime}\right], p_{2}\right)=\mathbf{A}:$

$$
\widehat{P I}(c)=\left(\widehat{P I}\left(p_{1}\right) \vee \widehat{P I}\left(p_{2}\right)\right) \sigma
$$

- label $\left(s \simeq r, p_{1}\right)=\operatorname{label}\left(L\left[s^{\prime}\right], p_{2}\right)=\mathbf{B}:$ $\widehat{P I}(c)=\left(\widehat{P I}\left(p_{1}\right) \wedge \widehat{P I}\left(p_{2}\right)\right) \sigma$
- label $\left(s \simeq r, p_{1}\right)=\mathbf{A}$ and label $\left(L\left[s^{\prime}\right], p_{2}\right)=\mathbf{B}$: $\widehat{P I}(c)=\left[\left(s \simeq r \vee \widehat{P I}\left(p_{1}\right)\right) \wedge \widehat{P I}\left(p_{2}\right)\right] \sigma$
- label $\left(s \simeq r, p_{1}\right)=\mathbf{B}$ and label $\left(L\left[s^{\prime}\right], p_{2}\right)=\mathbf{A}$: $\widehat{P I}(c)=\left[\widehat{P I}\left(p_{1}\right) \wedge\left(s \nsim r \vee \widehat{P I}\left(p_{2}\right)\right)\right] \sigma$

A complete provisional interpolation system

- Build provisional interpolant mostly by adding instances of A-labeled literals resolved or paramodulated with B-labeled ones: communication interface
- Theorem: Provisional interpolation system is complete
- Lemma: Provisional interpolants are in negation normal form with \forall-quantified variables and transparent predicate symbols

II stage: lifting

- Replace term with A-colored head by \exists-quantified variable
- Replace term with B-colored head by \forall-quantified variable
- Vars z and w replace t and $s[t]: w$ depends on z
- $Q_{1} z$ before $Q_{2} w: Q_{2} w$ in scope of $Q_{1} z$
- $Q_{1}=Q_{2}=\forall$ or $Q_{1}=Q_{2}=\exists$: order immaterial
- $Q_{1}=\forall$ and $Q_{2}=\exists$: use $\forall z . \exists w$ as w depends on z
- $Q_{1}=\exists$ and $Q_{2}=\forall$: use $\exists z . \forall w$ as z does not depend on w
- Solution: look for \triangleright-maximal colorful subterms

Colorful: A-colored or B-colored or $A B$-mixed

Lifting

- Given provisional interpolant $F=\forall \bar{v} . G$
- Take list of \triangleright-maximal colorful subterms with their positions $\operatorname{MCS}(G)=\left[\left(t_{1},\left[p_{1}^{1}, \ldots, p_{n_{1}}^{1}\right]\right), \ldots,\left(t_{k},\left[p_{1}^{k}, \ldots, p_{n_{k}}^{k}\right]\right)\right]$
in decreasing order by \triangleright
- Lift $(F)=\forall \bar{v} . \operatorname{lifting}(G, M C S(G))$
- lifting $(G,[])=G$
lifting $\left(G,\left(t_{1},\left[p_{1}^{1}, \ldots, p_{n_{1}}^{1}\right]\right):: T\right)=$ $\operatorname{lifting}\left(Q_{1} x_{1}, G\left[x_{1}\right]_{p_{1}^{1}} \ldots\left[x_{1}\right]_{p_{n_{1}}^{1}}, T\right)$
- Head symbol of t_{i} A-colored: $Q_{i}=\exists$ Head symbol of $t_{i} B$-colored: $Q_{i}=\forall$

A complete interpolation system

- Theorem: Lifting of provisional interpolant \hat{l} of (A, B) is interpolant:
- Lemma: $B, \hat{l} \vdash \perp$ implies $B, \operatorname{Lift}(\hat{l}) \vdash \perp$ bwoc: assume $B, \operatorname{Lift}(\hat{l})$ has model ... A-colored symbols new, interpreted as \exists-vars
- Lemma: $A, \neg \hat{\imath} \vdash \perp$ implies $A, \neg \operatorname{Lift}(\hat{l}) \vdash \perp$ bwoc: assume $A, \neg \operatorname{Lift}(\hat{l})$ has model ... B-colored symbols new, interpreted as \exists-vars
- Lift (\hat{l}) is transparent
- Corollary: Provisional interpolation system + lifting $=$ complete interpolation system

Discussion

- Color-based approaches do not extend beyond ground
- First complete interpolation system for general refutations by standard inference system for FOL+=
- Current work: interpolation for $\operatorname{DPLL}(\Gamma+\mathcal{T})$
- Future work:
- Quality of interpolants (length? strength? min quantifiers?)
- Implementation and experiments

