Obligation and Weak-Parity Games

Barbara Jobstmann
Verimag/CNRS (Grenoble, France)

November 13, 2009
LTL Hierarchy

Reactivity

Recurrence/Büchi Persistence/co-Büchi

Obligation

Safety Reachability/Guarantee
Obligation Games

We consider games where the winning condition for Player 0 (on the play) is

- a Boolean combination of reachability conditions
- equivalently: a condition on the set Occ

Standard form: Staiger-Wagner winning condition, using

\[F = \{F_1, \ldots, F_k\} \]

Player 0 wins play \(\rho \) iff \(\text{Occ}(\rho) \in F \). We call these games obligation games (or Staiger-Wagner games).
Example

\[S = \{s_1, s_2, s_3\} \quad F = \{\{s_1, s_2, s_3\}\} \]

No winning strategy is positional.

There is a finite-state winning strategy.
Weak Parity Games

Method for solving Staiger-Wagner games:

1. Solve weak parity games.

2. Reduce Staiger-Wagner games to weak parity games.

A weak parity game is a pair \((G, p)\), where

\begin{itemize}
 \item \(G = (S, S_0, E)\) is a game graph and
 \item \(p : S \rightarrow \{0, \ldots, k\}\) is a priority function mapping every state in \(S\) to a number in \(\{0, \ldots, k\}\).
\end{itemize}

A play \(\rho\) is winning for Player 0 iff the minimum priority occurring in \(\rho\) is even: \(\min_{s \in \text{Occ} (\rho)} p(s)\) is even
Example
Weak Parity Games

Theorem

For a weak parity game one can compute the winning regions W_0, W_1 and also construct corresponding positional winning strategies.

Proof.

Let $G = (S, S_0, E)$ be a game graph, $p : S \to \{0, \ldots, k\}$ a priority function. Let $P_i = \{s \in S \mid p(s) = i\}$.

First steps if $P_0 \neq \emptyset$: We first compute $A_0 = \text{Attr}_0(P_0)$, clearly from here Player 0 can win.

In the rest game, we compute $A_1 = \text{Attr}_1(P_1 \setminus A_0)$ from here Player 1 can win.
General Construction

Aim: Compute $A_0, A_1, \ldots A_k$

Let G_i be the game graph restricted to $S \setminus (A_0 \cup \ldots A_{i-1})$.

$\text{Attr}^{G_i}_0(M)$ is the 0-attractor of M in the subgraph induced by G_i.

$A_0 := \text{Attr}_0(P_0)$

$A_1 := \text{Attr}^{G_1}_1(A_0 \setminus P_1)$

for $i > 1$:

$A_i := \begin{cases}
\text{Attr}^{G_i}_0(P_i \setminus (A_0 \cup \ldots \cup A_{i-1})) & \text{if } i \text{ is even} \\
\text{Attr}^{G_i}_1(P_i \setminus (A_0 \cup \ldots \cup A_{i-1})) & \text{if } i \text{ is odd}
\end{cases}$
Correctness

Correctness Claim:

\[W_0 = \bigcup_{i \text{ even}} A_i \quad \text{and} \quad W_1 = \bigcup_{i \text{ odd}} A_i \]

and the union of the corresponding attractor strategies are positional winning strategies for the two players on their respective winning regions.

Prove by induction on \(j = 0, \ldots, k \) the following:

\[\bigcup_{i=0..k, i \text{ even}} A_i \subseteq W_0 \quad \text{and} \quad \bigcup_{i=1..k, i \text{ odd}} A_i \subseteq W_0 \]
Correctness (cont.)

Base:

- i=0: \(A_0 = Attr_0(P_0) \subseteq W_0 \)
- i=1: \(A_1 = Attr_1(P_1 \setminus A_0) \subseteq W_1 \)

Induction step:

- i even: Consider play \(\rho \) starting \(A_i \) that complies to attractor strategy.
 - Case 1: \(\rho \) eventually leaves \(A_i \) to some \(A_j \) (from a Player-1 state), which \(j < i \) and even, then Player 0 wins by induction hypothesis.
 - Case 2: \(\rho \) visits \(P_i \), then we need to show that \(\rho \) visits only states with \(p(s) \geq i \). Consider a state \(s \) that visits \(P_i \), then
 - if \(s \in S_0 \), then not all edges lead to states with lower priority, otherwise \(s \in A_j \) for some \(j < i \). Contradiction.
Correctness (cont.)

- Case 2 (cont.):
 - if $s \in S_1$, then all edges lead to states with priority $\geq i$. Any edge to a lower priority must lead to A_j with even j (Case 1). If there were edges to states s' with priority $j < i$ and j odd, then s' would already be in A_j. Contradiction.

- i odd: switch players
How to translate a Staiger-Wagner automaton to Weak-Parity automaton?

Idea: record visited states during a run

Record set: $R \subseteq S$

Question: How to give priorities?
Record Sets and Priorities

Assume automaton with states \(\{s_0, s_1, s_2\}\). Consider possible record sets.

Assume the following run \(s_1, s_0, s_1, s_0, s_2, \ldots\) and the acceptance condition \(F = \{\{s_0, s1\}, \{s0, s1, s2\}\}\). How to assign priorities?
Record Sets and Priorities

\(F = \{\{s_0, s_1\}, \{s_0, s_1, s_2\}\} \). How would you assign priorities?

\[
\begin{align*}
\{s_0, s_1, s_2\} &: 0 \\
\{s_0, s_1\} &: 2 \quad \{s_0, s_2\} &: 3 \\
\{s_0\} &: 5 \\
\emptyset &: \text{d.c.}
\end{align*}
\]
From Staiger-Wagner to Weak Parity Automata

Given a deterministic Staiger-Wagner automaton $A = (S, I, T, F)$, we can construct an equivalent weak parity automaton $A' = (S', I', T', p)$ as follows:

\[
S' := S \times 2^S \\
I' := (I, \{I\}) \\
T'(\langle s, R \rangle, a) := (T(s, a), R \cup \{T(s, a)\}) \\
p((s, R)) := 2 \cdot |S| - \begin{cases}
2 \cdot |R| & \text{if } R \in F \\
2 \cdot |R| - 1 & \text{if } R \not\in F
\end{cases}
\]
Idea of Game Reduction

We want to solve Staiger-Wagner games. We use a reduction to weak parity games (and the positional winning strategies of weak parity games).

Reduction will transform a game \((G, \phi)\) into a game \((G', \phi')\) such that usually

- \(G'\) is (usually) larger than \(G\)
- \(\phi'\) is simpler than \(\phi\) (so the solution of \((G', \phi')\) is simpler than that of \((G, \phi)\))
- from a solution of \((G', \phi')\) we can construct a solution of \((G, \phi)\).

Concrete application: Transform Staiger-Wagner game into a weak parity game over a larger graph (from \(S\) proceed to \(S \times 2^S\))
Game Reduction

Let $G = (S, S_0, E)$ and $G' = (S', S'_0, E')$ be game graphs with winning conditions ϕ and ϕ', respectively.

(G, ϕ) is reducible to (G', ϕ') if:

1. $S' = S \times M$ for a finite set M and $S'_0 = S_0 \times M$

2. Each play $\rho = s_0s_1\ldots$ over G is translated into a play $\rho' = s'_0s'_1\ldots$ over G' by
 - a function $f : S \to S \times M$ (the beginning of ρ').
 - forall states $(m, s) \in S \times M$ in G' and all states $s' \in S$ in G, if there exists an edge $(s, s') \in E$, then there is a unique m' with $((m, s), (m', s')) \in E'$
 - forall edges $((m, s), (m', s')) \in E'$ in G', there is an edges $(s, s') \in E$ in G

3. For all plays ρ and ρ' according to 2.: $\rho \in \phi$ iff $\rho' \in \phi'$
Application of Game Reduction

Theorem

Suppose \((G, \phi)\) is reducible to \((G', \phi')\) with extension set \(M\), initial function \(g\), and \(G\) and \(G'\) defined as before. Then, if Player 0 wins in \((G', \phi')\) from \(g(s)\) with a memoryless winning strategy, then Player 0 wins in \((G, \phi)\) from \(s\) with a finite-state strategy.

Idea: Given a memoryless winning strategy \(f : S'_0 \rightarrow S'\) from \(g(s)\) for Player 0 in \((G', \phi')\), we can construct a strategy automaton \(A = (M, m_0, \delta, \lambda)\) for Player 0 in \((G, \phi)\).
Obligation/Staiger-Wagner Games

Theorem

Given a Staiger-Wagner game \((G, \phi)\), one can compute the winning regions of Player 0 and 1 and corresponding finite state strategies.

Proof.

We can apply game reduction with \((G', \phi')\) as follows:

\[
G' := (S', S'_0, E')
\]

\[
S' := 2^S \times S
\]

\[
((R, s), (R', s')) \in E' \iff (s, s') \in E, R' = R \cup \{s'\}
\]

\[
g(s) = (\{s\}, s)
\]

\[
p((R, s)) := 2 \cdot |S| - \begin{cases} 2 \cdot |R| & \text{if } P \in \phi \\ 2 \cdot |R| - 1 & \text{if } P \notin \phi \end{cases}
\]
Exponential-Size Memory

Theorem

There is a family of Staiger-Wagner games over game graphs \(G_1, G_2, G_3, \ldots \) which grow linearly in \(n \) such that

- Player 0 wins from a certain initial vertex of \(G_n \)
- any finite-state strategy for Player 0 needs at least \(2^n \) states

Winning condition:

\[
\phi = \{ \rho \mid \forall i = 1 \ldots n : i \in \text{Occ}(\rho) \iff i' \in \text{Occ}(\rho) \}
\]
Exponential Memory (cont.)

Claim:
Over G_n there is an automaton winning strategy for Player 0 from vertex s_0 with a memory of size 2^n. (Remember the visited vertices i, for the appropriate choice from vertex s'_0 onwards.)
Each automaton winning strategy for Player 0 from s_0 in G_n has a memory of 2^n many states.

Proof.
Assume $|\text{states}| < 2^n$ is sufficient.
Then two play prefixes $u \neq v$ exist leading to the same memory states at s'_0. The rest r of the play is then the same after u and v.
One of the two player ur, vr is lost by Player 0. Contradiction.