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Termination
A program is terminating if it does not have infinite executions

Turing in 1936 proved there is no general algorithm to decide it.

But in 1949 he proposed a method that at least tries:

Assign all states of the program with natural numbers, i.e. rank them,
such that for any pair of consecutive states si , si+1 ∈ S the number is
decreasing, i.e., rank(si ) > rank(si+1)

rank(S1) = 42 rank(S2) = 5

rank(Si ) = 4

rank(Sj) = 3

rank(Sf ) = 1
>

>

>

>

>

Termination can be concluded from well-foundedness of
program’s transition relation bounded to only reachable states

Discovery of a magic rank function remained a major problem for years
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Transition Invariants

Definition (Podelski, Rybalchenko 2004)

A transition invariant T for program P = 〈S , I ,R〉 is a superset
of the transitive closure of R restricted to the reachable state
space, i.e., R+ ∩ (R∗(I )× R∗(I )) ⊆ T .

In contrast, state invariant — a superset of a set of reachable
states, i.e. R∗(I ) ⊆ V .
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Transition vs State Invariant

State invariant preserves a common property over states

while

Transition invariant reflects a common property over transitions
between the states
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Example

Example

#def ine SIZE 256
i n t c [ SIZE ] ;
i n t main ( )
{

unsigned i=SIZE−1;
whi le ( i >0)
{

c [ i ] = i ;
i=i −1;
}
}

Transition invariant:
i ′ < i
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Termination

Theorem (Termination by Podelski, Rybalchenko’04)

A program P is terminating iff there exists a (disjunctively)
well-founded transition invariant for P.
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Inductive Transition Invariant

Theorem (T., Sharygina, Wintersteiger, Kroening at TACAS’11)

A binary relation T is a transition invariant for the program
〈S , I ,R〉 if it is compositional (transitive) and R ⊆ T .

∃si , sj , sk ∈ S . ¬ (T (si , sj) ∧ T (sj , sk)⇒ T (si , sk))

A program is terminating if there exists a well-founded
compositional transition invariant for it.
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Algorithm #1

Terminator (by Cook, Podelski and Rybalchenko in 2006) uses
Binary Reachability Analysis, model checker-based
non-terminating counterexample extraction and employs per-path
rank generator to construct a d.wf. transition invariant.

give a full program (loop) to MC and get a yet non-ranked path
from it

find a ranking function for the path; add another disjunct to the
d.wf TI

update a (reachability) assertion in the program to reflect the
change in TI and ask MC for another non-ranked path
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Algorithm #2

Compositional Termination Analysis (Kroening, Sharygina, T.,
Wintersteiger at CAV’10) improved over Terminator by path
construction via loop unwinding and employing compositionality
condition as a sufficient criterion.

give MC a ”program” of 1 loop iteration and get a non-ranked path

find a ranking function for it; add another disjunct to the d.wf TI

update an assertion to reflect the change in TI and ask MC for
another non-ranked path

if no more unranked path of 1 loop iteration exists then check TI for
compositionality. If it is not — continue with a ”program” of 2 loop
iterations.
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Algorithm #3

Loop summarization using relational domains (T., Sharygina,
Wintersteiger, Kroening at TACAS’11) focus only on one loop
iteration and instead iterates over possible candidates for
compositional d.wf. TI

take a loop and generate a set of relations between pre- and
post-states of the loop iteration

check each candidate for being a super-set of transition relation of
one iteration, i.e. T ⊇ R

if it is, check T for compositionality and wf.-ness (can be avoided
by an appropriate selection of candidates)
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Types of termination proofs

Terminator — using Binary Reachability Analysis (BRA)
VS

Compositional Termination Analysis (CTA)
VS

LoopFrog

Terminator is a ”proof by construction”

Compositional Termination Analysis uses ”proof by
construction” to obtain the base case and check it to be enough
using inductive step (compositionality criterion)

LoopFrog “guesses” candidates, check each for being a base case
of inductive proof and tries if the inductive step holds for it too
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Possible ways to continue

Termination with Compositionality

A program P is terminating iff there exists a well-founded com-
positional transition invariant for P.

The forward direction of the proof was already used in the previous work

The reverse direction of the proof follows from the definition of TI
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Questions to think about:

Can we define a criterion for loops that allow (easy) inductive
termination proof?

Does there exist a method to enumerate all possible base cases of
possible inductive termination proof?

Can we find the method that generalizes the discovery of inductive
termination proof without ranking function discovery?
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Abstract domains
for well-founded transition invariants discovery

# Constraint Meaning

1 i ′ < i
i ′ > i

A numeric variable i is strictly decreasing
(increasing).

2 x ′ < x
x ′ > x

Any loop variable x is strictly decreasing
(increasing).

3
sum(x ′, y ′) < sum(x , y)
sum(x ′, y ′) > sum(x , y)

Sum of all numeric loop variables is
strictly decreasing (increasing).

4

max(x ′, y ′) < max(x , y)
max(x ′, y ′) > max(x , y)
min(x ′, y ′) < min(x , y)
min(x ′, y ′) > min(x , y)

Maximum or minimum of all numeric
loop variables is strictly decreasing (in-
creasing).

5

(x ′ < x ∧ y ′ = y)∨
(y ′ < y ∧ x ′ = x)

(x ′ > x ∧ y ′ = y)∨
(y ′ > y ∧ x ′ = x)

A combination of strict increase or de-
crease for one of loop variables while the
remaining ones are not updated.
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Algorithm #4?
Find a “complete” way to enumerate invariant candidates in LoopFrog

1 Enumerate all possible permutations of variables in the loop to use as
possible lexicographical ordering, i.e. move gradually from domain #1 ”
i ′ > i to domain #5 ”(i , j , k, ...)′ > (i , j , k, ...)”.

Huge number of variants — n! + n!/(n − 1)! + ... + n!/1! only for
permutations without considering the decrease/increase

, but:

we can explore them gradually in a tree-like structure
we can apply several loop iterations to remove a majority of them as
unfeasible

2 The remaining candidates are checked for being a (compositional) TI

3 The wf.-ness check requires ensuring a minimal/maximal value for the
considered variables to be a loop invariant.

Is it possible to prove the completeness of this method?

Does it “repeat” the linear ranking functions?

How can we minimize a number of variables to consider?
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Algorithm #5?

Combine Liveness-to-Safety rewriting by Biere et.al with
interpolation to prune terminating paths from the MC check

1 Save the loop pre-state

2 Apply one loop unwinding and check if the saved stated can be equal to
the current post-state

3 If not, find an interpolant to over-approximate a loop iteration and
conjunct it with another copy of loop iteration (i.e., explore longer path)

4 If yes, generalize a CE to precondition and report as non-termination

5 Do it until the interpolant becomes compositional (?)

Does it make sense for an interpolant to be compositional?

Can we tune interpolation algorithm such that interpolant is
compositional?

Is it a dual of Terminator?
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Any answers?

More details available at:

http://www.verify.inf.usi.ch/loopfrog/termination

http://www.cprover.org/termination/
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Loop summarization with transition invariants

SummarizeLoop-TI(L)
input: Single-loop program L with a set of variables X
output: Loop summary
begin

T := >
foreach Candidate C (X ,X ′) in
PickInvariantCandidates(Loop) do

if IsInvariant(L, C) ∧ IsCompositional(C) then
T := T ∧ C

return “XPRE := X ; X = ∗; assume(T (XPRE ,X ));”
end
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IsCompositional (transitivity) check

∃si , sj , sk ∈ S . ¬ (C (si , sj) ∧ C (sj , sk)⇒ C (si , sk))

Only existential quantification
⇓

Computationally “cheap” SAT/SMT check is possible
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Loop summarization with transition invariants

IsInvariant(L, C )
input: Single-loop program L with a set of variables X , cand. invariant C
output: TRUE if C is invariant for L; FALSE otherwise
begin

return Unsat(L(X ,X ′) ∧ ¬C (X ,X ′))
end
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Well, but what about termination?

Definition (Well-foundedness)

A relation R is well-founded (wf.) over S if for any non-empty
subset of S there exists a minimal element (with respect to R),
i.e. ∀X ⊆ S . X 6= ∅ =⇒ ∃m ∈ X . ∀s ∈ X (s,m) /∈ R.
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Restricted class of transition invariants

Observation

If T is a strict order relation for a finite set K ⊆ S and is a
transition invariant for the program 〈S , I ,R〉, then T is well-
founded.

⇓

Corollary

A program terminates if it has a transition invariant T that is
also a finite strict order relation.
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LoopFrog
greets you!

Static analyzer for ANSI-C programs
www.verify.inf.usi.ch/loopfrog
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Evaluation

LoopFrog
VS

Terminator — (using Binary Reachability Analysis (BRA))
VS

Compositional Termination Analysis (CTA)

Terminator (by Cook, Podelski and Rybalchenko in 2006) uses
Binary reachability analysis, model checker-based
counterexample extraction, and per-path rank generator to
construct a d.wf. transition invariant.

Compositional Termination Analysis (by Kroening, Sharygina,
Tsitovich and Wintersteiger CAV’10) improved over BRA by path
construction via loop unwinding; and employing compositionality
condition as a sufficient criterion.
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Evaluation

LoopFrog
VS

Terminator — (using Binary Reachability Analysis (BRA))
VS

Compositional Termination Analysis (CTA)

LoopFrog 1 sum(x ′, y ′) < sum(x , y) or sum(x ′, y ′) > sum(x , y)
LoopFrog 2 i ′ < i or i ′ > i
Terminator Cook et al. PLDI ’06 and TACAS’10
CTA Kroening, Sharygina, Tsitovich, Wintersteiger CAV’10

All algorithms are implemented in Cprover/SatAbs framework
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Evaluation

LoopFrog
VS

Terminator — (using Binary Reachability Analysis (BRA))
VS

Compositional Termination Analysis (CTA)

We experimented with a large number of ANSI-C programs including:

The SNU real-time benchmark suite that contains small C programs
used for worst-case execution time analysis;

The Powerstone benchmark suite as an example set of C programs
for embedded systems;

The Verisec 0.2 benchmark suite by Ku et al.;

Windows device drivers (from Windows Device Driver Kit 6.0).
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Benchmark group Method T NT TO Time

Power-stone
135 loops in 14
benchmarks

LoopFrog 1 26 109 0 197.67
LoopFrog 2 66 69 0 2972.63
CTA 60 70 5 6519.45+
Terminator 66 58 11 5111.02+

SNU-real-time
109 loops in 17
benchmarks

LoopFrog 1 25 84 0 595.06
LoopFrog 2 75 34 0 816.21
CTA 64 35 10 7084.68+
Terminator 62 35 12 4182.92+

Verisec 0.2
244 loops in 160
benchmarks

LoopFrog 1 33 211 0 11.38
LoopFrog 2 44 200 0 22.49
CTA 34 208 2 1207.62+
Terminator 40 204 0 4040.53

Columns 3 to 6 state number of loops proven to terminate T, possibly
non-terminate NT, time-out TO. Time is computed only for loops noted in T
and NT; ’+’ is used to denote the cases were at least one time-outed loop was
not considered.
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Windows device drivers
Benchmark group Method T NT TO Time

SDV FLAT DISPATCH HARNESS
557 loops in 30 benchmarks

LoopFrog 1 135 389 33 1752.1
LoopFrog 2 215 201 141 10584.4
CTA 166 160 231 25399.5

SDV FLAT DISPATCH STARTIO HARNESS
557 loops in 30 benchmarks

LoopFrog 1 135 389 33 1396.0
LoopFrog 2 215 201 141 9265.8
CTA 166 160 231 28033.3

SDV FLAT HARNESS
635 loops in 45 benchmarks

LoopFrog 1 170 416 49 1323.0
LoopFrog 2 239 205 191 6816.4
CTA 201 186 248 31003.2

SDV FLAT SIMPLE HARNESS
573 loops in 31 benchmarks

LoopFrog 1 135 398 40 1510.0
LoopFrog 2 200 191 182 6814.0
CTA 166 169 238 30292.7

SDV HARNESS PNP DEFERRED IO RE-
QUESTS
177 loops in 31 benchmarks

LoopFrog 1 22 98 57 47.9
LoopFrog 2 66 54 57 617.4
CTA 80 94 3 44645.0

SDV HARNESS PNP IO REQUESTS
173 loops in 31 benchmarks

LoopFrog 1 25 94 54 46.6
LoopFrog 2 68 51 54 568.7
CTA 85 86 2 15673.9

SDV PNP HARNESS SMALL
618 loops in 44 benchmarks

LoopFrog 1 172 417 29 8209.5
LoopFrog 2 261 231 126 12373.2
CTA 200 177 241 26613.7

SDV PNP HARNESS
635 loops in 45 benchmarks

LoopFrog 1 173 426 36 7402.2
LoopFrog 2 261 230 144 13500.2
CTA 201 186 248 41566.6

SDV PNP HARNESS UNLOAD
506 loops in 41 benchmarks

LoopFrog 1 128 355 23 8082.5
LoopFrog 2 189 188 129 13584.6
CTA 137 130 239 20967.8

SDV WDF FLAT SIMPLE HARNESS
172 loops in 18 benchmarks

LoopFrog 1 27 125 20 30.3
LoopFrog 2 61 91 20 202.0
CTA 73 95 4 70663.0
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