Uniform Reduction to SMT

Predrag Janičić Filip Marić
www.matf.bg.ac.rs/~janicic www.matf.bg.ac.rs/~filip

Automated Reasoning GrOup (ARGO)
Faculty of Mathematics
University of Belgrade, Serbia

Synthesis, Verification, and Analysis of Rich Models (SVARM 2010)
SAT/SMT solvers are widely used, but encoding to SAT/SMT is typically made by special-purpose tools.

There are interchange formats for SAT/SMT (e.g., SMT-lib) but no high-level specification languages.

Goal: Build a new modelling and solving system (for CSP, verification problems, etc.) with:

- simple but expressible, high-level specification language
- efficient interface to powerful SAT/SMT solvers
Consider problems of the form: find values that satisfy given conditions

It is often hard to develop an efficient specialized procedure that finds required values

It is often easy to specify an imperative test if given values satisfy the conditions

Such test can be a problem specification itself

Convert this imperative specification to a SAT/SMT formula and use solvers to search for its models
Alice picked a number and added 3. Then she doubled what she got. If the sum of the two numbers that Alice got is 12, what is the number that she picked?

A simple test that A is indeed Alice’s number:

\[
B := A + 3;
C := 2 \times B;
\text{assert}(B + C == 12);
\]

This test is a specification of the problem.

Unknowns are exactly the variables that were accessed before they were assigned a value.
Expressiveness

- The C-like specification language supports:
 - integer and Boolean data types; arrays
 - implicit casting
 - arithmetical, logical, relational and bit-wise operators
 - flow-control statements (if, for, while)
 - defined and undefined functions

- Restriction: conditions in the if, for, while statements and array indices must be ground (cannot contain unknowns)
Interpretation

- Specifications are symbolically executed
- The semantics is different from the standard semantics of imperative languages (e.g., undefined variables can be accessed)
- The result of the interpretation is a quantifier free FOL formula
- This formula is passed to a SAT/SMT solver
- If it is satisfiable, its models give solutions of the problem
Consider the code:

nB=nA+3;
nC=2*nB;
assert(nB+nC==12);

If A corresponds to the unknown nA, then the asserted expression is evaluated to $A + 3 + 2 \times (A + 3) = 12$

An SMT solver (e.g., for BVA or LIA) can confirm that the formula is satisfiable (and is true for A equals 1)
Overall Architecture

URSA MAJOR problem specification
↓ interpreter
Quantifier free FOL formula
↓ bitblasting
Propositional formula
↓ SAT solver ↓ SMT (BVA, LA, ...) solver
Values of unknowns/Solutions
The tool **URSA Major** (Uniform Reduction to SATisfiability Modulo Theory)

- Implemented in C++
- Employs a subsystem for bitblasting and reduction to SAT
- Currently: SAT solvers – ArgoSAT and Clasp, SMT (BVA, LIA, EUF, ...) solvers – MathSAT, Yices, Boolector
- Under constant development (support for new underlying theories and solvers being added)
CSP Example: The Eight Queens Puzzle

nDim=8;
bDomain = true;
bNoCapture = true;
for(ni=0; ni<nDim; ni++) {
 bDomain &&= (n[ni]<nDim);
 for(nj=0; nj<nDim; nj++)
 if(ni!=nj) {
 bNoCapture &&= (n[ni]!=n[nj]);
 bNoCapture &&= (ni+n[nj]!=nj+ n[ni]) && (ni+n[ni] != nj+n[nj]);
 }
}
assert(bDomain && bNoCapture);
Verification Example: Bit-counters

```c
function nBC1(nX) {
    nBC1 = 0;
    for (nI = 0; nI < 16; nI++)
        nBC1 += nX & (1 << nI) ? 1 : 0;
}

function nBC2(nX) {
    nBC2 = nX;
    nBC2 = (nc2 & 0x5555) + (nc2>>1 & 0x5555);
    nBC2 = (nc2 & 0x3333) + (nc2>>2 & 0x3333);
    nBC2 = (nc2 & 0x0077) + (nc2>>4 & 0x0077);
    nBC2 = (nc2 & 0x000F) + (nc2>>8 & 0x000F);
}

assert(nBC1(nX)! = nBC2(nX));
```
Best Underlying Solver?

- There is no best underlying solver
- Each of the used solvers was most efficient for some problem
- This shows that different solvers should be used within the system
- For instance, for the magic square problem and the queens problem SAT solver Clasp was the most efficient
Sample Experimental Data

Problem: N queens problem (all solutions)

![Graph showing CPU time vs. N for different solvers.].[igraph]
A novel (imperative-declarative) programming paradigm
The user controls the encoding employed
Applicable to a wide range of problems (e.g., for all NP problems there is a simple witness test)
Competitive to other modelling systems
A high level interface to SMT
Can be used for producing benchmarks
Current and Further Work

- Support for more theories and SAT/SMT solvers
- Providing APIs for standard programming languages
- Real-world applications
- Link to Rich Model Language?