
Predator and Forester:
Two New Tools for Shape Analysis

Tomáš Vojnar
FIT, Brno University of Technology, Czech Republic

• Predator is a joint work with K. Dudka (FIT) and P. Peringer (FIT).

• Forester is a joint work with P. Habermehl (LIAFA),
L. Holík (FIT/Uppsala), A. Rogalewicz (FIT) and J. Šimá ček (FIT/VERIMAG).

Predator and Forester: Two New Tools for Shape Analysis – p.1/11

Predator

Predator and Forester: Two New Tools for Shape Analysis – p.2/11

Predator

❖ A new tool for shape analysis of C programs inspired by Space Invader [D. Distefano,
C. Calcagno, H. Yang, and P. O’Hearn].

❖ Based on separation logic with higher-order inductive list predicates:

• list predicates parameterised by the shape of their elements,

• can handle nested singly- or doubly-linked lists (SLLs/DLLs) that can be cyclic
and/or have various additional links (head/tail pointers, data pointers).

❖ Like Space Invader, Predator hunts for:

• basic memory safety errors: null dereferences, dangling pointer dereferences,
memory leaks, double free operations,

• more complex checks can be implemented as testers written in C and attached to
the analysed code.

Predator and Forester: Two New Tools for Shape Analysis – p.3/11

Predator

❖ Compared to Space Invader:

• DLLs supported equally well as SLLs.

• A support for list segments of lengths 0+, 1+, 2+, and also 0 or 1.

• A better support of pointer arithmetics, tailored for use with native Linux lists.

• So far a very weak support of non-pointer data structures.

❖ Experiments with Space Invader and Predator:

• In our test cases where both tools succeed, Invader is usually somewhat faster.

• In multiple our test cases where Predator succeeds, Invader seems to loop,
provides a false positive, and even a false negative.

Predator and Forester: Two New Tools for Shape Analysis – p.4/11

Forester

Predator and Forester: Two New Tools for Shape Analysis – p.5/11

Forester

❖ A new tool for shape analysis of C programs based on tree automata.

❖ Looks for the same kind of errors as Predator.

❖ Unlike previous automata-based approaches,

• does not use a single monolithic automaton to encode sets of memory
configurations,

• instead several automata representing parts of memory configurations separated
like in separation logic are used.

❖ Uses abstract regular tree model checking on non-deterministic tree automata to
over-approximate sets of reachable memory configurations.

Predator and Forester: Two New Tools for Shape Analysis – p.6/11

Forest Automata
❖ Heaps are split at the so called cut-points into tree components whose leaves may
refer back to the roots.

• Hence, heaps are represented by tuples of trees, i.e., forests.

• Tree automata used to represent sets of tree components.

• Sets of forests represented by tuples of tree automata, i.e., forest automata.

x y

data
next

data
next

data
next

data
next

data
next

data
next

data next data

next

1

3

4

2

data
next

data
next

1

3

x

data
next

data
next

2
y

3

data
next

3

4

data
next

data
next

4

4

data
next

❖ Can be put into a canonical form: inclusion is decidable.

Predator and Forester: Two New Tools for Shape Analysis – p.7/11

Hierarchical Forest Automata

❖ Sets of structures with unboundedly many cut-points (e.g., DLLs) are represented in
a hierarchical way.

• The alphabet of forest automata can contain nested forest automata.

• If a nested automaton “hides” a bounded number of cut-points, its use on a loop in
the higher-level automaton hides unboundedly many cut-points.

next

next

next

prev

prev

prev

next prev
DLL

next prev
DLL

next prev
DLL

❖ Forester currently uses pre-defined nested automata for common data structures.

Predator and Forester: Two New Tools for Shape Analysis – p.8/11

Evaluation

❖ Experiments with Forester, Invader, and ARTMC (our older tool based on abstract
regular tree model checking with a monolithic heap encoding).

Example Forester Invader ARTMC Example Forester Invader ARTMC

[sec] [sec] [sec] [sec] [sec] [sec]

SLL (delete) 0.04 0.10 0.5 SLL (reverse) 0.04 0.03

SLL (bubblesort) 0.12 error SLL (insertsort) 0.09 0.10

SLL (mergesort) 0.12 error SLL of CSLLs 0.11 timeout

SLL+head 0.04 0.06 SLL of 0/1 SLLs 0.13 timeout

SLLLinux 0.05 timeout DLL (insert) 0.07 0.08 0.4

DLL (reverse) 0.05 0.09 1.4 DLL (insertsort1) 0.35 0.18 1.4

DLL (insertsort2) 0.16 error CDLL 0.04 0.09

DLL of CDLLs 0.32 timeout SLL of 2CDLLsLinux 0.11 timeout

tree 0.11 3.0 tree+stack 0.10

tree+parents 0.18 tree (DSW) 0.41 o.o.m.

❖ In all cases, random creation and destruction of data structures, possibly with some
further (indicated) data structure manipulation.

Predator and Forester: Two New Tools for Shape Analysis – p.9/11

Code Listener Framework

❖ Both Predator and Forester are open source:

• http://www.fit.vutbr.z/researh/groups/verifit/.

❖ Built as gcc plug-ins to be able to input any code that natively compiles with gcc.

switch

to if

c
o
d
e
 s

to
ra

g
e

filters

listeners analyzers

error stream

sparse
CFG

plotter
predator

gcc

c
o
d
e
 p

a
rs

e
r

in
te

rf
a
c
e

...

...

... forester

Predator and Forester: Two New Tools for Shape Analysis – p.10/11

Future Work

❖ Predator:

• Optimisations of the internal structures based on the experience gained from the
first prototype.

• Support for more data structures (e.g., trees) in the form they appear in
system code (Linux kernel).

• Light-weight support for non-pointer data.

❖ Forester:

• Predicate language abstraction.

• Support for procedure summaries.

• Automatic learning of nested automata.

• Light-weight support for non-pointer data.

Predator and Forester: Two New Tools for Shape Analysis – p.11/11

	
	Predator
	Predator
	
	Forester
	Forest Automata
	Hierarchical Forest Automata
	Evaluation
	Code Listener Framework
	Future Work

