Interpolation for resolution and superposition ¹

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy

November, 2012

¹Joint work with Moa Johansson

Maria Paola Bonacina

Interpolation for resolution and superposition

イロト イボト イヨト イヨト

Э

Outline

Motivation Objective: interpolation system for non-ground refutations Solution: a two-stage approach A complete interpolation system

Motivation

Objective: interpolation system for non-ground refutations

Solution: a two-stage approach

A complete interpolation system

イロト イボト イヨト イヨト

э

What is interpolation?

- Extracts interpolants from proofs
- Interpolant: a formula in between formulæ
- ▶ Proof of inconsistency of A and B: $A, B \vdash \bot$
- ► Interpolant *I*:
 - $A \vdash I$
 - I, B ⊢⊥
 - ► *I*: only *shared* symbols

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

Why interpolation?

Theorem proving support of system analysis/synthesis:

- Model Checking: Interpolants as *over-approximations* of images or pre-images
- Counter-Example Guided Abstraction Refinement: Interpolants to refine abstractions
- Automated invariant generation: Interpolants as candidate invariants: formulæ with quantifiers, alternating quantifiers

Why resolution and superposition?

- At the heart of state-of-the-art theorem provers
- Decision procedures for decidable theories, fragments
- Integration with SMT-solvers
- Complete reasoning on formulæ with quantifiers
- Instantiation heuristics in SMT-solvers: incomplete, fragile, demanding on users

(4月) (4日) (4日)

Interpolation system

- Given refutation of $A \cup B$ extracts interpolant of (A, B)
- Associates partial interpolant to every clause in refutation
- Every inference: Partial interpolant of conclusion defined inductively from those of premises
- ▶ Partial interpolant of \Box is interpolant of (A, B)
- Complete for inference system: for all its refutations gives interpolant
- ▶ Proof of completeness: show that partial interpolants are such

イロト イボト イヨト イヨト

What is a partial interpolant?

- C occurs in a refutation of $A \wedge B$
- $\blacktriangleright A \land B \vdash C$
- $\blacktriangleright A \land B \land \neg C \vdash \perp$
- Interpolant of $A \land \neg C$ and $B \land \neg C$
- $(A \land \neg C, B \land \neg C)$ may share more symbols than (A, B)
- Use projections

イロト イポト イヨト イヨト

3

Colors

Symbol:

- ► A-colored: in A but not in B
- B-colored: in B but not in A
- Transparent: in both

Term/atom/literal/clause:

- Transparent: all symbols transparent
- ► A-colored: all symbols in A and at least one A-colored
- ▶ *B*-colored: all symbols in *B* and at least one *B*-colored
- Otherwise: AB-mixed

イロト イボト イヨト イヨト

Projections and Partial Interpolants

- $C|_A$: A-colored and transparent literals of C
- $C|_B$: B-colored and transparent literals of C
- ▶ ⊥ if empty
- Partial interpolant PI(C): interpolant of A ∧ ¬(C|_A) and B ∧ ¬(C|_B):
 - $A \land \neg(C|_A) \vdash PI(C)$
 - $B \land \neg(C|_B) \land PI(C) \vdash \bot$
 - PI(C) transparent

Interpolation for propositional/ground resolution

All literals are input literals:

either A-colored or B-colored or transparent:

•
$$C \in A$$
: $PI(C) = \bot$

•
$$C \in B$$
: $PI(C) = \top$

• $C \lor D$ resolvent of $p_1 \colon L \lor C$ and $p_2 \colon \neg L \lor D$:

- L is A-colored: $PI(C \lor D) = PI(p_1) \lor PI(p_2)$
- L is B-colored: $PI(C \lor D) = PI(p_1) \land PI(p_2)$
- L is transparent: $PI(C \lor D) = (L \lor PI(p_1)) \land (\neg L \lor PI(p_2))$

How about non-ground proofs?

Inferences apply substitutions: mix symbols and therefore colors:

► Even in inferences with no AB-mixed literals: $\neg P(x, b) \lor C$ and $P(a, y) \lor D$ with $x \notin Var(C)$, $y \notin Var(D)$, $\sigma = \{x \leftarrow a, y \leftarrow b\}$ yield $(C \lor D)\sigma$: $\neg P(a, b)$ and P(a, b) AB-mixed:

case analysis of ground interpolation system does not suffice

How about non-ground proofs?

Inferences apply substitutions: mix symbols and therefore colors:

- Even in inferences with no AB-mixed literals: ¬P(x, b) ∨ C and P(a, y) ∨ D with x ∉ Var(C), y ∉ Var(D), σ = {x ← a, y ← b} yield (C ∨ D)σ: ¬P(a, b) and P(a, b) AB-mixed: case analysis of ground interpolation system does not suffice
- Even in inferences involving only one color. $p_1: L(x, a) \lor R(x)$ and $p_2: \neg L(c, y) \lor Q(y)$ with $\sigma = \{x \leftarrow c, y \leftarrow a\}$ yield $R(c) \lor Q(a)$: $(PI(p_1) \lor PI(p_2))\sigma$ not necessarily transparent!

イロト イポト イヨト イヨト

A two-stage approach

Idea: separate entailment and transparency requirements.

- ▶ I stage: provisional interpolant \hat{I} such that $A \vdash \hat{I}$ and $B, \hat{I} \vdash \bot$ may contain colored symbols
- Il stage: apply *lifting* to turn Î in interpolant by replacing colored terms by quantified variables

(4月) (4日) (4日)

Labels track where literals come from

- $c: C \in A$: for all $L \in C$, $label(L, c) = \mathbf{A}$
- $c: C \in B$: for all $L \in C$, $label(L, c) = \mathbf{B}$
- ► $c: (C \lor D)\sigma$ resolvent of $p_1: L \lor C$ and $p_2: \neg L' \lor D$: $m \in C: \ label(m\sigma, c) = label(m, p_1)$ $m \in D: \ label(m\sigma, c) = label(m, p_2)$
- $c: (C \lor L[r] \lor D)\sigma$ paramodulant of $p_1: s \simeq r \lor C$ into $p_2: L[s'] \lor D:$ $label(L[r]\sigma, c) = label(L[s'], p_2)$

Factoring, Superposition, Simplification, Equational Factoring

イロト イボト イヨト イヨト

Labeled Projections and Provisional Partial Interpolants

- C|A: literals of C labeled A
- ► C|_B: literals of C labeled B
- \perp if empty

Commute with substitutions: resolvent $(C \lor D)\sigma$ $(C \lor D)\sigma|_{\mathbf{A}} = (C|_{\mathbf{A}} \lor D|_{\mathbf{A}})\sigma$

- Provisional partial interpolant Pl(C): provisional interpolant of A ∧ ¬(C|_A) and B ∧ ¬(C|_B):
 - $A \wedge \neg (C|_A) \vdash \widehat{PI}(C)$
 - $B \land \neg(C|_B) \land \widehat{PI}(C) \vdash \bot$

▶ $\widehat{PI}(\Box)$ provisional interpolant of (A, B)

Provisional interpolation system

•
$$C \in A$$
: $\widehat{PI}(C) = \bot$

•
$$C \in B$$
: $\widehat{PI}(C) = \top$

• $c: (C \lor D)\sigma$ resolvent of $p_1: L \lor C$ and $p_2: \neg L' \lor D$:

► label(L, p₁) = label(¬L', p₂) = **A**:
$$\widehat{PI}(c) = (\widehat{PI}(p_1) \lor \widehat{PI}(p_2))\sigma$$

•
$$label(L, p_1) = label(\neg L', p_2) = \mathbf{B}$$
: $\widehat{Pl}(c) = (\widehat{Pl}(p_1) \land \widehat{Pl}(p_2))\sigma$

► label(L, p₁) = **A** and label(
$$\neg L'$$
, p₂) = **B**
 $\widehat{PI}(c) = [(L \lor \widehat{PI}(p_1)) \land \widehat{PI}(p_2)]\sigma$

▶
$$label(L, p_1) = \mathbf{B}$$
 and $label(\neg L', p_2) = \mathbf{A}$:
 $\widehat{Pl}(c) = [\widehat{Pl}(p_1) \land (\neg L' \lor \widehat{Pl}(p_2))]\sigma$

A D A A B A A B A A B A

3

Provisional interpolation system

- $c: (C \lor L[r] \lor D)\sigma$ paramodulant of $p_1: s \simeq r \lor C$ and $p_2: L[s'] \lor D$:
 - ► $label(s \simeq r, p_1) = label(L[s'], p_2) = \mathbf{A}$: $\widehat{Pl}(c) = (\widehat{Pl}(p_1) \lor \widehat{Pl}(p_2))\sigma$
 - ► $label(s \simeq r, p_1) = label(L[s'], p_2) = \mathbf{B}$: $\widehat{Pl}(c) = (\widehat{Pl}(p_1) \land \widehat{Pl}(p_2))\sigma$
 - ► label($s \simeq r, p_1$) = **A** and label($L[s'], p_2$) = **B**: $\widehat{PI}(c) = [(s \simeq r \lor \widehat{PI}(p_1)) \land \widehat{PI}(p_2)]\sigma$
 - ▶ $label(s \simeq r, p_1) = \mathbf{B}$ and $label(L[s'], p_2) = \mathbf{A}$: $\widehat{PI}(c) = [\widehat{PI}(p_1) \land (s \not\simeq r \lor \widehat{PI}(p_2))]\sigma$

A complete provisional interpolation system

- Build provisional interpolant mostly by adding instances of A-labeled literals resolved or paramodulated with B-labeled ones: *communication interface*
- ▶ Theorem: Provisional interpolation system is complete
- ► Lemma: Provisional interpolants are in negation normal form with ∀-quantified variables and transparent predicate symbols

- 4 回 2 - 4 □ 2 - 4 □

II stage: lifting

- ▶ Replace term with *A*-colored head by ∃-quantified variable
- ▶ Replace term with *B*-colored head by ∀-quantified variable
- Vars z and w replace t and s[t]: w depends on z
- Q_1z before Q_2w : Q_2w in scope of Q_1z

•
$$Q_1 = Q_2 = \forall$$
 or $Q_1 = Q_2 = \exists$: order immaterial

- $Q_1 = \forall$ and $Q_2 = \exists$: use $\forall z . \exists w$ as w depends on z
- ▶ $Q_1 = \exists$ and $Q_2 = \forall$: use $\exists z. \forall w$ as z does not depend on w
- ▶ **Solution:** look for *▷*-maximal colorful subterms

Colorful: A-colored or B-colored or AB-mixed

Lifting

- Given provisional interpolant $F = \forall \bar{v}.G$
- ► Take list of ▷-maximal colorful subterms with their positions MCS(G) = [(t₁, [p₁¹,..., p_{n1}¹]),..., (t_k, [p₁^k,..., p_{nk}^k])] in decreasing order by ▷
- $Lift(F) = \forall \bar{v}.lifting(G, MCS(G))$
- ► lifting(G,[]) = G lifting(G,(t₁,[p₁¹,...,p_{n1}¹]):: T) = lifting(Q₁x₁.G[x₁]_{p₁¹}...[x₁]_{p_{n1}¹}, T)
- ► Head symbol of t_i A-colored: Q_i = ∃ Head symbol of t_i B-colored: Q_i = ∀

A complete interpolation system

- Theorem: Lifting of provisional interpolant Î of (A, B) is interpolant:
 - Lemma: B, Î ⊢⊥ implies B, Lift(Î) ⊢⊥ bwoc: assume B, Lift(Î) has model ... A-colored symbols new, interpreted as ∃-vars
 - Lemma: A, ¬Î ⊢⊥ implies A, ¬Lift(Î) ⊢⊥ bwoc: assume A, ¬Lift(Î) has model ... B-colored symbols new, interpreted as ∃-vars
 - $Lift(\hat{I})$ is transparent
- Corollary: Provisional interpolation system + lifting = complete interpolation system

(D) (B) (C) (C)

Discussion

- Color-based approaches do not extend beyond ground
- First complete interpolation system for general refutations by standard inference system for FOL+=
- Current work: interpolation for $DPLL(\Gamma + T)$
- Future work:
 - Quality of interpolants (length? strength? min quantifiers?)
 - Implementation and experiments

A D A A B A A B A A B A

3